# James Webb Space Telescope Mission Status & Challenges Managing a Large Project

Dr. Mark Clampin JWST Observatory Project Scientist NASA Goddard Space Flight Center

July 2, 2012



# **JWST System Hierarchy**







## Telescope



#### **Optical Telescope Element (OTE)**

#### Sun Shield

Integrated Science Instrument Module (ISIM)

#### Spacecraft











### JWST requires the largest cryogenic telescope ever constructed



To observe the early universe, the JWST mission requires:

7X the light gathering capability of the Hubble Space Telescope

similar angular resolution in the nearinfrared spectrum

wavelength coverage spanning the optical to mid-infrared spectrum

As a consequence, the observatory requires:

a primary mirror that is larger in diameter than available rocket fairings

JWST, 1000s per band

(simulated)

a high stability 40-50K cryogenic operating temperature

S Casertano & M. Stiavel



# NASA JWST requires a segmented deployable primary mirror







- JWST is designed to integrate with an Ariane V launch vehicle and 5 m diameter fairing
- Launch from Kourou Launch Center (French Guiana) with direct transfer to L2 point.
- Payload launched at ambient temperature with on orbit cooling to 50 K via passive thermal radiators
- JWST payload: 6330 kg





### **Telescope Architecture Overview**







# **JWST Mirror Manufacturing Team**





Each individual mirror makes 11 trips and travels ~15,000 miles before ever being integrated onto the observatory!



# All Mirrors Are Complete!





- Polished, coated, vibed, cryo tested
- Aft Optics Assembly (AOS) integration complete
- Flight Cryo Electronics on track for incremental deliveries over the next year







## Assembly consists of ~3,200 bonded composite piece parts









 PMBSS Center Section assembly is complete !



Wing Structures being built on Tooling



Flight Backplane - Center Section



### **Telescope Assembly Ground Support Equipment**





# 

#### 139,000 lbs of GSE to install a 46 lb mirror segment!

### **Ambient Optical Alignment Stand Complete**





Landing a mirror onto backplane simulator





**Optical Telescope Element (OTE)** 

Sun Shield

Integrated Science Instrument Module (ISIM)

Spacecraft











### **JWST's 5 Layer Sunshield**





#### SUNSHIELD FACTS

- MEASURES 73 X 40 FEET (ABOUT THE SIZE OF A TENNIS COURT) AND HAS 5 LAYERS

- CONTAINS 400 TEMPERATURE SENSORS
- SUN SIDE REACHES 358 K (185° F)
- DARK SIDE STAYS AT 40 K (-388° F)

#### The Two Sides of the Webb Telescope





Sunshield thermal performance has been validated by a 1/3 scale test in a space simulation chamber







### Sunshield Template Membrane Work On-Going



- Templates Verify Design Prior to Flight Build
- Template Layer 3 testing completed
  - All shape measurement data looks good
  - Layer 3 hole punching on-going
- Template Layer 5 shape testing competed
  - All shape measurement data looks good
- Template Layer 4
  - Shape testing completed and data delivered for analysis
- Template Layer 2
  - Manufacturing underway







# **Integrated Science Instrument Module**



#### **Optical Telescope Element (OTE)**

#### Sun Shield

Integrated Science Instrument Module (ISIM)

#### Spacecraft









Flight ISIM Structure



# **ISIM is the Science Instrument Payload of JWST**



- Approximately 1.4 metric tons, ~20% of JWST by mass
- The ISIM system consists of:
  - Four science instruments
  - Nine instrument support systems:
    - Optical metering structure system •
    - Electrical Harness System
    - Harness Radiator System
    - ISIM electronics compartment (IEC) <sup>e</sup>
    - Cryogenic Thermal Control System
    - Command and Data Handling System (ICDH)
    - ISIM Remote Services Unit (IRSU)
    - Flight Software System
    - Operations Scripts System





# INSTRUMENTS

## NIRCam will provide the deepest near-infrared images ever and will identify primeval galaxy targets for NIRSpec



Module A

Module B





NIRCam Entering Chamber for Cryo Testing

- Developed by the University of Arizona with Lockheed Martin ATC
  - Operating wavelength: 0.6 5.0 microns
  - Supports OTE Wavefront Sensing
- Current Status
  - NIRCam: Module instrument level cryo testing has begun
- Delivery to I&T scheduled for Nov. 2012

## NIRSpec Will Acquire Spectra Of Up To 100 Galaxies In A Single Exposure





- Developed by the European Space Technology Center (ESTEC) with Astrium GmbH and Goddard Space Flight Center
  - Operating wavelength: 0.6 5.0 microns
  - Aperture control:
    - Programmable micro-shutters, 250,000 pixels
    - Fixed long slits & transit spectroscopy aperture
    - Image slicer (IFU) 3x3 arc sec
- Current Status
  - Integration of components on optical bench well underway
    - · Flight optical bench had to be replace with spare after cracks found
- Delivery to I&T scheduled for April 2013
  - ISIM Cryo Vac Test 1 (of three) will use NIRSpec Engineering Test Unit

## MIRI will detect key discriminators that distinguish the earliest state of galaxy evolution from more evolved objects





MIRI in Clean Room at GSFC

- Developed by a European Consortium and JPL
  - Operating wavelength: 5 29 microns
  - Coronagraphic imager and Spectroscopy
- Current Progress
  - MIRI was delivered to GSFC on May 29<sup>th</sup> !
    - Completing post-ship functional test activities

# FGS provides imagery for telescope pointing control & imaging spectroscopy to reveal primeval galaxies and extra-solar planets





- Developed by Canadian Space Agency with ComDev
  - Operating wavelength: 0.8 4.8 microns
- Current Progress
  - Final integration and test underway
- Delivery date: End of July 2012





- ISIM Structure Completed
- ISIM Command & Data Handling Units (ICDHs) 1 & 2
  - Delivered to ISIM I&T
- ISIM Remote Servicing Unit (IRSU):
  - Delivered to ISIM I&T
- ISIM Electronics Compartment (IEC):
  - Completed cryo and acoustics testing
  - Vibration testing in progress
- ISIM Flight Software System
  - Build completed to support ISIM Cryo-Vac 1













# **ISIM Structure Instrument Fit Check**









- ISIM is flight qualified prior to delivery for integration with the Observatory element
- Primary ground support equipment:
  - Space environment simulator LHe shroud
    - Enables ISIM testing at operating temperature
  - Cryogenic photogrammetry system
    - · Enables metrology of ISIM structure at operating temperature
  - ✓ ISIM Test Platform (ITP)
    - Simulates OTE mechanical interface at cryogenic operating temperature
  - Ambient science instrument mechanical interface fixture (ASMIF)
    - Simulates ISIM structure mechanical interface for each instrument with high fidelity
  - Science instrument test sets (SITS)
    - Simulates ICDH for each instrument





## Optical Telescope Element (OTE) Simulator (OSIM)

- Simulates Optical Telescope Element (OTE) with high fidelity
- Used to test optical performance of ISIM
  - Cryo Certification is in process







# Spacecraft



**Optical Telescope Element (OTE)** 

Sun Shield

Integrated Science Instrument Module (ISIM)

#### Spacecraft











#### Spacecraft Progress Component Level CDRs being conducted Various Flight and Engineering Model components are in fabrication



















Type-2A SCSim & IES

Command Control Unit







SSR Flight Unit Delivered To I&T







# OTE + ISIM = O'TIS



### **OTE/OTIS I&T Flow**





Green=Test Peach= Integration Blue=Shipment





- Prior to final Observatory Integration the OTE + ISIM (OTIS) will be tested in a large chamber at JSC
  - Chamber used for the Apollo missions
- Modifications to Chamber A are nearing completion creating the world's largest Cryo-Vacuum Chamber







# **OTIS Status – Chamber A Modifcations**









# CHALLENGES MANAGING A LARGE PROJECT





#### Many challenges a large project faces are the same as smaller projects

 Exception is the "size" of the challenges and their complexity dependent on technical parameters and number of partners/contractors involved

### Obvious keys to minimizing any impacts from these challenges:

- "High Confidence" Budget and Schedule
  - Appropriate cost and schedule reserves are required to provide the resources to proactively mitigate risks or have the ability absorb consequences of issues/ problems which could not be mitigated or avoided
  - Robust programmatic controls, monitoring and analysis helps ensure project is meeting programmatic requirements and has the reserves to tackle tough problems
    - Don't want to spend all your reserves on cost overruns due to poor management/ planning
  - Continually look for "opportunities" to reduce risk earlier, identify problems sooner, and increase schedule reserves (you'll always need it later)





- Obvious keys to minimizing any impacts from these challenges (continued):
  - Communications
    - Large programs that are geographically and culturally diverse such as JWST only emphasize the importance of communication
      - Communication needs to occur at all levels organization
        - » From daily or at least weekly at "working" level to at least weekly to monthly at higher management levels
      - Communications need to not only be formal but informal
        - » Must build personnel relationships with counterparts
        - » Good interpersonal relationships will only help the situation when things go wrong
    - Providing forums for face to face meetings
      - These can be monthly reviews, technical interchange meetings, etc.
      - For large geographically diverse teams, the whole team needs to meet face to face at least once or twice per year
        - » "Get everyone on the same page"
        - » Exchange ideas
        - » Work issues together in same room
        - » Provide opportunity to socialize to improve relationships





- Obvious keys to minimizing any impacts from these challenges (continued):
  - Robust Risk Management
    - At any phase of a project life cycle, good risk management is key to successfully maintaining progress and preserving cost/schedule reserves
- One challenge which larger projects face which many smaller ones don't is "Visibility"
  - Visibility includes internal to Agency and external entities such as stakeholders (US Congress) and media
  - High Visibility results in extra reviews, audits, media attacks, etc.
  - Mitigate impacts from high visibility
    - · Ensure staffing levels can handle extra reviews, audits, etc.
    - Keep stakeholders informed
      - Goes back to good communication
    - Implement other key activities above and "do what you said you would do"
    - Don't worry about media attacks, can't do anything about them





# **CLOSING REMARKS**





#### Excellent progress continues to be made on JWST!

### Challenges still lie ahead

- Schedule
  - Need to get all instruments in-house
  - Continuous risk mitigation in progress
    - "Always have work-arounds"
- Technical
  - Backplane completion, completion of sun shield, etc.
- Integration "Put all the pieces together"
- Testing
  - ISIM, OTIS, Observatory, etc.

# Project continues to execute to plan for 2018 Launch!

.