

Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor

NASA Goddard Space Flight Center¹ Rochester Institute of Technology²

Matthew Montanaro¹ Dennis C. Reuter¹ Brian L. Markham¹ Kurtis J. Thome¹ Allen W. Lunsford¹ Murzy D. Jhabvala¹ Scott O. Rohrbach¹ Aaron D. Gerace²

April 2011

Data Continuity Mission

Overview

- Thermal Infrared Sensor (TIRS)
- New longwave infrared (10 12 micron) sensor for the Landsat Data Continuity Mission
- 185 km ground swath; 100 meter pixel size on ground
- <u>Pushbroom</u> sensor configuration

Issue of Calibration:

- Single detector only one calibration
- Multiple detectors unique calibration for each detector – leads to pixel-to-pixel artifacts

Objectives:

- Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres.
- Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.

Data Continuity Mission

Data Continuity Mission

TIRS Requirements

- Spectral Uniformity*:
 - Bandcenter: <= 50 nm of mean
 - Bandwidth: <= 5% of mean
 - Average in-band response: >= 0.8
 - Response between 0.5 response points : >= 0.4
 - Response between 0.8 response points: >= 0.7
 - Band edge slope (0.01-to-0.50): <= 0.4 microns
 - Band edge slope (0.05-to-0.50): <= 0.3 microns
- CE stability: < 0.4%
- Dark current instability: < 5.1*10⁵ electrons/sec
- Noise: < 1000 electrons
- Dark current: < 8.4*10⁷ electrons/sec
- Absolute in-band CE: >= 0.3%

Data Continuity Mission

Requirements Map: 10.8 micron Band

Requirements Map:

- White (1) = Pass all requirements
- Black (0) = Fail at least one requirement

Data Continuity Mission

Requirements Map: 12.0 micron Band

Requirements Map:

White (1) = Pass all requirements

Black (0) = Fail at least one requirement

12.0 um Band

Pixel Responses

10

Study 1: Uniform Scenes

Data Continuity Mission

Uniform Scene

- Same calibration on uniform scene through atmosphere
- Will not return same brightness temperature due to atmospheric terms

• What is the residual striping effect due to the atmosphere when viewing a uniform blackbody?

Uniform Blackbody $B(T,\lambda)$

 $L_{_{atm}}(\lambda)$

 $\tau(\lambda)$

Data Continuity Mission

Study 1 Results – 10.8 Band

280 K Blackbody Target 285.2 311.3 285.15 311.25 285.1 311.2 285.05 311.15 285 311.1 284.95 (0.0032)(0.0027)(0.0026) -311.05 1200 200 400 600 800 1000 1400 1600 1800 200 400 282.2 316.4 282.15 316.35 282.1 316.3 282.05 316.25 282 316.2 281.95 (0.0023)(0.0017)(0.0020) 316.15 200 400 600 800 1200 1400 1600 1800 200 400 1000 325.75 278.85 325.7 278.8 278.75 325.65 325.6 278.7 325.55 278.65

Tropical

Mid-Latitude Summer

Mid-Latitude Winter

15

Sub-Arctic Summer

Data Continuity Mission

Study 1 Results – 12.0 Band

330 K Blackbody Target

MODTRAN Standard Atmospheres:

Tropical

Mid-Latitude Summer

Mid-Latitude Winter

Sub-Arctic Summer

16

Data Continuity Mission

Study 1 Observations

- Striping even after radiometric calibration of the detectors
 - -Calibration based on a smooth blackbody radiance
 - Atmospheric spectral variations = different integrated signal for a particular detector.
- Minimum for mid-latitude winter atmospheres and maximum for tropical atmospheres
 - Tropical atmosphere: higher transmission and path radiance effects = magnify striping artifacts
- Striping minimized for temperatures of 270 280 K -contrast between the target temperature and effective atmospheric temperature.
 - transmission losses compensated by path radiance
 - Striping is generally greater in 12.0 micron channel
 wider bandwidth more susceptible to spectral variations

The residual artifacts expected to be small (max standard deviations 35 mK and 57 mK)

Study 2: Realistic Scenes

Data Continuity Mission

Realistic Scene

 $S_{i} = \frac{\int \left[\varepsilon(\lambda)B(T,\lambda)\cdot\tau_{atm}(\lambda) + L_{atm}(\lambda)\right]\cdot R_{i}(\lambda)\cdot d\lambda}{\int R_{i}(\lambda)\cdot d\lambda}$

- Replace uniform scene with realistic scene
 - Various emissivities
- Group pixel responses into classes
 - Representative spectral shapes

Atmosphere

How do different band shapes affect the brightness temperature in a realistic scene?

Data Continuity Mission

DIRSIG Lake Tahoe Image

Data Continuity Mission

DIRSIG Lake Tahoe Image

DIRSIG Thermal Radiance image [W/m2/sr/um]

Spectral Response Classes

DIRSIG Product

- 4 band shapes (2 for each band)
- 4 MODTRAN Standard Atmospheres:
 - Tropical, Mid-Latitude Summer, Mid-Latitude Winter, Sub-Arctic Summer
- 2 TIRS bands * 2 band shapes per band * 4 atmospheres = 16 DIRSIG radiance images

• Express results as % difference images:

 $\frac{\left|L_{shape1} - L_{shape2}\right|}{mean(L_{shape1}, L_{shape2})} \cdot 100\%$

Data Continuity Mission

DIRSIG Product

Percent difference (shape 1 – shape 2) for 10.8 micron band

Percent difference (shape 1 – shape 2) for 12.0 micron band

Tropical

Mid-Latitude Summer

Mid-Latitude Winter

Sub-Arctic Summer

24

Data Continuity Mission

Study 2 Observations

- Temperature differences generally greater in 12.0 micron channel
 - wider bandwidth more susceptible to spectral variations
 - greater variation in 12 micron band shapes
- Temperature differences greatest for tropical atmosphere
 - higher transmission and path radiance effects = increased spectral variation
- Material type affects temperature differences (very subtle)
 - lower emissivity materials less susceptible to band shape
 - lower emissivity = more reflected atmosphere = less contrast between ground and atm.
- Results consistent with previous study

Band shape differences expected to be 0.1% and a 0.2%

Data Continuity Mission

Summary

- Spectral requirements analysis to choose best candidates for primary science rows
- Predict residual pixel-to-pixel artifacts for science row candidates:
 - Residual striping when viewing uniform target through atmosphere
 - Very small striping expected (35 mK and 57 mK for the 10.8 and 12.0 micron bands respectively)
 - Band shape influence on brightness temperatures in a realistic scene
 - Temperature differences between band shapes expected to be small (0.1% and 0.2% for the 10.8 and 12.0 micron bands respectively)

Modeling tools (MODTRAN and DIRSIG) utilized to predict instrument performance before instrument is built

Data Continuity Mission

Acknowledgements/References/Contact

Acknowledgements

• Detector Characterization Lab at NASA Goddard

Nicholas Boehm, Chao-Hsi Chang, Roger Foltz, Mike Hickey, Duncan Kahle, Emily Kan, Augustyn Waczynski

• Digital Imaging and Remote Sensing Lab at RIT

References

[1] Jhabvala, M., Reuter, D., Choi, K., Jhabvala, C., and Sundaram, M., "QWIP-based thermal infrared sensor for the landsat data continuity mission," in [*Infrared Physics & Technology*], 52, 424–429 (2009).

[2] "LDCM thermal infrared sensor requirements document," Tech. Rep. GSFC 427-15-02, NASA Goddard Space Flight Center (May 2009).
 [3] Schott, J. R., [Remote Sensing: The Image Chain Approach], Oxford University Press, New York, NY (1997).

[4] Berk, A., Bernstein, L. S., and Robertson, D. C., "MODTRAN: A moderate resolution model for LOWTRAN 7," Tech. Rep. GL-TR-89-0122, Spectral Sciences, Inc., Burlington, MA (April 1989).

[5] MacQueen, J., "Some methods for classification and analysis of multivariate observations," in [*Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1*], 281–297, Univ. of Calif. Press (1967).

[6] Schott, J. R., Brown, S. D., Raqueno, R. V., Gross, H. N., and Robinson, G., "An advanced synthetic image generation model and its application to multi/hyperspectral algorithm development," in [*Canadian Journal of Remote Sensing*], 25(2), 99–111 (1999).
[7] Salisbury, J. W. and D'Aria, D. M., "Emissivity of terrestrial materials in the 8-14 *m atmospheric window,*" in [*Remote Sensing Environment*], 42, 83–106 (1992).

Contact Information

Matt Montanaro Sigma Space Corporation NASA Goddard Space Flight Center matthew.montanaro@nasa.gov

Backup Slides

Data Continuity Mission

Blackbody Temperatures

Blackbody radiance curves at various temperatures with the mean band shapes shown for reference

29

Transmission

0.2 9.5

10.5

11

10

11.5

Wavelength [um]

12

12.5

13

13.5

10.5

11

9.5

10

11.5

Wavelength [um]

12

12.5

13

30

13.5

Data Continuity Mission

Pixel-to-Pixel Uniformity Requirements

- <u>Full Field of View</u>: The standard deviation of all pixel radiances across the FOV within a band shall not exceed 0.5% of the average radiance $\sqrt{\frac{\sum_{i=1}^{N} (L_i \overline{L})^2}{N-1}} \le 0.005 \cdot \overline{L}$
- <u>Banding</u>: (1) The root mean square deviation from the average radiance across the full FOV for any 100 contiguous pixel radiances within a band shall not exceed 0.5% of that average radiance

 <u>Banding</u>: (2) The standard deviation of the radiances across any 100 contiguous pixels within a band shall not exceed 0.5% of the average radiance across the full FOV

$$\sqrt{\frac{\sum_{i=n}^{n+99} (L_i - \overline{L})^2}{99}} \le 0.005 \cdot \overline{L}$$

 $\sqrt{\frac{\sum_{i=n}^{n+99} (L_i - \overline{L})^2}{100}} \le 0.005 \cdot \overline{L}$

• Streaking: The maximum value of the streaking parameter within a band shall not exceed 0.005

$$\frac{\left|L_{i} - \frac{1}{2}\left(L_{i-1} + L_{i+1}\right)\right|}{L_{i}} \le 0.005$$

* Pixel data has been radiometrically calibrated using on-board blackbody method discussed earlier

Data Continuity Mission

Full Field of View

• All pixels meet FOV requirement for all conditions

Rand 1.	Blackbody	TF	TRP		ML	S	MLW		N	SAS		
Dallu I.	Temperature	St. Dev.	0.5% mean	St. Dev.		0.5% mean	St. Dev.		0.5% mean	St. Dev.	().5% mean
10.8 um	260	0.0019 ≤	0.0328	0.0017	≤	0.0293	0.0001	≤	0.0244	0.0009	≤	0.0264
	270	0.0012 ≤	0.0353	0.0010	≤	0.0326	0.0002	≤	0.0291	0.0003	≤	0.0303
	280	0.0004 ≤	0.0381	0.0003	≤	0.0363	0.0006	≤	0.0343	0.0004	≤	0.0346
	290	0.0008 ≤	0.0412	0.0008	≤	0.0403	0.0010	≤	0.0400	0.0012	≤	0.0395
	300	0.0018 ≤	0.0446	0.0018	≤	0.0448	0.0015	≤	0.0463	0.0020	≤	0.0447
	310	0.0029 ≤	0.0483	0.0029	≤	0.0497	0.0020	≤	0.0531	0.0030	≤	0.0505
	320	0.0042 ≤	0.0522	0.0041	≤	0.0549	0.0025	≤	0.0605	0.0040	≤	0.0567
	330	0.0055 ≤	0.0565	0.0054	≤	0.0606	0.0031	≤	0.0684	0.0050	≤	0.0633

Band 2: 12.0 um

Blackbody	TRP		MLS			MLW			SAS			
Temperature	St. Dev.		0.5% mean									
260	0.0048	≤	0.0332	0.0030	<	0.0296	0.0002	≤	0.0242	0.0012	≤	0.0264
270	0.0037	≤	0.0349	0.0022	<	0.0322	0.0004	≤	0.0283	0.0008	≤	0.0296
280	0.0025	≤	0.0368	0.0014	<	0.0350	0.0008	≤	0.0328	0.0007	≤	0.0332
290	0.0014	≤	0.0389	0.0010	<	0.0381	0.0012	≤	0.0378	0.0012	≤	0.0371
300	0.0016	≤	0.0412	0.0017	<	0.0415	0.0017	≤	0.0431	0.0019	≤	0.0413
310	0.0031	≤	0.0437	0.0029	<	0.0451	0.0022	≤	0.0488	0.0028	≤	0.0459
320	0.0050	≤	0.0463	0.0044	<	0.0489	0.0027	≤	0.0549	0.0037	≤	0.0507
330	0.0072	≤	0.0490	0.0060	<	0.0530	0.0033	≤	0.0614	0.0048	≤	0.0559

Banding (1)

• All pixels meet banding (1) requirement for all conditions

$$\sqrt{\frac{\sum_{i=n}^{n+99} (L_i - \overline{L})^2}{100}} \le 0.005 \cdot \overline{L}$$

Band 1: 10.8 um

Blackbody	# Pixels Failing Requirement						
Temperature	TRP MLS		MLW	SAS			
260	0	0	0	0			
270	0	0	0	0			
280	0	0	0	0			
290	0	0	0	0			
300	0	0	0	0			
310	0	0	0	0			
320	0	0	0	0			
330	0	0	0	0			

Band 2: 12.0 um

Blackbody	# Pixels Failing Requirement					
Temperature	TRP	MLS	MLW	SAS		
260	0	0	0	0		
270	0	0	0	0		
280	0	0	0	0		
290	0	0	0	0		
300	0	0	0	0		
310	0	0	0	0		
320	0	0	0	0		
330	0	0	0	0		

Banding (2)

• All pixels meet banding (2) requirement for all conditions

$$\sqrt{\frac{\sum_{i=n}^{n+99} (L_i - \overline{L})^2}{99}} \le 0.005 \cdot \overline{L}$$

Band 1: 10.8 um

Blackbody	# Pixels Failing Requirement					
Temperature	TRP	MLS	MLW	SAS		
260	0	0	0	0		
270	0	0	0	0		
280	0	0	0	0		
290	0	0	0	0		
300	0	0	0	0		
310	0	0	0	0		
320	0	0	0	0		
330	0	0	0	0		

Band 2: 12.0 um

Blackbody	# Pixels Failing Requirement						
Temperature	TRP	MLS	MLW	SAS			
260	0	0	0	0			
270	0	0	0	0			
280	0	0	0	0			
290	0	0	0	0			
300	0	0	0	0			
310	0	0	0	0			
320	0	0	0	0			
330	0	0	0	0			

Streaking

$$\frac{\left|L_{i} - \frac{1}{2}\left(L_{i-1} + L_{i+1}\right)\right|}{L_{i}} \le 0.005$$

Band 1: 10.8 um

Blackbody	# Pixels Failing Requirement					
Temperature	TRP	MLS	MLW	SAS		
260	0	0	0	0		
270	0	0	0	0		
280	0	0	0	0		
290	0	0	0	0		
300	0	0	0	0		
310	0	0	0	0		
320	0	0	0	0		
330	0	0	0	0		

Band 2: 12.0 um

Blackbody	# Pixels Failing Requirement						
Temperature	TRP	MLS	MLW	SAS			
260	3	3	0	1			
270	3	3	0	0			
280	3	1	0	0			
290	0	0	0	0			
300	0	0	0	0			
310	3	1	0	0			
320	3	3	0	1			
330	3	3	0	1			