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Abstract—Air quality information is increasingly becoming a
public health concern, since some of the aerosol particles pose
harmful effects to peoples health. One widely available metric
of aerosol abundance is the aerosol optical depth (AOD). The
AOD is the integrated light extinction coefficient over a vertical
atmospheric column of unit cross section, which represents the
extent to which the aerosols in that vertical profile prevent
the transmission of light by absorption or scattering. The
comparison between the AOD measured from the ground-based
Aerosol Robotic Network (AERONET) system and the satellite
MODIS instruments at 550 nm shows that there is a bias
between the two data products. We performed a comprehensive
analysis exploring possible factors which may be contributing
to the inter-instrumental bias between MODIS and AERONET.
The analysis used several measured variables, including the
MODIS AOD, as input in order to train a neural network in
regression mode to predict the AERONET AOD values. This
not only allowed us to obtain an estimate, but also allowed us
to infer the optimal sets of variables that played an important
role in the prediction. In addition, we applied machine learning
to infer the global abundance of ground level PM2.5 from
the AOD data and other ancillary satellite and meteorology
products. This research is part of our goal to provide air quality
information, which can also be useful for global epidemiology
studies.

I. INTRODUCTION

Atmospheric aerosols are tiny particles (solid and liquid)
suspended in the atmosphere. Some aerosols pose harmful
effects to peoples health when inhaled. Moreover, atmo-
spheric aerosols play an important role in understanding the
global climate.

The aerosol optical depth (AOD), or optical thickness, is
defined as the integrated extinction coefficient over a vertical
column of unit cross section. The Extinction coefficient is
the fractional depletion of radiance per unit path length and
represent how much aerosols prevent the transmission of
light by absorption and scattering.

In the past, much effort has been placed in observ-
ing aerosol characteristics, such as AOD, from space and
ground-based instruments. The Moderate Resolution Imag-
ing Spectroradiometer (MODIS), onboard the Terra and
Aqua satellites, retrieve AOD using dark target methods in
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bands at 550, 670, 870, 1240, 1630, and 2130 nm over
the ocean, and at 470, 550, and 670 nm over land [1],
[2]. A global system of ground-based sun and sky scan-
ning sun photometers, called the Aerosol Robotic Network
(AERONET), also measure the AOD at various wavelengths
(at 340, 380, 440, 550, 675, 870, and 1020 nm) [3].
AERONET measurements are taken every 15 min during
daylight, and its level 2 quality control measurements as-
sure AOD observations are accurate to within 0.01 for
wavelengths of 440 nm and higher. AOD measurements
from MODIS are available globally, whereas AERONET
measurements are available only for land locations, some
of which are coastal sites.

Ideally, the measurements of AOD from these two in-

struments should match. However, biases do exist be-
tween AERONET and MODIS measurements. In this study
when we refer to the difference between the ground truth
AERONET AOD observations at 550 nm and the remotely
sensed MODIS AOD at 550 nm as the bias, i.e.
Bias = AEORNET AOD at 550 nm — MODIS AOD at 550
nm. The bias is higher for higher AOD values. Figure 1
shows that a significant number of points do not fall close
to the 1:1 line. Figure 2 shows that the magnitude of the
bias is greater for larger values of AOD at 550 nm. Our
goal is to try and understand the factors that can delineate
these extrema, and /or explain them statistically.

II. PREVIOUS STUDIES

Previous MODIS aerosol validation studies compared the
Aqua and Terra MODIS-retrieved AODs with the ground-
based AERONET observations [4], [5], [2], [6].

From the studies of Normalized Difference Vegetation
Index (NDVI), Brown et al. (2008) suggested that the surface
type played a key role in explaining a significant fraction of
the observed bias [7].

Lary et al. (2009) used machine-learning approaches to
explore factors contributing to a persistent bias between
AOD retrieved from MODIS and AERONET data [8]. Their
work also suggested a link between the MODIS AOD bias
and the surface type. The possible factors influencing the
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Figure 1. A scatter diagram showing the comparison between the AOD
from AERONET and MODIS instruments at 550 nm. The regime of high
bias has been indicated by a circle.
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Figure 2. Scatter-histogram showing the distribution of bias and MODIS
AOD measurements at 550 nm.

bias might be associated with the measurement conditions
such as the solar and sensor zenith angles, the solar and
sensor azimuth, scattering angles, and surface reflectivity at
the various measured wavelengths, etc. In their study they
explained the AOD bias between MODIS and AERONET
by using the surface type, the solar zenith angle, the solar
azimuth angle, the sensor zenith angle, the sensor azimuth
angle, the scattering angle, and the reflectance at 550 nm as
input variables to the neural network.

In this paper, we performed a comprehensive analysis for
every possible combination of the variables as input to train
the neural network in regression mode to predict the AOD
values. We then compared how well the predictions matched
with the observed AOD values. As a result we obtained
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Figure 3. Supervised neural network technique.

the best set of variables explaining the bias in the MODIS
(AOD) measurements.

III. NEURAL NETWORK REGRESSION TECHNIQUE

Neural networks (NN) are biologically inspired algorithms
used for classification or function approximation [9], [10],
[11]. NNs are widely used in pattern recognition, machine
learning and artificial intelligence. In addition, NNs have
found many applications in other fields such as geoscience,
remote sensing, oceanography, etc. Neural networks are also
referred to as a multi-layer perceptron method because they
may consist of multiple layers (e.g., input, hidden and output
layers). Each neuron is connected to all other neurons in
the adjacent layers. Each of neuron is assigned weights for
each interconnection with other neuron. The output of the
k' neuron can be written as the weighted sum of inputs:

n
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where ¢ is the transfer function, wy; represents the weight
from unit j to unit k and x; represents the m input variables
to the neuron. During training the NN weights are adjusted
appropriately to learn the data. The learning, and adjustments
of the weights are inspired by the synaptic learning behavior
of neurons.

For an observation data set with n input variables, say
{x1, 2, 23,..., 2, }, the observed output variable, AOD, is
some function of these input variables. Our approach ap-
proximates the function by non-parametric, non-linear NNs.
We selected supervised NN method since a NN learns from
its input parameters, and is free from assumptions about its
inputs. This allows us to explore various sets of inputs. The
goal here is to train the NN against the AERONET AOD
data as the target as shown in the figure 3. The trained NN is
then used to predict the AOD for the given set of variables.

As we describe next, we applied a neural network regres-
sion technique to learn the inter-instrumental bias and seek
the best set of variables contributing to the bias.



IV. SEARCH FOR OPTIMAL SET OF VARIABLES FOR BIAS
REDUCTION

We observed AOD at 550 nm along with 14 other vari-
ables that are listed below. For brevity, we have denoted the
variables by the corresponding numbers in the tables that
follow.

1) Aerosol optical depth at 550 nm (AODO0550)
2) Aerosol optical depth at 470 nm (AOD0470)
3) Aerosol optical depth at 660 nm (AOD0660)
4) Mean reflectance at 470 nm (mref0470)

5) Mean reflectance at 550 nm (mref0550)

6) Surface reflectance at 660 nm (surfre0660)
7) Surface reflectance at 660 nm (surfre0470)
8) Surface reflectance at 660 nm (surfre2100)
9) Cloud fraction from land aerosol cloud mask (cfrac)
10) Quality assurance (QAavg)
11) Solar zenith angle (SolarZenith)
12) Solar azimuth angle (SolarAzimuth)
13) Viewing zenith angle (SensorZenith)
14) Sensor azimuth angle (SensorAzimuth)
15) Scattering angle (ScatteringAngle)

The number of combinations for n variables, considering a
set of k at a time, is given by the combination " C},. Our AOD
data set contains 15 measured variables and, we consid-
ered all the possibilities such as °Cy5,'% C14,'° C13,,1° Os.
Thus, there are 32,781 possible combinations to be explored.
So, we have made this a search problem where the search
is over the possible set of variables that can best fit the
observed data. At end, the non-relevant variables will be
absent from the best fitting set of variables.

For each combination set, one at a time, we trained
the NN with AERONET AOD as the target variable, and
then predicted what this AERONET AOD is from the
trained network. The NN algorithm used a feed-forward
back propagation algorithm with a hidden layer having
200 nodes as shown in figure 4. The training was done
by the Levenberg-Marquardt algorithm with mean-squared
error as the performance factor provided by the Matlab
NN toolbox. When training a neural network, we randomly
split the training data set into three portions, in the ratio of
80 : 10 : 10. The first 80% portion is used to train the NN
weights using an iterative process. For each iteration, we
evaluate the current root mean square (RMS) error of the
neural network by using the second 10% portion of the data
(this portion was not used in the training). We use the RMS
error and how it changes with the training iterations (known
as epochs) to determine the convergence of our training.
When the training is complete, we use the final 10% of the
data as the validation data set.

Since the neural network constructs a mapping between
the set of input variables and the output variables. The most
relevant set of variable is the one that can best reproduce the
target data. We explored all combinations of variables, which
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Figure 4. Matlab’s neural network toolbox was used to train the neural
nets. A screenshot of 12 variable training case is shown.

provided the fit of the observed AERONET AOD data. The
end product is a regression between the available satellite
variable, which are used to predict the observed AERONET
AOD. This is a massive number crunching exercise. We
automated the workflow for each combination by writing
a job-parallel code.

V. SIMILARITY MEASURE BETWEEN PREDICTED AND
OBSERVED AOD

In order to quantify the agreement between the observed
and predicted data, we used both the correlation coefficient
appropriate for Gaussianly distributed variables and the
mutual information appropriate for variables of arbitrary
probability distribution. The predictions made by the most
relevant set of variables show the highest correlation coeffi-
cient or highest mutual information with the observed data.
In the appendix, we show that Mutual Information (MI) is
the more general case of correlation coefficient. When we
assume the normal distribution, the expression of MI returns
the correlation measure. So, it makes sense to use MI as
the general measure of correlation between the observed
and predicted set as many of the variables are not normally
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Figure 5. Scatter diagram showing the comparison between the AOD from
AERONET and the NN correction. The NN are able to learn and address
the bias correction. Similar bias correction from the application of NN has
been extended to explore all the possible combination of variables. Table 1
shows that the highest set of relevant variable consists of only 14 variables,
as opposed to the complete set of 15 variables.

distributed.

In the literature, there are several methods to estimate MI
from data [12], [13], [14]. We applied the variable bin width
histogram approach [15], [16] to compute the normalized MI
between the observed and predicted AOD. Higher values in-
dicate better agreement between the observed and predicted
set, and thus, are the best indicators of the input variables
needed to assess a relevant set of variables. We compiled a
table containing the MI for all sets in the decreasing order
and are presented in Table I.

We note that we can construct the best regression fit of the
MODIS parameters to predict the AERONET AOD when
certain MODIS parameters are absent in the combination.
Table II shows the absent variables from the combination.
These absent variables include Aerosol optical depth at 550
nm (AODO0550), AOD at 660 nm, Cloud fraction from land
aerosol cloud mask (cfrac), Surface reflectance at 470 nm
(surfre0470), Surface reflectance at 660 nm (surfre0660),
Sensor azimuth angle (Sensor Azimuth), Solar Zenith angle
(Solar Zenith) etc. The neural networks performed better or
could reproduce the observed AOD data in the absence of
certain variables indicates that presence of the aforemen-
tioned variables in the NN input attribute to the observed
bias.

Therefore, the methodology of comprehensive search pro-
vides us insights into the factors explaining the bias between
the MODIS AOD and AERONET AOD, and we also obtain
the best performing NN which can then be used to estimate
the bias corrected AOD observations [17]. Figure 5 shows
the bias corrected AOD plot compared to the AERONET
AOD. Clearly, the bias at the higher values of the AOD

Table I
TABLE SHOWING THE MI AND CORR-COEFF VALUES BETWEEN
OBSERVED AND PREDICTED AOD. THE TABLE IS ARRANGED IN
DESCENDING ORDER OF MI VALUES FOR VARIOUS COMBINATION OF
INPUT VARIABLES.

Combination Mutual Information (MI)  Corr-Coeff(r)
23456789101112131415 0771 0.927
12456781011 121315 0.769 0.926
1234568101112131415 0.768 0.926
1245689101112131415 0.766 0.926
12345678910121315 0.765 0.926
124578101213 1415 0.764 0.925
1245678910111213 14 0.762 0.921
234567810111213 14 0.761 0.924
13456781011121314 15 0.760 0.924
12457810111213 1415 0.759 0.925
124567101112131415 0.759 0.925
1345678910111213 15 0.756 0.924
1245681011 121315 0.756 0921
1245781011121315 0.755 0.923
23457891011121315 0.755 0.924
1234567801011 1215 0.755 0921
1234578910111213 1415 0.754 0.875
13456791011121315 0.754 0.924
134568101213 1415 0.753 0.922
23456910111213 1415 0.753 0.923
Table II

ABSENT VARIABLES IN TABLE 1

Row # Absent variables in the set as shown in the Table 1

1 AOD 0550

AODO0660, cfrac, SensorAzimuth
surfre0470, cfrac

AODO0660, surfre0470

SolarZenith, SensorAzimuth

AODO0660, surfre0660, cfrac, SolarZenith
AODO0660, ScatteringAngle

AODO550, cfrac, ScatteringAngle
AODO0470, cfrac

10 AO0DO0660 |, surfre2100, cfrac

| N &t R W

have been corrected and the AOD values follow values close
to 1 : 1 line. This best prediction was obtained by a set
consisting of the following variables: AOD at 470 nm, and
AOD at 660 nm, Mean reflectance at 470 nm, and Mean
reflectance at 550 nm, Surface reflectance at 660nm, 470
nm, 2100 nm, Cloud fraction, Quality assurance values,
Solar zenith angle, solar azimuth angle, Zenith angle, Sensor
azimuth angle and scattering angle.

VI. ESTIMATING GLOBAL PM2.5 ABUNDANCE

We also applied machine learning to infer the global
abundance of ground level distribution of particles with a
diameter of 2.5 micrometers (PM 2.5) or less from the
AOD data and other ancillary satellite and meteorology
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Figure 6. The yearly average PM 2.5 distribution for continental USA,
generated from satellite data, weather analysis, and roadside GLP observa-
tions.

products. The abundance of PM2.5 at ground level is known
to adversely impact public health. For example, it is known
to have serious impacts on people with hearth diseases,
asthma, or some cardiovascular diseases, etc [18].

Ground monitoring stations are only available at cer-
tain locations, so we do not have in-situ observations of
ground level PM2.5 (GLP) for the whole planet. It is not
always possible to obtain the GLP in the rapidly increasing
population area, which are also the newer locations of air
pollution. However, if we can use remotely sensed data we
can provide a daily GLP data product for the entire globe. By
constructing an automated workflow with large computing
facilities, it will be possible to examine the GLP for any
location in the world and also to analyze the trend of changes
in global air pollution.

Figure 6 shows the GLP for the continental USA gener-
ated from satellite data, weather analysis, and roadside GLP
observations. Currently there is a full coverage of ground
level PM2.5 in the US, and nearly full global coverage.
The estimation of GLP has important health application.
Since the GLP products can be used to construct a global
air pollution map, one can construct an application for
personal digital assistant (PDA) advising the adverse outdoor
situation. We have implemented such an approach and this
is work in progress.

The global estimation with a continuous spatial and tem-
poral coverage can be critically useful in making health care
decisions. This will also help in making public policy deci-
sions for improving the GLP and environmental conditions.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we studied factors influencing the bias in the
observed AOD values between the MODIS and AERONET
instruments. We applied supervised neural network method
in regression mode to train the NN with AERONET data set
as the target, and recomputed the prediction of AOD from
the neural nets. We performed an exhaustive search for the
possible combinations of input variables.

The best prediction of AOD, which had maximum mutual
information with AERONET, was provided by the set con-
sisting of the following variables: AOD at 470 nm, 660 nm,
Mean reflectance at 470 nm, 550 nm, Surface reflectance at
660nm, 470 nm, 2100 nm, Cloud fraction, Quality assurance
values, Solar zenith angle, solar azimuth angle, Zenith angle,
Sensor azimuth angle and scattering angle. The best agree-
ment between the observed and predicted AOD occurred
when some of the variables were missing from the input
combinations. For example, the best set is missing AOD
550nm itself in the set i.e the neural network performes best
in the absence of MODIS AOD values at 550nm. Similarly,
for various other combinations, the absence of one or couple
of variables such as the AOD at 660 nm, the cloud fraction
from the land aerosol cloud mask, the surface reflectance at
470 nm and at 660 nm, the sensor azimuth angle, the solar
zenith angle etc. seems to indicate that their presence can
be attributed to the observed bias.

The method of estimating the AOD was also applied
to estimate the ground level PM2.5, which are known to
have adverse health effects. In this case we used the AOD
measurements and ancillary information as input and trained
the NN in regression mode to estimate the GLP. The global
estimation with a continuous spatial and temporal coverage
can critically help in making public policy decisions for
improving the GLP environmental conditions and healthcare
decisions.

APPENDIX

Correlation coefficient (Pearsons correlation) is a widely
used measure of dependence between two variables, and rep-
resents the normalized measure of the strength of their linear
relationships. The correlation coefficient px y between two
random variables X and Y with expected values ux and
wy and standard deviations ox and oy is defined as:

cov(X,Y)  B[(X - jux)(Y — pry))

pxy = - )
0X0y 0X0y

where, E is the expected value operator, cov means covari-
ance, and, p a widely used alternative notation for Pearson’s
correlation.

The correlation coefficient is defined only if both of
the standard deviations are finite and both of them are
nonzero. The correlation coefficients range from -1 to 1. The
correlation coefficient values close to 1, (or -1) suggest that
there is a positive (or negative) linear relationship between
the data columns, whereas the values close to or equal
to 0 suggest there is no linear relationship between the
data columns. It can only be applied to the cases of linear
relationship between two variables.

Mutual information quantifies the mutual dependence
between two variables, by taking into account the whole
probability distribution function (PDF) characteristics of the
variables. Mutual information (MI) is defined as follows in



discrete form:

I(X,Y) =Y plz.y) logpp(xi’y) 3)

ey St (@)p(y)’

which is a special case of a measure called Kullback-
Leibler divergence [19], [20]. If X and Y are statistically
independent, then

p(z,y) = p(x)p(y). “)

In this case, the mutual information becomes 0, showing
independency. A proper mapping of the form

§(X,Y)=+V1—e 2(XY) 5)

normalizes the measure of general correlation as depicted
by the MI [21], [22], [23]. In the case when X and Y are
normally distributed,

(X,Y) ~N(p K) (6)
where, K = (02, po?;po?, o?). The mutual information
reduces to 1

I(X,Y) = =5 log(1 — p%). @)
So, that,

§(X,Y)=+V1—e2lXY) = |p(X,Y)]. 8)

This relation shows the generality of the normalized corre-
lation measure.
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