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A simulation framework based on the Memory-Mapped-Files technique was created to 
operate multiple numerical processes in locked time-steps and send I/O data synchronously 
across to one-another to simulate system-dynamics.  This simulation scheme is currently 
used to study the complex interactions between inlet flow-dynamics, variable-geometry 
actuation mechanisms, and flow-controls in the transition from the supersonic to hypersonic 
conditions and vice-versa.  A study of Mode-Transition Control for a high-speed inlet wind-
tunnel model with this MMF-based framework is presented to illustrate this scheme and 
demonstrate its usefulness in simulating supersonic and hypersonic inlet dynamics and 
controls or other types of complex systems. 

Nomenclature 
BC = Flow boundary-condition (upstream or at inlet exit) 
dt = Time differential 
F = generalized-force on the LS Path variable ramp sections, with generalized-coordinate for rigid-body 

ramp motions being the stroke of the main actuator  of the LS Path ramp  
HS Path = High-speed flow path (inlet flow-path for the ramjet/scramjet engine) 
LS Path = Low-speed flow path (inlet flow-path for the turbine engine) 
M =  Stroke-dependent generalized-mass of the LS Path variable ramp sections 
VA =   “Vertical actuators” – i.e., the two side-actuators besides the main actuator of the LS Path ramp 
x = Stroke of the main-actuator of the LS Path ramp   
 

I. Introduction 
HIS work is motivated by the current need for system-level dynamics simulations in High-Speed-Inlet Mode-
Transition Control research at NASA for Turbine-Based Combined-Cycle (TBCC) propulsion.1,2  Inlet control-

system design and Mode-Transition control development can benefit from dynamic simulations at different levels of 
fidelity and complexity.  System-level dynamics simulation is needed to understand the complex interactions of air-
inlet dynamics, propulsion engines, control-effectors, and feedback sensors.  A versatile modeling framework using 
the Memory-Mapped Files (MMF) technique was created for this purpose.  It allows for separate simulation-
processes running simultaneously on a single desktop computer in locked time-steps (i.e., synchronous stepping of 
simulated time) to exchange I/O data simulating system-dynamics and interactions.7,8    
 The inlet in this simulation study of Mode-Transition control represents a large-scale wind-tunnel model of a 
hypersonic-inlet (about 30-foot long) which was designed for inlet testing and control research in a supersonic wind-
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tunnel at NASA Glenn.3, 4   This inlet concept is depicted by Figure 1 which features two parallel flow-paths:  one, 
named  the Low-Speed Path (“LS Path”), is to provide air-inlet for a turbine engine in subsonic and supersonic flight 
up to Mach 4; and another, the High-Speed Path (“HS Path”), for  a dual-mode  ramjet and scramjet engine in flight 
regions above Mach 4.9  The forward section of each flow path features mixed-compression geometry with a 
movable cowl.  The LS Path is shown as the upper flow path; the HS Path is the lower one.  For this study, nominal 
mode transition is to occur at Mach 4 free-stream condition.   
 At mode transition, the splitter (the cowl of the LS Path) is rotated to cocoon the LS Path.9  During mode-
transition, the ramp of the LS Path can be raised or lowered using three hydraulic actuators located at the end of the 
second ramp section. The main flow-control elements for inlet performance and stability during mode transition 
consist of (passive) air-bleeds at critical locations along the ramp, sidewall, and cowl surfaces, and four air-bypass 
doors for active-control of air bypassing the turbine through a plenum located near the aft end of the diffuser.  The 
air-bypass doors are crucial for maintaining a favorable pressure and mass-flow recovery and keeping the normal 
shock downstream from the inlet throat in the LS Path.  
 

 
 The inlet-system simulation that employed the MMF technique includes the following parts: (a) A one-

dimensional Computational Fluid Dynamics (CFD)  model of compressible air-flow through the LS Path; (b) A 
high-fidelity simulation model of inlet servo-mechanical dynamics and actuation controls; (c) Computation of 
aerodynamic loads on the LS Path cowl exterior-surface and on both sides of the HS Path cowl, using tabulated 
aero-coefficient data based-on a two-dimensional aerodynamics CFD model10; (d) A simulation model of the bypass 
door controls and possible effects of plenum dynamics on inlet exit flow or on turbine and inlet couplings. 
 The simulation of inlet mode transition control using the MMF-technique will be presented in Section II, 
including some details in modeled component dynamics.  Simulation study of system-dynamics behaviors, control 
authority, and inlet mode-transition performance and implications will be presented in Section III.  Lastly, a 
conclusion about this simulation framework and the control study will be given in Section IV. 

II. Inlet Mode-Transition Simulation in an MMF-Framework 
The implemented MMF-framework for simulating mode transition control-dynamics for high-speed inlets of the 

type shown in Figure 1 will be described in more details in this Section.  The inlet system to be simulated3,4 is 
outlined in Figure 2. 

A. Simulation-Scheme Overview 
The MMF-simulation scheme is outlined in Figure 3, in which the “MMF Interface” is a function that keeps the 

following two separate (non-real-time) computational processes running simultaneously in locked time-steps with 
data exchange both ways to simulate dynamics interactions: (1) A one-dimensional (1-D)  CFD model of Inlet Flow-
Dynamics of  the LS Path; and, (2) A high-fidelity Servo-Mechanical Control model consisting of various 
interconnected sub-modules mainly for simulating inlet-mechanics and actuator control-dynamics.   

The “Servo-Mechanical” side (i.e., the computational process #2) in this setup of parallel simulations includes a 
subroutine for calculating Aero loads on the LS Path variable ramp sections and the LS Path cowl based on “Inlet 
Flow-Dynamics” calculations of static-pressure distribution along the LS Path.  The calculation of aero-loads on the 
HS Path cowl and on the exterior surface of the LS Path cowl (see Figure 2) is based on tabulated aerodynamic-
coefficients pre-calculated by a two-dimensional aerodynamics CFD model.  The “Servo-Mechanical” side of this 

 
Figure 1. A conceptual Hypersonic Propulsion system. 
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Figure 2. Illustration of inlet Variable-Geometry and Actuation. 

simulation also includes a 
subroutine to simulate air-bypass 
control, and a dynamic model for 
the boundary-conditions of the LS 
Path exit-flow. 

Consequently, the outputs of 
“Inlet Flow-Dynamics” are 
affected by many variables of the 
“Servo-Mechanical Model” side; 
such as, the flow-path geometry 
variables, the air-bypass doors 
exit area, and the LS Path exit-
flow boundary-condition (i.e., 
static-pressure at the exit).   
  NASA’s FORTRAN 77 based legacy code of a one-dimensional CFD model named “Large Perturbation Inlet 
(LAPIN)” 5, 6 is used for modeling air-flow dynamics in the LS Path.  The LAPIN includes options for modeling air-
bleeds and bypasses, flow-path variable-geometry, and various types of disturbances and downstream BC’s.    
 The LAPIN executable is arranged to run separately within a Microsoft Disk Operating System (MS-DOS®) 
Command Window.  Data exchanges in locked time-steps at high-rate (every 40 milliseconds simulated time 
interval) between this LAPIN process 
and the “Servo-Mechanical”  
simulation  are handled by MMF-
interface codes and intercepts 
imbedded within LAPIN.7  

Let us briefly review the 
application software that was used for 
implementing this MMF technique. 
The MMF application software was 
developed to support computer 
programs written and compiled in C, 
C++, C# and Visual Basic languages, 
but not for the FORTRAN language.  
So, the MMF implementation C++ 
subroutines were composed and 
compiled to create compatible object 
files for linking with the FORTRAN 
compiled object files. Using this 
approach, the MMF subroutines were 
imbedded in LAPIN to be invoked at 
various points in the main simulation 
loop of LAPIN for data exchanges 
with the process simulating the Servo-Mechanical control aspects.  Microsoft (MS) Visual C was also used to 
compile the MMF interface codes on the “Servo-Mechanical” side of the simulation for connection with the LAPIN 
process.  Interested readers are referred to Vrnak D. et.al.7 for more details about the particular MMF techniques 
implemented. 

B. Math-Formulation of Component-Dynamics 
Potential interactions between inlet structural-compliances and flex-dynamics on the one side, and actuators 

dynamics and flow-dynamics on the other can also be included in the simulation.  At this point, the simulation of 
inlet ramp and cowls motions are limited to just rigid-body dynamics.  

Note that the LS Path ramp system consists of three variable sections adjacent to a non-moving pre-compression-
ramp surface (which is to replicate the effect of a fore-body on free-stream air): the rotating first section, ramp 
section 1, with its rotating surface situated at the end of the pre-compression ramp (see Figures 1 and 2); the mid-
section, ramp section 2, supported by linkage bars (four) off its moving base on rails; and, the end section, ramp 
section 3, which is also the upper surface of the LS Path diffuser.   

 
Figure 3. Overview of the MMF-simulation of Inlet Mode-Transition 
Control -- Two separate, interactive computation processes:  A simulation 
model of Inlet “Servo-Mechanical Control” (dotted box), and a 1D- CFD 
model of Inlet Flow-Dynamics. 
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These LS Path variable-ramp sections are operated by three hydraulic actuators: a main actuator parallel to the 
rails to push or pull at the moving base of the ramp to raise or lower the ramp with the support linkages; and two 
Vertical Actuators (VA’s) to push or pull against the underside end of ramp section 2.  The VA’s push against the 
ramp section 2 in tandem with the pulling-in action of the main actuator to raise the ramp towards the LS Path cowl 
surface to reduce the LS Path throat height.  [Throat height reduction is required when the flight-vehicle accelerates 
from lower speeds towards the Mach 4 flight condition.9]  Conceptually, depending on vehicle and mission design, 
TBCC mode-transition from turbine to ramjet/scramjet phases can occur across the Mach-number range 3 to 4.9    

Since only Rigid-Body motions are considered here, math formulation of the LS Path ramp equation of motions 
and actuators dynamics in the setting of the wind-tunnel can be done in the Lagrangian Mechanics approach using 
the stroke of the main actuator, denoted “x”, as the single generalized coordinate.   Specifically, the kinetic energy 
Ke of the ramp motion relative to the inlet Structural Reference frame (SR-frame) is expressible in the following 
form: 

𝐾𝑒 = 1
2
ℳ(𝑥)(𝑑𝑥/𝑑𝑡)2               (1) 

 The stroke-dependent generalized mass of the combined moving parts of the ramp, denoted M (s), is 
defined by:  
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 The parameters and variables in expression (2) are defined as follows:  “Ii ”  is the moment of inertia of ramp 
section i  (for i = 1, 3) about the  respective front hinge; “Mi”, mass of ramp section i  (for i = 2, 3); “Mb”, mass of 
the moving base of ramp section 2; (x2(x), y2(x)), the position abscissa and ordinate of ramp section 2 as function of 
“x”; (x3(x), y3(x)), position of ramp section 3 Center-of-Mass (CM); and, θi(x), the inclination angle of ramp section 
i (for i = 1, 3) relative to the X-axis of the SR-frame. The origin of the SR-frame is chosen to be fixed at the pre-
compression ramp leading-edge (The pre-compression ramp extends from that edge to the front hinge of ramp 
section 1); the SR-frame x-axis is parallel to the moving base of the four-linkage support of ramp section 2 and 
pointing downstream; the Y-axis is pointing towards the ramp surface.  
 Consequently, if F (x, t) denotes the total generalized force on this variable ramp (which is dependent on both 
stroke and time; i.e., on x and t), the ramp motion is defined by the following Lagrangian-Mechanics equation, in 
which the upper dot symbol (•) on “x” stands for the time-derivative operator on “x”: 
 

ℳ(𝑥)𝑥̈ + 1
2
𝑑ℳ(𝑥)
𝑑𝑥

𝑥̇2 = F(𝑥, 𝑡)              (3) 

 As defined above Eq(3) , F (x, t) must include the contribution of actuator forces (both the main actuator and the 
two VA’s), and also all other external forces on all the moving parts of the LS Path ramp -- such as, aerodynamic 
loading, seal frictions (including static, viscous, and Coulomb friction effects), and gravity (as in the wind-tunnel 
test environment, in which the SR-frame is considered inertial).  [Note: This formulation is also applicable for 
simulating inlet mechanics in the flight environment, provided a term capturing thrust acceleration effects is also 
included in F (x, t)].   
 Aero-loading on the moving parts of the ramp are approximated from LAPIN static pressure calculations in the 
LS Path -- which is received by the “Servo-Mechanical” side of the MMF scheme by the connection-block named 
“From_LAPIN” shown in Figure 4.  These physical forces and moments are then converted to generalized forces 
based on the relation between the stroke, “x”, and the position of the various variable parts of the ramp -- base, 
linkages, and sections.   For example, considering the ramp section 1, the effects of aero-loads, seal frictions, and 
gravity are calculated from their total moments about the pivoting axis.  The contribution to F (x, t) by these effects, 
as moments about the pivoting axis, is computed using the same conversion factor “(π/180) × dθ1/dx”; where, 
“dθ1/dx” is the slope of the curve shown in Figure 5.  This curve represents the relationship between the ramp 
inclination angle “θ1” and “x”.  On the other hand, since the constraint motion of the ramp section 2 is non-
rotational; the contribution of aero-loads, frictions, and gravity on this part to F (x, t) is computed simply by 
applying the factor “ dx2/dx”  or “dy2/dx” on the x-component or y-component, respectively, of the total of these 
forces.  
 The contribution of aero loads, frictions, and gravity on ramp section 3 to F (x, t) is done similarly, and involves 
both the respective total force and total moment at the joint between ramp section 2 and section 3; therefore, the 
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Figure 5. Variable-Geometry Actuation -- Relationship between 
the main actuator stroke, “x”, and ramp section 1 inclination-angle 

factor to convert physical forces and moments to generalized force in this case involves “dx2/dx”, “dy2/dx”, and 
“dθ3/dx”.  
 

 
 The conversion of the hydraulic forces of the VA’s to the corresponding generalized-forces is done similarly 
using tabulated data for the geometric-constraint between the main mctuator stroke and the VA’s stroke.  For the 
sake of simplicity, further formulation details concerning generalized-forces computation will be skipped.  The 
Lagrangian dynamics equations for the LS Path cowl and HS Path cowl are similarly derived using the respective 
actuator stroke as the generalized coordinate.  These modeling components are simpler than in the ramp case, 
because they do not involve multiple hinged-sections. 

The actuation system control-dynamics (for LS Path ramp, LS Path cowl, and HS Path cowl) are modeled with a 
fair amount of details, which includes servo-valve dynamics and control, and hydraulic cylinders and piston 
dynamics.  In particular, the state variables “x” and “dx/dt” defined by Eq. (3) -- computed in the block “Inlet-
Mechanics” in Figure 4 -- are used in the block “Inlet_ Actuator” to model the effects of ramp piston motions on the 
hydraulic-fluid flows in the opposing volumes on either sides of the piston in each of the three cylinders (actuators) 
of the ramp.  

The diagram shown in Figure 6 
represents the simulated air-bypass control 
logic. The output of this module is the 
commanded total plenum exit area 
normalized by the square of the nominal 
height of the LS Path cowl leading edge.  
This control logic is essentially a digital 
Lead-Lag filter pair, with input from a 
pressure sensor located at the aft end of the 
diffuser.  One digital filter is designed to 
lead by 45 degrees; and the other to lag by 
45 degrees at the 15Hz frequency.  The  
purpose of the band-pass pre-filter (with the 
pass-band of 1 to 15Hz, see Figure 6) in 
series with these parallel Lead/Lag filters is 
to produce two resultant signals that are 
nearly orthogonal for time-localized signal 
contents of time-scales from 1 second to 
1/15 seconds.  Consequently, any linear 
combination of the resultant signals will 

 
Figure 4. Top-level diagram of the “Servo-Mechanical Model” side of the MMF-scheme -- Ref. Figure 3  
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Figure 6. Block diagram of the Air-bypass Command calculation. -- Ref. Figure 4  

capture such time-localized features in the input signal at any time, including their transient amplitude.11   This 
linear combination is also made with a certain phase lead (relative to the dominant features of 1Hz to 15Hz in the 
signal).  The particular phase lead is numerically determined for optimal suppression of pressure oscillations below 
25Hz.  This is just a simple implementation of more complete schemes, in the Wavelet approach, for extracting 
nonlinear-transient features in feedback signals for vibration suppression.11 

Also, the amplitude of the resultant signal is proportional to the transient (oscillation) amplitude of the input 
signal, using an adjustable gain.  This resultant signal (a band-limited signal to use as feedback for oscillation-
suppression) and an estimate of its amplitude are then added to a (scheduled or pre-set) mean-opening command for 
the bypass.  Thus, the commanded opening of bypass plenum exit area would be adjusted proportionately with the 
sensed amplitude of oscillations. [Note: The command of mean-opening is numerically defined based on simulation 
results.  Theoretically, this can also be defined analytically, for example based on CFD analysis concerning flow-
dynamic sensitivity to bypass mean-flow.]  

Lastly, the LS Path exit flow BC is modeled as the static-pressure of an air-volume, with in-flow being the LS 
Path exit-flow, and the out flow is through a choked opening with adjustable area.  This “volume dynamics” is 
essentially a parametric model to simulate the effect of the main mass-flow plug of the LS Path cold-pipe.  The 
adjustable exit-area accounts for the adjustable position of the mass-flow plug.  It will be shown that this exit -area 
can be scheduled to adjust the static pressure BC of the LS Path exit-flow to keep the normal shock near the inlet 
throat.  Augmenting the throat bleed system with the air bypass control is to provide additional stabilization for the 
normal-shock at critical operation conditions with the inlet precariously near ‘unstart’ (For a mixed-compression 
inlet, unstart is a transient phenomenon when the normal shock is violently expelled upstream from the throat to a 
position forward of the cowl lip).  

III. Inlet Mode-Transition Control and Dynamics Study 
A study of the inlet system dynamics behavior and mode-transition control as modeled by the MMF-based 

simulation scheme will be presented in this Section.  First, simulated system dynamics behaviors responding to 
various control-effectors and to disturbances at flow exit will be studied.  These simulation results will be the basis 
for the mode transition control strategy to be presented in the follow-on sub-section.      

A. Simulated Inlet Control-Dynamics Behaviors 
 First, some simulation results will be presented in this sub-section to demonstrate the adequacy of this MMF 
simulation in representing inlet aerodynamics sensitivity to changes in flow-path geometry and to disturbances, and 
the effect of bleeds and bypasses.  The purpose is also to study the following aspects of system behavior: (a) The 
sensitivity of inlet flow-dynamics (e.g., pressures, mass-flow rate, normal shock position, etc.) to exit-flow boundary 
condition s such as static-pressure; (b) The sensitivity of inlet flow-dynamics to LS Path cowl and ramp motions; 
and (c) The stabilization effect and control-authority (roughly below 20 Hz) of air-bypass controls on the normal-
shock motions as well as on recovered flow pressures.  These simulation cases are for the following free-stream air-
flow conditions:    Free-stream static-pressure is 32.27lbf/ft2 (psf); static-temperature, 178.57 degree Rankine; Mach 
number, 4.0; and ratio of specific-heat coefficients, γ = 1.40.  
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Figure 10. Flow sensitivity to disturbances -- Static-
pressure response at LS Path diffuser to 8Hz-variations 
in exit BC by ±1.4 percent.  

 
Figure 9. Flow sensitivity to disturbances -- Normal-
shock response to 8Hz-variations in exit BC by± 1.4 
percent. 

 
Figure 7.  Effect of exit-flow BC on normal-shock 
position -- Simulated with nominal (zero-degree) 
cowl-angle command, air-bypass control-gain set at 
medium, and disturbance as 8Hz-variation in exit BC 
by ± 1.4 percent. 

 The simulation results in Figures 7 to 10 shows the effect of exit-flow BC, as static pressure, and disturbances 
(at the end of a cold pipe with a mass-flow plug) on both the calculated normal shock position and the static-
pressure throughout the LS Path.  If the LS Path cowl and ramp is commanded to hold a nominal position pertaining 
to a Mach 4 geometry, the relationship between the normal shock position and the exit-flow BC represented as static 
pressure (normalized to the free-stream Total-Pressure, which is roughly 4900psf) is fairly piecewise-linear up to 
about 0.78 (see Figure 7).  But, this relationship appears to reach a singularity when the pressure ratio reaches about 
0.8, where the sensitivity of the normal-shock position to back-pressure approaches infinity.  Beyond this point it is 
practically impossible to push the normal shock closer to the LS Path throat without un-starting the inlet. 
Furthermore, since the sensitivity of the normal shock position is so great at this point, a slight perturbation in the 
BC can also result in an unstart.  On the other hand, the relationship between exit normalized BC pressure and the 
normalized diffuser static pressure is linear all the way to the singularity point (see Figure 8).  Understanding system 
dynamics sensitivities, such as the complexity shock-position sensitivity as seen in Figure 7 versus the linear 
relationship between inlet pressure-recovery and back-pressure in Figure 8 is vital for establishing realistic pressure 
recovery goals with acceptable and realistic stability margins.   

 Examples of inlet-flow dynamics response to harmonic variations in the exit BC is shown in Figures 9 
and 10.  These results are simulated without active bypass control.  The simulation predicts that, as the shock 
moves closer to the throat its range of motion will increase even though the oscillations in BC remain steady 

 
Figure 8. Effect of exit BC on static-pressure at the 
end of LS Path diffuser.  
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Figure 12. Air-bypass control-authority -- Normal-
shock response to air-bypass command with an 8Hz-
waveform (at T3.5 s) 

in amplitude and frequency.  Meanwhile, the diffuser pressure amplitude remains linearly proportional to the 
disturbance amplitude.        
 The effect of open-loop position-commands for the LS Path cowl with harmonic waveforms on normal shock 

position is also significant as illustrated in Figure 11.  
The shift in normal-shock towards downstream 
shortly after the start of the harmonic command 
signals (harmonic commands started at T=3.5s) is 
probably due to the slight change in mean cowl 
position due to the response of actuator to harmonics 
command near the hard-stop.  Cowl rotation towards 
LS Path closing tends to push the normal shock 
downstream, while only inducing very small 
disturbances to static-pressures in the diffuser.  
Therefore, it is possible to take advantage of this 
effect to position the normal shock with cowl 
positioning, if necessary. Similar responses were 
recorded when disturbances were applied to the LS 
Path ramp position.  These simulation results agree 
with known CFD results, that the LS Path normal-
shock position is sensitive to changes in ramp and 
cowl position10.  Hence, it is necessary to fine-tune 
actuators control parameters to avoid servo 
oscillations and reduce the probability of inlet un-

start during mode transition.  
The response of LS Path flow-dynamics to harmonic excitations with open-loop commands of air bypass plenum 

exit area is fairly strong (see Figures 12 and 13).  The air bypass is employed to provide additional stability-margin 
for the normal-shock beyond what is passively available with volume dynamics and bleeds.  Based on this 
simulation, the effective range of the bypass-control gain (Figure 6) to suppress pressure oscillations is from 0 to 
0.3.  When this gain is set at Medium (i.e., about 0.1), the bypass control can only suppress static-pressure 
oscillations by roughly 30%.  Better suppression for oscillations below 15Hz is attainable with higher gain values.  
However, it was found that higher gains would induce undesirable super-harmonics.  

B. Mode-Transition Control Simulation 
 To be presented next are some simulation results on Mach 4 mode transition control. As mentioned earlier, for 
the same BC on exit-flow, the normal-shock tends to move downstream when the LS Path cowl is rotated towards 
closing.  It will also be shown that, while the LS Path cowl is moved towards closing the sensitivity of the shock 

 
Figure 11. Flow sensitivity to Cowl motions --Normal-
shock response to cowl-position command with an 8Hz-
waveform (at T3.5 s).  

 Figure 13. Air-bypass control-authority -- Static-
pressure response at LS Path diffuser and flow-plug 
region to air-bypass cmd. (at T3.5 s) with an 8Hz-
waveform 
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Figure 15. Static-pressure variations thru Mode-
Transition with Medium air bypass control gain  

 
Figure 17. Normal-shock motions thru Mode-
Transition with air bypass control-gain set High 

 
Figure 16. Effect of exit BC on Normal-shock 
position thru Mode-Transition  

position near the “singular point (see Figure 7) is drastically reduced.  Perhaps, this is because the aerodynamic 
throat of the LS path moves up stream when the LS cowl is closing.  In this case, the shock can be pushed further 
upstream (than in the case of zero-degree cowl angle) by increasing the static-pressure on LS Path exit (by further 
closing the mass-flow plug).  The best simulation result in this regard is attained when the air bypass control gain for 
active suppression of diffuser static-pressure is at a certain Medium value (A particular control-gain value, 
numerically derived, to result in roughly a 30% reduction in the oscillations level).  Results from this case are shown 
in Figures 14 to 16.   
 Upon mode transition initiation, a particular schedule for LS Path flow-plug repositioning is also activated to 
increase the static-pressure of LS Path exit-flow (see the solid, thin line in Figure 15).  The position of the plug can 
be scheduled to push the normal-shock upstream beyond the “singular point” (Comparing Figure 7 to Figure 16) 
while the LS Path cowl is rotating towards LS Path close-off (Figure 14) without unstarting the inlet.  The normal-
shock moves forward and settles near the throat (roughly 4 inches downstream of the geometric throat) when the LS 
Path is halfway closed.  As mentioned earlier, this is not possible if the LS Path cowl angle is fixed at zero-degree.  
These simulation results agree with CFD analyses10, that it is possible to achieve good stability and performance for 
inlet mode-transition with air-bypass control, combined with proper handling of inlet variable-geometry and 

matching exit-flow BC’s.   
 It was found that higher gain levels for the simulated air-bypass control could also yield good stability for the 
normal-shock with greater suppression of the main-frequency of pressure oscillations; however, undesirable high-

 
Figure 14. Normal-shock motions thru Mode-
Transition with Medium Air-bypass control gain, 
Cowl commanded to close to halfway from T3.5s to 
T5.0s, flow-plug position scheduled to keep the 
normal-shock at inlet throat. 



 
American Institute of Aeronautics and Astronautics 

 
 

10 

frequency harmonics (Figure 17) would also occur with higher control-gains.  Induced harmonic transients at high-
frequencies with an over-active bypass control may increase the bleed flow and bypass flow, thereby reduce the 
thrust stream airflow to the engine and increase added drag from dumping the bleed flow overboard. 
 Some dynamic parameters in this simulation scheme that might need calibration (using system-tests data) are 
those in Part “d” (mentioned in Section I -- Introduction) to accurately model the effects of air bypass plenum 
dynamics on inlet exit-flow conditions or turbine-inlet couplings.   Part “c” of the current simulation scheme could 
also be replaced by a dynamics model, such as by using an approximation of the oblique shocks and flow states in 
the front section of the HS Path as inputs to another LAPIN-type model simulating the HS Path into the diffuser-
isolator region.   A turbine-engine simulation model could also be tied to this simulation via MMF to understand 
inlet-engine couplings. 
 If necessary, future work on this simulation can also include modeling the effects of structural compliances on 
inlet dynamics.  Undesirable effects of structural vibrations on inlet dynamics that are due to servo-mechanics can 
be tuned-out using properly calibrated filters for actuator position feedback.  
 

IV. Conclusion 
A simulation-framework using the Memory-Mapped-Files technique7,8 was implemented to tie together multiple 

computer models of sub-system dynamics to simulate inlet mode transition from turbine to ramjet-scramjet modes.  
The implemented simulation is applicable to a wide range of free-stream and exit-flow conditions.  Preliminary 
simulation results show general agreements with CFD predictions10 of inlet mode-transition dynamics and stability.  
In addition, the simulation results show that inlet back-pressure dynamics is likely to be an important factor in 
mode-transition control. The simulation can be used for mode-transition control development once validated with 
system-characterization test data.            

Acknowledgments 
This simulation development for control-study of High-Speed Inlet Mode-Transition is funded by the NASA 

Hypersonic Project.  The authors would like to express their appreciation for the technical guidance of Dr. James L. 
Pitman/LaRC (Principal Investigator, Hypersonic Project), Mr. Scott R. Thomas/GRC (CCE-LIMX Project Lead), 
Mr. John D. Saunders/GRC (CCE-LIMX Inlet-Research Lead), Mr. Donald I. Soloway/ARC (Associate PI/ GN&C, 
Hypersonic Project); and Dr. Thomas J. Stueber/GRC (CCE-IMX Control-Research Lead).  Last but not least, we 
wish to thank Mr. Paul Raitano/GRC for the wonderful scripting-tools he developed to facilitate the preparation of 
LAPIN run data.   

References 
1Saunders, J.D., Slater, J.W., Dippold, V., Lee, J., Sanders, B.W., and Weir, L.J., “Inlet Mode Transition Screening Test for a 

Turbine-Based Combined-Cycle Propulsion System,” JANNAF, May 2008. 
2Stueber, T.J., Vrnak, D.R., Le, D.K., and Ouzts, P.J., “Control Activity in Support of NASA Turbine Based Combined Cycle 

(TBCC) Research,” NASA TM-2010-216109, March 2010. 
3Sanders, B.W. and Weir, L.J., “Aerodynamic Design of a Dual-Flow Mach 7 Hypersonic Inlet System for a Turbine-Based 

Combined-Cycle Hypersonic Propulsion System”, NASA CR-2008-215214, June 2008. 
4TechLand Research, Inc., Test Requirements for Combined-Cycle Engine (CCE) Large-Scale Inlet Mode Transition (LIMX) 

Test, NASA NRA Contract No. NNC08CA60C, September 2009. 
5Varner, M.O., Martindale, W.R., Phares, W.J., Kneile, K.R., and Adams, Jr., J.C., “Large Perturbation Flow Field Analysis 

and Simulation for Supersonic Inlets,” NASA CR-174676, 1984. 
6Martindale, W.R., et. al., “Large Perturbation Flow Field Analysis and Simulation for Supersonic Inlets—Program 

Modifications,” NAS3-24105 Task 2608, 1987. 
7Vrnak, D.R., Stueber, T.J., Le, D.K., “A Novel Technique for Running the NASA Legacy Code LAPIN Synchronously 

With Simulations Developed Using Simulink,” NASA TM-2012-217444, July 2012. 
8Gaudette, T., “Using Memory Mapped Files for Fast Data Transfer,” MATLAB Digest – March 2004, The Mathworks, Inc.  
9Sanders, B. W., Weir, L. J., Saunders, J. D., and Foster, L. E., “Mach 4 Experimental Demonstration of Inlet Mode 

Transition Technology for a Turbine-Based Combined Cycle Hypersonic Propulsion System,” NASA/TM-2012-217647; 
September 2012.  

10Slater, J. W., and Saunders, J. D., “CFD Simulation of Hypersonic TBCC Inlet Mode Transition,” AIAA-2009-7349, 16th 
AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, October 2009. 

11Le, D.K., Owen A.K., Simon, D.L., “Wavelet Analysis of Air-Jet Injection Stall Control Effects in an Axi-Centrifugal Gas-
Turbine Engine,” AIAA-97-2774, 33rd Joint Propulsion Conference, July 1997. 
 


	Nomenclature
	I. Introduction
	II. Inlet Mode-Transition Simulation in an MMF-Framework
	A. Simulation-Scheme Overview
	B. Math-Formulation of Component-Dynamics

	III. Inlet Mode-Transition Control and Dynamics Study
	A. Simulated Inlet Control-Dynamics Behaviors
	B. Mode-Transition Control Simulation

	IV. Conclusion
	Acknowledgments
	References

