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Motivation

2003, DHL cargo plane
Missile strike caused hydraulics
loss and wing damage

2006, Comair Flight 5191,
, Accidentally attempted takeoff on
2001. AA5S7 runway that was too short

Airbus A300 vertical stabilizer and rudder
separated in flight due to excessive rudder
input in response to wake turbulence
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Motivation

« UA232, DC-10, Sioux City, lowa, July 1989
— Uncontained tail engine failure
— Lost all hydraulic systems
— Used two good engines to maneuver and crash land
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*The Sioux City Accident inspired a NASA flight test program
to investigate the use of the engines for flight control

*This testing identified several problems with using only
throttles for flight control

« weak control moments

« difficulty in damping phugoid and Dutch-roll
oscillations

* coupling between pitch and roll
* sluggish engine response

Previous Research

CAN ENHANCED PROPULSION CONTROL MODES HELP IN THESE
SITUATIONS?
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Scenario 1: Overthrust for Runway
Incursion

A Required
Thrust

Thrust

Time (sec)

 Need to takeoff in a shortened distance

* More thrust than is typically allowed is needed to safely takeoff

« Develop enhanced propulsion control algorithms for emergency
situations
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Scenario 2: Fast Response for Vertical Talil
Damage

Required
A Response

Nominal
Response

Time (sec)

* Vertical tail damage decreases lateral directional stability

« Propulsion system can be used for flight controls

« Engine response is much slower than conventional flight control surfaces
« Develop enhanced propulsion control algorithms for emergency situations
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Engine dynamic simulation development @

» Need an engine simulation that is capable of predicting
the engine dynamics and controller reactions/limits

In 2006:

* No engine dynamic simulation available (government or
iIndustry)

 Information on stall/surge margin over the flight and
operation was not available

* No realistic engine controller that was comparable to the
FADEC
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Creating A New High Fidelity Engine / Control Simulation

Control 1

»
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"Numerical Propulsion System Simulation, co-winner of the NASA Software of the Year Award for 2001
2Scientific Monitoring, Inc.

Www.nasa.gov

9



National Aeronautics and Space Administration

Commercial Modular Aero Propulsion @
System Simulation 40,000 (C-MAPSS40k)

* 40,000 Lb Thrust Class High Bypass Turbofan
Engine Simulation

« MATLAB/Simulink Environment
* Publicly available (restricted to US citizens)

 Representative ol
dynamic 1= o fen
performance DL et ety 77<

* Realistic controller - = NLE

* Realistic surge v/ ¥ " | 9| &
margin calculations _j —_— —

Y 2011 GRC Software of the Year Award nomination, Exceptional ICB Award,
#  and NASA Group Achievement Award
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Realistic Enhanced Control Modes Implemented
iIn C-MAPSS40k

OVERTHRUST FAST RESPONSE
: Required
A ?ﬁﬁulgtred 1 A Responsg
Nominal @
Thrust = |
= Nominal
Response
Time (sec) Time (sec)
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Engine Control System

 Power Management
— Responsible for holding current power level

* Protection Logic
— Responsible for ensuring safe operation
— Adjusts Fuel Flow to ensure limits are observed

Core Fan Core Fan
Power Speed Speed  Accel Decel Ps3

Fuel
"Soneae | | _] L como

Throttle

EPR Feedback | |
Nf Feedback
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There Is Risk Associated With Enhanced @
Control

 Control Mode:

— Fast mode to decrease throttle to thrust response time (increased
risk of surge)

— Overthrust mode to increase maximum thrust level (increased
risk of structural failure)

* Requirements:
— Ensure continuous engine operation (the engine must not surge)

— Maintain engine conditions within minimum survivability limits
(i.e., maintain temperatures and speeds to ensure successful
landing while still providing required thrust)
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Modification to Controller

Overthrust Fast Response
* Relaxed fan speed limit * Modified controlled gains
* Relaxed core speed Imit  « Adjusted accel schedule
 Added temperature limit
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High Speed Idle in C-MAPSS40k

* In C-MAPSS40k, High Pressure Compressor surge is
prevented by an acceleration limiter

— Limits HPC acceleration based on

HPC speed; low allowed HPC

acceleration limit at low HPC speed

Ncdot (rpm/s)
3 3
(=) o

* Operate at higher shaft speeds

— Increase engine idle setpoint

P Red uce excess th rust 7%00 7500 8000 8500 9000NC9(5r%0m)10000 10500 11000 11500 12000
— Adjust variable stator vanes and bleed valves to operate “inefficiently”

We have a patent application for this technology
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NASA GRC Piloted Control Evaluation Facility @

Projection Screens

Nonlinear
Digital Command Analog Command Simulation of a
Signals Signals Four-Engine
Transport Aircraft

C-MAPSS40k With
Enhanced Control
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Yaw Damper

Wash- Rudder command : r
* out —>l> *| Airframe
Filter
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Engines Used for Yaw Damper

Pilot Pedal Command =—

Pilot Input
M command Jk\ I
r

WaSh' +

l— Pilot Throttle Command
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v
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+
Filter J
Yaw Damper

A 4

Th rustL_.

Left Engines

Airframe

Thrust;

Right Engines

|_ Saturation Compensation Logic to Maintain
Differential Thrust Over Total Thrust

— Pilot Throttle Command
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RESULTS:
Evaluation of Enhanced Propulsion Control on
Takeoff Distance
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Takeoff Distance Evaluation

Takeoffs: Altitude vs Distance
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» As expected, the use of Overthrust shortened takeoff distance
significantly when compared to cases using standard takeoff thrust level

* The pilot also found Overthrust mode to be useful in flight
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RESULTS:
Evaluation of Enhanced Propulsion Control on
Aircraft Stability and Control
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Multi-engine aircraft with rudder stuck in @
neutral position
Types of tests included...

* Yaw rate feedback to throttles to compare the fast

responding engines’ ability to damp Dutch roll
compared to using nominal engines

« Manual manipulation of the throttles to determine
reduction in pilot workload

* Landing in crosswind to demonstrate differential
thrust performing rudder function
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Evaluation of the Aircraft's Ability to Damp Dutch @
Roll

* For each trial, the pilot initiated the Dutch roll using

the following procedure.
— He trimmed the aircraft at the desired altitude and speed
— moved the stick hard over to the right and banked to 40°,
and turned right maintaining the roll angle

— rolled out at a desired heading by moving the stick hard over
to the left, releasing with wings near level, thus causing the

Dutch roll.
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Dutch Roll Damping

Yaw Damping
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Yaw rate at 20,000 ft., 300 kts. demonstrating improved
yaw damping with faster engine. The pilot initiated a Dutch
roll by using the stick to bank and turn, then roll out rapidly.
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Final Approach
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Ground track of impaired aircraft flying The pilot's view toward the airport
toward airport (CLE). (CLE) on approach.
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Throttles-Only Final Approach

Roll Rate on approach Yaw Rate on approach
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* No yaw rate feedback

* The pilot was careful not to overcompensate or accidentally initiate a large
oscillation.

* He was able to achieve manageable roll and yaw rates, not much difference with
faster engines.

* The pilot felt that the faster engine response provided an advantage for fine tuning
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d(PLAY/dt, %/s

Derivative of Throttle Movement for Throttles-Only
Final Approach

d(PLAL)/dt on final approach d(PLAR)/dt on final approach
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The pilot made fewer, faster adjustments with the more responsive engines
He made gentle adjustments more often with the nominal engines.

The faster engines provided about the same level of flight control with lower
pilot workload. This was especially important close to the ground.

Wwww.nasa.gov o7



National Aeronautics and Space Administration

Final Approach
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Ground track of impaired aircraft flying The pilot's view toward the airport
toward airport (CLE). Wind is shown (CLE) on approach.

decomposed in crosswind and headwind

components.
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Overthrust

| -'}lﬁmg;a' | Enhanced Throttle Range:
Nominal Throttle Range: 40°-90°

40°-80°

Time (sec)

The use of Overthrust mode allows the
maximum throttle value to increase from 80° to
90°, providing additional thrust range capability
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The tests included approaches with 10 kt crosswind with rudder
stuck in neutral position.

 Yaw rate feedback with and without enhanced control was used

 Rudder pedals command throttle movement to generate
differential thrust

e Saturation compensation system maintained differential thrust
rather than total thrust

Final Approach

Things to Observe:
* Pilot’s rudder input for the baseline case is not near its limit
* The crosswind could be accommodated by differential thrust

« Pilot’s unwillingness to be aggressive enough at the beginning of
the approach required extra thrust to compensate later.
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Throttle Commands for Landing @
In 10 Kt Crosswind
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Left throttle (dashed line) and right throttle (solid line)
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« C-MAPSS40k engine simulation has been developed and is
available to the public

* The authenticity of the engine performance and controller
enabled the development of realistic enhanced control modes
through controller modification alone

« Use of enhanced control modes improved stability and
control of an impaired aircraft

— Fast Response is useful for manual manipulation of the throttles

— Use of Fast Response improved stability as part of a yaw rate
feedback system

— Use of Overthrust shortened takeoff distance, but was generally
useful in flight, too

 Initial lack of pilot familiarity resulted in discomfort, especially
with yaw rate feedback, but that was the only drawback,
overall the pilot found the enhanced modes very helpful
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Future Work @

* Loss of control prevention, mitigation, and recovery

— Working on integrated flight/propulsion control with partners
at NASA Langley and Pratt & Whitney

— Modifying C-MAPSS40k to model high angle of attack
operation realistically
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