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Agenda 

• Magnetospheric Multiscale (MMS) mission overview 
• Model approach and overview 
• Propellant Gauging Method and ANSY Model 
• Test Cases and Model Validation 
• Results 
• Model Refinements 
• Conclusions & Continuing Work 
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Magnetospheric Multiscale (MMS) 
Mission Overview 

• Science Objectives 
– Discover the fundamental plasma 

physics process of reconnection in 
Earth’s magnetosphere 

• Mission Description 
– 4 identical satellites 
– Formation-flying in a tetrahedron 
– 2 year operational mission 

• Propulsion System 
– Identical on each satellite 
– Each contains 

• 4 Tanks 
• 8 Radial thrusters (18 N) 
• 4 Axial thrusters (5 N) 
• 4 Latch valves 
• 4 Filters 
• 8 Pressure transducers 

Earth 

Solar 
Wind 

Earth Magnetic 
Field Lines 

Earth  
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Model Objective & Approach 

• Objective 
– Develop a tool to predict propellant mass using tank temperature data 

• Approach 
– Develop a thermal model of the MMS propellant tank using a Finite 

Element Model (ANSYS) 
– Validate thermal model with existing tank Thermal Desktop model and 

during future thermal balance testing 
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• Typically three common Propellant Gauging Systems (PGS) used 
– 1) Bookkeeping  
– 2) Pressure-Volume-Temperature (PVT) 
– 3) Thermal Capacitance 

 

• Thermal Capacitance  
– Inaccurate at BOL (little variation of tank surface temperature due to large volume of 

propellant) 
– Accurate at EOL (large variation of tank surface temperature due to less volume of 

propellant) 
– Requires a detailed thermal model of propellant tank and typically of surrounding 

spacecraft 
 

• How do you estimate propellant load using tank temperature data? 
– 1) Develop a thermal model of the tank  
– 2) Apply boundary conditions to tank 
– 3) Generate temperature vs. time curves for different propellant loads in tank 
– 4) On spacecraft, heat tank using heaters and record temperature telemetry 
– 5) Compare temperature telemetry to temperature vs. time curves generated in 

model. 
 

Propellant Gauging Systems 
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Assumptions & Boundary Conditions 

• Assumptions 
– Convection neglected 
– Fluid shapes do not change due to 

temperature effects 
– The tank diaphragm was not 

modeled, but its mass was 
considered 

– Tank blanket and tape were not 
physically modeled.   

– Heater power based on constant bus 
voltage 

– Boundary conditions were based 
upon the average temperature of the 
tank/spacecraft interface location 
and were assumed constant over 
time* 

– A “perfect” bonded contact existed 
between all touching parts in the 
model 

*ANSYS has ability to model this behavior; behavior not included in this analysis 

• Boundary Conditions 
– Heaters have total heat input of 

29.87W 
– Struts, inlet & outlet tubes, and axial 

pin set to 23°C 
– Radiation applied to tank surface 

using blanket effective emissivity 
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Analysis Test Cases 

• Three different EOL propellant loading cases were simulated using the 
ANSYS transient thermal model 

– Case #1: 20% propellant load 
– Case #2: 15% propellant load 
– Case #3: 10% propellant load 

• Thermal model for each case was the same, but the propellant and gas 
volumes were updated to reflect the propellant mass used 

• The model was validated by comparing results to independently created 
Thermal Desktop model 
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Model Validation 

Max % Difference: 4.27 
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Presentation Notes
Following slides look at results for simulation times of:
10,800s (3 hours)
200,000s (55 hrs)
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Results 

• Can clearly discriminate (min. 1°C difference met) masses from temperature data after ~9 hrs 
– Need at least 1°C difference to account for A/D conversion errors and thermistor calibration error. 

• dT/dt behavior is nearly linear after ~9 hrs of simulation 
• Time heaters turn off (TStat set point reached) widely separated in time & can be used to 

estimate propellant mass 
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Results 

• Linear curve fits produce good R2 values 

y = 0.5786x + 21.709 
R² = 0.998 

y = 0.6704x + 22.211 
R² = 0.9966 

y = 0.813x + 24.635 
R² = 0.9929 
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Results 
y = 2.5149x-0.4897 

R² = 0.9996 
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Results 

• Analysis of the preceding charts shows that a closed form solution can 
be derived from the simulation data 

• From the T vs. t Chart and mass vs. dT/dt charts, mass percentage can 
be derived 

• Results in: 
 
 
 

• Propellant mass percentage estimate error can be determined by taking 
the derivative of above equation: 
 
 

 
• Example: 

– A 1°C error in temperature at a temperature reading of 37°C at 20 hours yields a 
mass uncertainty of 1.90%.   

– Improvements in error estimation can be made by running more propellant loading 
cases and correlating model results with test data.   

 
 

for 
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ANSYS Model Refinements 
• Following refinements made to model 

– Implemented thermostatically controlled heaters to system 
– Revised boundary conditions at tank to match on-orbit behavior predicted by 

Thermal Desktop model 
– Modeled heater power using nominal as-built heater resistances 
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Conclusions & Continuing Work 

Conclusions: 
• Propellant load can be estimated using four different indications 

– 1.)  Using the temperature vs. time plot 
– 2.)  By propellant side heater cut-off time 
– 3.)  By slope (dT/dt) of temperature curve 
– 4.)  By a closed-form expression 

 
Continuing Work: 
• Validate model by test using three methods 

– 1.) Propulsion Module Chill Down Test 
• Conducted at atmospheric pressure to verify thermostat operation 
• No propellant in tank 
• Minimal convection effects 

– 2.) Water Off-Loading 
• Perform thermal propellant gauging “maneuver” after water offloading operations when 10 kg 

of propellant in tank.   
• Conducted at atmospheric pressure. 
• Minimal convection effects 

– 3.) Thermal Balance Test 
• Performed during spacecraft level thermal balance testing 
• Conducted in near vacuum 
• No propellant in tank 



N  A  S  A     G  O  D  D  A  R  D     S  P  A  C  E      F  L  I  G  H  T     C  E  N  T  E  R 

MMS 

Questions? 
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Presentation Notes
Following slides look at results for simulation times of:
10,800s (3 hours)
200,000s (55 hrs)
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Propellant Gauging System Errors 

*Aparicio, A., and B. Yendler. "Thermal Propellant Gauging at EOL, Telstar 11 Implementation." AIAA-2008-3375. (2008): p.2.  

* 
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Thermal Capacitance: Theory  

• Basic Concept of Thermal Capacitance PGS 
– Heat tank, look at the change in temperature over time 
– Ultimately want to compare the dT/dt of the model to the dT/dt from on orbit 

telemetry 
• From Energy Conservation 
 
Where 
 

 
– Components: 

• Tank shell 
• Helium 
• Propellant 
• Struts 
• Axial pin 

 
 

 

(2) 

(1) 

(4) 

(3) 
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Thermal Capacitance: Theory (cont.)  
• Heat flow (Q) and dT/dt are either known or found from 

– ANSYS thermal model 
• Struts 
• Axial Pin 
• Radiation 
• Tank 
• Helium 

– Tank Thermal Configuration 
• Heaters each dissipate a known amount of energy 
• Number of heaters known 
• Blanket emissivity is known 
• Mass of thermal hardware is known 

• Mass (m) is known from vendor data and/or specified (propellant) for 
analysis 
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Thermal Propellant Gauging Model 
Solution Process (General) 

• Regardless of the system, the overall process for developing a thermal 
propellant gauging model is as follows1 

– 1). Develop a thermal model of the tank(s) and spacecraft 
– 2). Combine propellant tank and spacecraft thermal models 
– 3). Heat the tank on the spacecraft by turning on the tank heaters 
– 4). Simulate the propellant gauging operation for different propellant loads 
– 5). Compare flight and simulation data 
– 6). Determine tank propellant load and uncertainties of estimate 

 
• For MMS tank capacitance model, completed steps 1-4, with the 

following exceptions 
– Modeling the spacecraft system.  Boundary and initial conditions for the tank were 

obtained from thermal analysis performed by Thermal Branch on the MMS 
spacecraft 

– Simulation data compared with results from Thermal Desktop propulsion system 
analysis 

– No comparison of flight data to simulation data since spacecraft is not yet in 
operation 

– Validation of model will occur during thermal balance testing, currently scheduled for 
August 2013 

1Aparicio, A., and B. Yendler. "Thermal Propellant Gauging at EOL, Telstar 11 Implementation." AIAA-2008-3375. (2008): p.2.  
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Boundary Conditions 
• Flight configuration of tank contains two 

main heater zones: gas and propellant.   
• Each controlled by an over-temp thermostat 

set at 43°C 
 

– Configuration 
• Heaters have total heat input of 29.87W 
• Struts, inlet & outlet tubes, and axial pin set to 

23°C 
• Radiation applied to tank surface using blanket 

effective emissivity  
 

• Set #1 BCs showed that gas side of tank 
reached over-temperature set point rapidly 

• Defined additional set of BCs to model 
situation 

 
– Set #2: Gas Side Heaters Off 

• Propellant side heaters have total heat input of 
14.91W 

• Gas side of tank set to 43°C 
• Radiation remained the same 
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Model Validation 

• Performed spreadsheet calculations to solve for propellant mass 
percent to determine model stability & convergence (<2% difference) 

Case  Target Mass Percentage Calculated Mass Percentage Percent Diff 
10% 9.71 9.86 1.54 
15% 14.56 14.61 0.34 
20% 19.40 19.37 0.15 
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Model Validation 

• Hand Calculations: 
– Analyzed heat transfer at boundary conditions 
– For presentation, show radiation and strut calculations 
 
– Radiation (20% case): 

 
 

• Hand Calculation: Q = -5.05 W 
• ANSYS Reaction Probe: Q = -4.92 W 

 
– Strut Conductance (20% case): 

 
 
 

• Hand Calculation (all struts): Q = -0.24 W 
• ANSYS Reaction Probe (all struts): Q = -0.25 W 
 

– Model and 2-node hand calculations show good agreement with each other 
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Model Validation (cont.) 
• Spreadsheet  calculations show 

– Where heat in system is going at all times, and that the heat flow at any time step sums to heat 
input of heaters (conservation of energy) 

– That the energy flow from the heaters, primarily to the propellant and radiation, is consistent with 
what one expects from theory 
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Model Validation (cont.) 
• Model comparison with all heaters on: 

– Maximum difference occurs toward middle of simulation 

Max % Difference: 8.76 
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Presenter
Presentation Notes
Temperature from Thermal Desktop model was pulled from a thermal capacitance node that simulated the propellant in the tank.  
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ANSYS Transient Thermal Model 

• ANSYS model is both Transient and Non-linear 
– Time-varying thermal behavior 
– Heat capacitance of materials 
– Temperature-varying material properties 
– Model is solved iteratively for each time-step; thermal solutions given at each time-step 

• Material Properties 
– Obtained primarily from the Aerospace Structural Metals Handbook, 1998 Edition 

• Graphs were digitized and data extracted from charts 
– Hydrazine properties were found from “Hydrazine and Its Derivatives” 2nd Edition by 

Schmidt. 
– Helium Properties (conductivity, primarily) were found from the Journal of 

Engineering Physics and Thermo Physics, Vol. 32, No. 5.   
– Materials not found in the above sources were found using 

• Vendor-supplied material data (ex., heater information was found from Honeywell, the maker 
of Kapton polyimide film) 

• Materials Used in Model: 
– 6AL-4V Titanium 
– 3AL-2.5 V Titanium 
– Helium 
– Hydrazine 
– 304 SS 
– Kapton Polyimide Film  
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ANSYS Transient Thermal Model 
(cont.) 

• Boundary Conditions: heaters always on 
– Obtained from Thermal Branch MMS thermal model 
– Initial Temperature: 22°C 

Heater Model Volume (m3) Q (W/m3) 
-X Top 2.29E-05 9.30E+04 
+X Top 2.29E-05 9.30E+04 
-Z Top 2.29E-05 9.30E+04 
+Y Top 5.26E-05 4.06E+04 

+X Upper 1.53E-05 1.40E+05 
-X Upper 1.53E-05 1.40E+05 
+Z Upper 1.53E-05 1.40E+05 
+X Middle 1.53E-05 1.40E+05 
-X Middle 1.53E-05 1.40E+05 
+Z Middle 1.53E-05 1.40E+05 
-X Lower 2.29E-05 9.30E+04 
+X Lower 2.29E-05 9.30E+04 
-Z Lower 2.29E-05 9.30E+04 
-Y Lower 5.26E-05 4.06E+04 

Qhtr (W): 2.13 
Total Heater Power (W): 29.87 

Component B.C. 
Strut 1 23°C 
Strut 2 23°C 
Strut 3 23°C 
Strut 4 23°C 

Axial Pin 23°C 
Gas Tube 23°C 
Fuel Tube 23°C 

e*† Tank Area (m2) Environ. Temp.(°C) 
4.50E-03 1.92 22 

†From 461-TCS-RPT-0039 

Tank Radiation 

Temperature 

Internal Heat Generation 
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ANSYS Transient Thermal Model 
(cont.) 

• Boundary Conditions: Gas side of tank set at TStat over temp set point 
– Gas side of tank set to 43°C 
– Heaters on gas side “turned off” 
– Initial Temperature: 22°C 

 

Heater Model Volume (m3) Q (W/m3) 
-X Top 2.29E-05 9.30E+04 
+X Top 2.29E-05 9.30E+04 
-Z Top 2.29E-05 9.30E+04 
+Y Top 5.26E-05 4.06E+04 

+X Upper 1.53E-05 1.40E+05 
-X Upper 1.53E-05 1.40E+05 
+Z Upper 1.53E-05 1.40E+05 
+X Middle 1.53E-05 0 
-X Middle 1.53E-05 0 
+Z Middle 1.53E-05 0 
-X Lower 2.29E-05 0 
+X Lower 2.29E-05 0 
-Z Lower 2.29E-05 0 
-Y Lower 5.26E-05 0 

Qhtr (W): 2.13 
Total Heater Power (W): 14.91 

Component B.C. 
Strut 1 23°C 
Strut 2 23°C 
Strut 3 23°C 
Strut 4 23°C 

Axial Pin 23°C 
Gas Tube 23°C 
Fuel Tube 23°C 

Lower Tank 43°C 

e*† Tank Area (m2) Environ. Temp.(°C) 
4.50E-03 1.923 22 

Tank Radiation 

Temperature 

Internal Heat Generation 

†From 461-TCS-RPT-0039 
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Internal Heat Generation Explanation 

• ANSYS defines “Internal Heat Generation” as energy/time/volume.   
– Applies a uniform generation rate internal to a body* 

• Chosen as method to model heaters since this best physically describes 
what a heater does. 

• Internal heat generation loads were calculated by taking the volume of 
the ProE model of a given heater, and dividing the heater wattage by the 
heater volume. 

• Heaters could have been modeled using a heat flux (energy/time/area). 
– Case was tried in ANSYS and results were the same as when modeled with IHG   

*From ANSYS Release 11.0 Documentation for ANSYS Workbench 
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Heat Flow (10 & 20% Cases) 
• Charts showing heat flow vs. time for 10 & 20%case.   

– 15% case fits between these two extremes 
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Analysis Results: 3 hr Simulation 

•Gas side thermistors do not provide enough resolution to discriminate between propellant masses 
•Need at least 1°C difference to account for A/D conversion errors and thermistor calibration error. 

•TStat set point of 43°C reached in approximately 1.3 hours 
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Presentation Notes
Explain how this is especially true once Over-temp Tstat set point is reached. 



 p34 
 

MMS 

 
MMS-Propulsion  

Initial Model Conclusions 

• Gas side thermistor data cannot be used for propellant gauging 
• Propellant mass shown to be adequately determined from propellant 

side thermistors 
– Difference of at least 1°C between load cases seen at ~9 hours into simulation 

• Temperature rise as measured by propellant thermistors is linear over 
long time periods 

– True for propellant but not gas 
• Model refinements bringing analysis closer to actual setup.   

– Will need to do future testing/validation to refine model 
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Model Refinements 
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Revised Boundary Conditions 

• Tank Interfaces (Struts, axial pin, 
inlet/outlet tubes) 

– Modeled interface temperatures to 
reflect extremes expected during 
different mission phases 

• Hot Operations (max 29°C) 
• Cold Operations (min -5°C) 

– Comparison made with initial 
assumption of 23°C   

– Result: boundary conditions play a 
negligible effect on the propellant 
temperature over time   

• Determined that initial assumption 
of 23°C was sufficient. 

– Shows that on orbit, knowledge of exact 
temperature of tank interface not 
needed. 
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Revised Boundary Conditions (cont.) 

• Heaters 
– Initially assumed a total heat input of 29.87W (at bus voltage of 34V), evenly 

distributed over all 14 tank heaters 
– Using updated bus voltage data, recalculated heater power using bus voltage of 

32V and nominal flight heater resistances 
– Implemented code in ANSYS model to thermostatically control heaters 

• Thermostats now turn off heaters if temperature at thermostat exceeds 43°C.  
• Turns them back on once temperature drops below 43°C 

   
 

 
Heater Power [W] Q [W/m^3] 

GAS-A 4.76 90554 
GAS-B1 1.55 67450 
GAS-B2 1.55 67450 
Gas-B3 1.55 67450 
GAS-C1 1.55 101352 
GAS-C2 1.55 101352 
GAS-C3 1.55 101352 
LIQ-A 4.76 90554 

LIQ-B1 1.55 67450 
LIQ-B2 1.55 67450 
LIQ-B3 1.55 67450 
LIQ-C1 1.55 101352 
LIQ-C2 1.55 101352 
LIQ-C3 1.55 101352 

Total: 28.12 

Heater Power [W] Q  [W/m^3] 

GAS-A 2.13 40600 
GAS-B1 2.13 93000 
GAS-B2 2.13 93000 
Gas-B3 2.13 93000 
GAS-C1 2.13 140000 
GAS-C2 2.13 140000 
GAS-C3 2.13 140000 
LIQ-A 2.13 40600 

LIQ-B1 2.13 93000 
LIQ-B2 2.13 93000 
LIQ-B3 2.13 93000 
LIQ-C1 2.13 140000 
LIQ-C2 2.13 140000 
LIQ-C3 2.13 140000 

Total: 29.87 

Old Power Distribution New Power Distribution 
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Note about results in ANSYS 

• When an area or part of a model is selected, ANSYS will automatically 
average the nodal solutions of the selected area.  

• Depending on the nodal results, one selected area might have different 
results than the same selection location, but with a larger (or smaller) 
selected area.   

• Nodal solutions for any body or area in a model can all be analyzed and 
evaluated, but this process becomes tedious with increasing model 
complexity (due to increased number of elements/nodes). 

• With a sufficient mesh, differences in average nodal results for different 
selected areas will be minimized. 

 
 



 p39 
 

MMS 

 
MMS-Propulsion  

Volume-Weighted Temperature 
Average Algorithm 

• This algorithm works as follows: 
– 1).  A body in the given model is selected by the user 
– 2).  The element volume and temperature of the selected body is retrieved 

• The element temperature, when retrieved from the ANSYS solver, is the average 
temperature of all the nodes on the given element. 

– 3).  The element volume and temperature are multiplied together.  
– 4).  Step 3) is repeated for all elements in the selected body 
– 5).  The sum in Step 4) is then divided by the total volume of the selected body 

• The result of the above is a volume-weighted average temperature for a 
selected body in the model.   
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