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= The Satellite Servicing Capabilities
Office (SSCO) is currently developing
and testing Goddard’s Natural Feature
Image Recognition (GNFIR) software
for autonomous rendezvous and
docking missions

= GNFIR has flight heritage and is still
being developed and tailored for future
missions with non-cooperative targets

- DEXTRE Pointing Package System on
the International Space Station

- Relative Navigation System (RNS) on the
Space Shuttle for the fourth Hubble
Servicing Mission (shown in figure)
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How GNFIR Works

Receive camera imagery

Use gradient filter to obtain gray-scale il
image

)

Project an a priori pose estimation of N
an edge into the image frame

.

Segment the edge into control points

Perform a search in the predicted
edge normal direction

Use a least squares fit to minimize
search distances




= Hypotheses:

- A metric of the target vehicle’s pose observability can be determined (prior
to receiving imagery) solely as a function of the target’s edge model and
planned trajectory

- Certain parameters used in the Lie Algebra of GNFIR’s edge-fitting
algorithm will serve as a useful quality metric of the state estimation error

= Motivations:

- Geometry-based quality metric
= Used in relative navigation filter (RNF) to weight state estimates

= Analog metric, as opposed to the binary metric currently used (edges found vs.
expected)

- Tool for creating better models and trajectories

= Computationally efficient method can be used in Monte Carlo analysis to improve
overall system performance
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Variables
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Equations and figure from
Drummond and Cipolla
(see ref’s slide)

Ci; : projection matrix mapping the observed edges to the model

L, : true image coordinates of features w.r.t. the i" Lie group
generator

n : edge normal direction (see figure)

f.. edge-normal motion observed w.r.t. the it Lie group generator
d : scalar distance from control point to detected edge (see figure)
v; : vector displacements projected into tangent space

a; : linear approximation of the state residuals which minimizes the
error between the model and observed edges

*C-lis the candidate for the observability metric €
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= Simplify the problem
- Take away degrees-of-freedom (DOF) to a level which is more easily
conceptualized
- Manually derive the nonlinear measurement equations
- Linearize these equations and apply standard least squares estimation
- Disturb relevant parameters and observe resulting observability trends

= Expand knowledge to the full 6DOF problem
- Make connections between simplified and 6DOF parameters
- Verify that the same trends in observability are detected

= |dentify how the exploits can be used to enhance the model and
trajectory formulation
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= Flat plane aligned in roll direction (p,) to camera
= Movement constrained to 3DOF: p,, p,, 6

= Arbitrary number of edge features (e) at arbitrary distances from center of
model

= Measurements are the angular differences (Ag) between a priori and
measured edges (similar to “d” in comprehensive problem)
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Nonlinear
Measurement
Equations:

¢,(P.,6) = arccos(s; - p,)

ei,l

gzﬁ"'ébz[ J+Rl(9)
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p, +e;,cos@—e ,sinl

@.(p, 0) = arccos( )

\/(pl +e,cosb-e,,sinb)’ +(p, +e,sinf—e,,cosd)’
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= Define model by number a_nd Io_cation of edges 5
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o
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Model:

o

= Provide random a priori state close to truth state

= Generate measurements (z) on each edge using nonlinear equations and
zero-mean Gaussian white noise (v)

= Compute linearized projection matrix (H) to satisfy:

z=Hx+ v
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= Linearize equations about the p, — p, ,+Ap,

a priori state:

= Derive projection matrix (H):

= Obtain state estimate:

}_52 _>}_52,a+Al92

00— 6, +A0

b 065, 0.)

OAx

AS=(H"H)'H'z

pl,a

- p2,a

7

a
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= Hypothesis:
- Model is more observable when features are spread farther apart — i.e. better geometry

= Test:
- Use 3 edges per model (to be fully observable)
- Slide the middle edge between the top and bottom edge
- Average over 100 cases with different measurement noises and a priori
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- Worst Better Best ==« \Worst
Observability:




*Note: better observability is a lower
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5 Observability vs. RMS Error by Model
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= Each DOF portrays a linear
relationship between the
observability and the
estimation errors

- Comparing component-by-
component

= Should expect to see this
same correlation in the 6DOF
representation
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Simplified problem: A)?:(HTH)‘IHTZ *We should see

the same trends in
Clas thosein

HTHI
Full problem: a.=C j v~ (f ) (f-d)
Parallel to GDOP: Q = "A_.TA)_I
d; dy, di. d]
oo |G @ 4 &
d,. dy. & 4
&b, E

Pﬂﬂpz¢dg+d§+d§
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= GOES-12 FSAB Models
- From left-to-right models should have less observability (less features)

= Trajectory involves range span from 4m to 2m
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X Component of C inverse vs X Error
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= Results look very promising to continue with plans to derive a quality
metric and tool for generating better models

= More work to be done in characterizing the linear relationship
- Add more models to see if trend continues
- Ballpark of “good vs. bad” numbers
- How this ties into the RNF

= Will look at a test case and predict performance prior to looking at
Imagery, then compare to what metric predicted
- Further fine-tune the predictions

= Need to generate a feature-by-feature representation of the plots to pick
out which to keep/discard

= Perform Monte Carlo analysis using synthetic imagery to optimize the
trajectory and/or model for a given scenario
- Presumably by minimizing C-! over the entire trajectory
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Thank you for your time. Questions?
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= Drummond, T.; Cipolla, R.; , "Real-time visual tracking of complex
structures," Pattern Analysis and Machine Intelligence, IEEE
Transactions on , vol.24, no.7, pp.932-946, Jul 2002
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BACK-UP SLIDES
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