National Aeronautics and Space Administration

Geometry-based Observability Metric 5 code 595 \overline{O} *Colin Eaton* **10** *Bo Naasz* \bigcirc $\overline{\mathbf{C}}$ $\overline{\mathbf{C}}$

November 2, 2012

NAVIGATION & MISSION DESIGN BRANCH NASA GSFC

 \overline{C}

Agenda

- **Background Info**
- **How GNFIR Works**
- **Concept and Motivation**
- **Relevant Equations**
- Strategy
- **Simplified Problem Details**
- **Expanding to 6DOF Problem**
- 6DOF Problem Results
- **Conclusions and Next Steps**

Background Info

- **The Satellite Servicing Capabilities** Office (SSCO) is currently developing and testing Goddard's Natural Feature Image Recognition (GNFIR) software for autonomous rendezvous and docking missions
- **GNFIR has flight heritage and is still** being developed and tailored for future missions with non -cooperative targets
	- DEXTRE Pointing Package System on the International Space Station
	- Relative Navigation System (RNS) on the Space Shuttle for the fourth Hubble Servicing Mission (*shown in figure*)

How GNFIR Works

Receive camera imagery

Use gradient filter to obtain gray-scale image

Project an *a priori* pose estimation of an edge into the image frame

Segment the edge into control points

Perform a search in the predicted edge normal direction

Use a least squares fit to minimize search distances

Concept and Motivation

■ Hypotheses:

- A metric of the target vehicle's pose observability can be determined (prior to receiving imagery) **solely as a function of the target's edge model and planned trajectory**
- Certain parameters used in the Lie Algebra of GNFIR's edge-fitting algorithm will serve as a useful quality metric of the state estimation error
- **Motivations:**
	- Geometry-based quality metric
		- Used in relative navigation filter (RNF) to weight state estimates
		- **Analog metric,** as opposed to the binary metric currently used (edges found vs. expected)
	- Tool for creating **better models and trajectories**
		- Computationally efficient method can be used in Monte Carlo analysis to **improve overall system performance**

Lie Algebra Equations

Equations and figure from Drummond and Cipolla (see ref's slide)

Variables

- C_{ii} : projection matrix mapping the observed edges to the model
- L_i : true image coordinates of features w.r.t. the ith Lie group generator
- n : edge normal direction (*see figure*)
- f_i: edge-normal motion observed w.r.t. the ith Lie group generator
- d : scalar distance from control point to detected edge (*see figure*)
- vi : vector displacements projected into tangent space
- α_i : linear approximation of the state residuals which minimizes the error between the model and observed edges
	- *** C-1 is the candidate for the observability metric**

Strategy

- **Simplify the problem**
	- Take away degrees-of-freedom (DOF) to a level which is more easily conceptualized
	- Manually derive the nonlinear measurement equations
	- Linearize these equations and apply standard least squares estimation
	- Disturb relevant parameters and observe resulting observability trends
- **Expand knowledge to the full 6DOF problem**
	- Make connections between simplified and 6DOF parameters
	- Verify that the same trends in observability are detected
- **I** Identify how the exploits can be used to enhance the model and trajectory formulation

Simplified Problem: Set-up

- Flat plane aligned in roll direction (p_1) to camera
- Movement constrained to 3DOF: p_1 , p_2 , θ
- Arbitrary number of edge features (e) at arbitrary distances from center of model
- Measurements are the angular differences (Δφ) between *a priori* and measured edges (similar to "d" in comprehensive problem)

Simplified Problem: Equations

Nonlinear Measurement Equations:

$$
\phi_i(\vec{p}, \theta) = \arccos(s_i \cdot p_1)
$$
\n
$$
\vec{s}_i = \vec{p} + \vec{e}_i = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + R_1(\theta) \begin{bmatrix} e_{i,1} \\ e_{i,2} \end{bmatrix}
$$
\n
$$
\phi_i(\vec{p}, \theta) = \arccos\left(\frac{p_1 + e_{i,1}\cos\theta - e_{i,2}\sin\theta}{\sqrt{(p_1 + e_{i,1}\cos\theta - e_{i,2}\sin\theta)^2 + (p_2 + e_{i,1}\sin\theta - e_{i,2}\cos\theta)^2}}\right)
$$

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSFC

Simplified Problem: Procedure

- **Provide random** *a priori* state close to truth state
- Generate measurements (z) on each edge using nonlinear equations and zero-mean Gaussian white noise (v)
- Compute linearized projection matrix (H) to satisfy:

$$
z = Hx + v
$$

Simplified Problem: Linear LS Estimation

-Linearize equations about the $\vec{p}_1 \rightarrow \vec{p}_{1a} + \Delta p_1$ *a priori* state:

$$
\vec{p}_1 \rightarrow \vec{p}_{1,a} + \Delta p_1
$$
\n
$$
\vec{p}_2 \rightarrow \vec{p}_{2,a} + \Delta p_2
$$
\n
$$
\theta \rightarrow \theta_a + \Delta \theta
$$

- Derive projection matrix (H):

$$
H = \frac{\partial \phi_i(\vec{p}_a, \theta_a)}{\partial \Delta x}
$$

$$
\Delta x = \begin{bmatrix} \Delta p_1 \\ \Delta p_2 \\ \Delta \theta \end{bmatrix}
$$

$$
z = \begin{bmatrix} \Delta \phi_1 \\ \Delta \phi_2 \\ \vdots \\ \Delta \phi_n \end{bmatrix}
$$

 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

$$
\Delta \hat{x} = (H^T H)^{-1} H^T z
$$

 $\left|\begin{array}{cc} \hat{p}_{1}\ \hat{p}_{2}\ \hat{\theta} \end{array}\right|=\left|\begin{array}{cc} p_{1,a}\ p_{2,a}\ \theta_a \end{array}\right|+\Delta \hat{x}_{1,a}$

Obtain state estimate:

Simplified Problem: Proof of Concept

- **Hypothesis:**
	- Model is more observable when features are spread farther apart i.e. better geometry
- Test:
	- Use 3 edges per model (to be fully observable)
	- Slide the middle edge between the top and bottom edge
	- Average over 100 cases with different measurement noises and *a priori*

Simplified Problem: Proof of Concept

**Note: better observability is a lower HTHI*

- Observability is best when the edge features are most spread out (model 6)
	- True for both position DOF's (top) and attitude DOF (bottom)
- **Proves that this model behaves** as expected and is an appropriate representation of the 6DOF problem
	- Trends in observability and estimation error should be comparable

Simplified Problem: Trends

- **Each DOF portrays a linear** relationship between the observability and the estimation errors
	- Comparing component-bycomponent
	- **Should expect to see this** same correlation in the 6DOF representation

Expanding to 6DOF Problem

Simplified problem:
$$
\Delta \hat{X} = (H^T H)^{-1} H^T Z
$$

Full problem:

$$
\alpha_i = C_{ij}^{-1} v_j \approx (f \cdot f)^{-1} \cdot (f \cdot d)
$$

Parallel to GDOP: $Q = (A^T A)^{-1}$

$$
Q = \begin{bmatrix} d_x^2 & d_{xy}^2 & d_{xz}^2 & d_{xt}^2 \\ d_{xy}^2 & d_y^2 & d_{yz}^2 & d_{yt}^2 \\ d_{xz}^2 & d_{yz}^2 & d_{z}^2 & d_{zt}^2 \\ d_{xt}^2 & d_{yt}^2 & d_{zt}^2 & d_{t}^2 \end{bmatrix}
$$

$$
PDOP = \sqrt{d_x^2 + d_y^2 + d_z^2}
$$

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSFC

**We should see the same trends in C-1 as those in HTHI*

6DOF Models

GOES-12 FSAB Models

- From left-to-right models should have less observability (less features)
- **Trajectory involves range span from 4m to 2m**

6DOF Problem: Trends

**Note: Model #1 is on left of each figure (#3 on right)*

Each DOF portrays the same linear relationship between the observability and the estimation errors

 Verifies that the parameters from the simplified model are accurately comparable to the 6DOF model

Conclusions and Next Steps

- **Results look very promising to continue with plans to derive a quality** metric and tool for generating better models
- More work to be done in characterizing the linear relationship
	- Add more models to see if trend continues
	- Ballpark of "good vs. bad" numbers
	- How this ties into the RNF
- Will look at a test case and predict performance prior to looking at imagery, then compare to what metric predicted
	- Further fine-tune the predictions
- Need to generate a feature-by-feature representation of the plots to pick out which to keep/discard
- **Perform Monte Carlo analysis using synthetic imagery to optimize the** trajectory and/or model for a given scenario
	- Presumably by minimizing C⁻¹ over the entire trajectory

Thank you for your time. Questions?

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSFC

References

 Drummond, T.; Cipolla, R.; , "Real-time visual tracking of complex structures," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.24, no.7, pp.932-946, Jul 2002

BACK-UP SLIDES

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSFC

Simplified Problem

