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1 Abstract

Engineers working to understand and reduce cryogenic boil-off must solve
a variety of transport problems. An important class of nonlinear problems
involves the thermal and mechanical design of cryogenic struts. These classic
problems are scattered about the literature and typically require too many
resources to obtain. So, to save time for practicing engineers, the author
presents this essay. Herein, a variety of new, old, and revisited analytical
and finite difference solutions of the thermal problem are covered in this es-
say, along with commentary on approach and assumptions. This includes
a few thermal radiation and conduction combined mode solutions with a
discussion on insulation, optimum emissivity, and geometrical phenomenon.
Solutions to cooling and heat interception problems are also presented, in-
cluding a discussion of the entropy generation. And the literature on the
combined mechanical and thermal design of cryogenic support struts is re-
viewed with an introduction to the associated numerical methods.
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ṁ Mass flow rate
c Specific heat capacity of fluid
α Square root of ratio of conduction to convection resistance
β Number of transfer units
τ Nondimensional temperature profile
η Nondimensional length
γ Defined for reasonable printing of Canavan and Miller’s

solution

φ Coefficient of Performance
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2 Foreword

This work was supported in part by the Cryogenic Propellant Storage and
Transfer project at the NASA Glenn Research Center. I would like to espe-
cially thank Robert Christie and William Fabanich for their excellent guid-
ance and advice. Most importantly, this work is dedicated to my best friend
and fiancée, Heather, for her invaluable companionship.

3 Conduction analysis of struts

Before delving into the advanced topics, a review of the conduction analysis
provides a foundation for this essay. The advanced reader might want to skip
to the next section, if so, at least stop and read the commentary on boundary
conditions (section 3.3).

3.1 The basic problem

Consider a tube (or rod) experiencing only conduction heat transfer. We
know the temperatures at both boundaries, denoted by Th and Tc. What
is the steady state heat flow and temperature profile in the one-dimensional
approximation?

Figure 1: A schematic of a simple cryogenic strut heat leak problem

We will assume steady state, constant cross-section, one-dimensional, no
radiation, no convection, and no internal heat generation. The phenomeno-
logical law by Fourier may be used to solve for the heat flow and the energy
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diffusion equation may be used to solve for the temperature profile.1

q̇′′ = −kdT

dx
(1)

d

dx

(
k

dT

dx

)
= 0 (2)

In general, for cryogenic struts, it is common for the solid to experience
large temperature gradients, often from 77K or less up to 250K or more. So
the assumption of constant thermal conductivity is a poor choice. When the
thermal conductivity becomes temperature dependent, the governing equa-
tion no longer has a constant coefficient so the problem becomes nonlinear.
In fact, it is much easier to find the heat flow than the overall temperature
gradient because separation of variables may be deployed.∫ L

0
q̇′′ dx =

∫ Th

Tc
−k(T ) dT (3)

Because the strut is of constant cross-section, this equation simplifies even
further.

q̇′′ =
1

L

∫ Th

Tc
−k(T ) dT (4)

At this point, the challenge is integrating the thermal conductivity. For
most materials of interest, the thermal conductivity as a function of tempera-
ture is known through testing. Most of these functions may be approximated
explicitly with logarithmic or polynomial curve fits. The National Institute
of Standards and Technology offers this data for over a dozen materials on
their website[17]. They typically give fits using summed powers of logarithms
that are okay for numerical integration, but, as we will see, not so great for
solving for the temperature profile.

3.2 Materials data pitfalls

I should point out some of the pitfalls associated with curve fits of material
data. First, it is possible to create a fit that does not follow the profile of

1Usually, the energy equation is solved for the temperature profile and the derivative of
the temperature profile is used in Fourier’s Law to obtain the heat flow. But in this case,
because it was steady state, no heat generation, and adiabatic sides, the heat transfer rate
is a constant independent of x. This is a consequence of conservation of energy[14]
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the function. This is especially true of polynomials. Sometimes a poor fit
will veer off in the middle or tail off at the end. In general, always plot the
fit to make sure it matches the function. Also, as a general rule, never ex-
trapolate material properties data. Without a complete understanding of the
crystalline and grain structure of a material, we cannot trust extrapolating
a curve fit (especially a polynomial) beyond the intended domain.

Instead of doing a polynomial fit, an engineer might choose to interpolate
the values from a table. If there are too few samples populating the table,
essential features of the thermal conductivity curve may be missed. I recom-
mend intervals of 1K to 5K (or smaller), depending on the curvature of the
real measured data.

One material on NIST’s website is stainless steel 304. Assuming stainless
steel 304 is the strut material, Th = 200K, Tc = 20K, and L = 1ft, the
heat flux turns out to be −0.53 W

cm2 using the temperature dependent form.
However, assuming constant properties evaluated at the arithmetic mean of
the prescribed bounds, we find −0.46 W

cm2 : an underestimate of the true value
by a relative error of -13%.

We might also want the temperature profile. Examine the diffusion equa-
tion. The temperature dependent thermal conductivity makes the problem
nonlinear and separation of variables will not work by itself. Like most dif-
ferential equations, having foresight is key to being able to solve the problem
efficiently. So consider a function that, to the untrained eye, appears unre-
lated to the problem.

θ(T ) ≡
∫ T

0
−k(T ) dT (5)

It follows from the fundamental theorem of calculus that this equation
may be written in terms of the derivative instead.

dθ

dT
= k(T ) (6)

Using the chain rule to substitute this expression into equation 2 (or sim-
ply using Leibniz notation to cancel differentials) makes the problem solvable.
This method is known as ‘Kirchhoff’s transformation’[15]. So, continuing the
solution,

d2θ

dx2
= 0 (7)
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The boundary conditions must also be transformed.

T (0) = Tc ⇒ θ(T (0)) = θ(Tc) (8)

T (L) = Th ⇒ θ(T (L)) = θ(Th) (9)

The solution to this equation can be obtained with straightforward inte-
gration.

θ(x, T ) =
θ(Th)− θ(Tc)

L
x+ θ(Tc) (10)

All that is left is to evaluate θ, which requires integration of the thermal
conductivity. The problem is that it can be difficult to integrate the thermal
conductivity. Therefore, for this case, I simplified the NIST logarithmic fit
by re-fitting the data to a quadratic polynomial.

k(T ) = a+ bT + cT 2 (11)

For stainless steel 304, the coefficients (valid only from 20K to 200K) turn
out to be a = 0.899914 W

m·K , b = 0.103523 W
m·K2 , and c = −0.000222 W

m·K3 . Be
aware that rounding the coefficients will result in massive errors–as a general
rule, never truncate intermediate calculations. Checking the curve fit (see
Figure 2), notice that it falsely turns downward above 200K and is slightly
off the mark near 20K.

Because the functional form of the thermal conductivity is given, we may
now write the final solution in terms of T and x. Unfortunately, the equation
is implicit and requires iteration to solve.

aT +
b

2
T 2 +

c

3
T 3 =

θ(Th)− θ(Tc)
L

x+ θ(Tc) (12)

The iteratively solved temperature profile is shown in Figure 3, along
with the finite difference solution. In the finite difference solution, the ther-
mal conductivity was not represented by a quadratic polynomial. Instead,
actual data from a NIST logarithmic fit was tabulated in 5K intervals and
interpolated linearly. It is likely that the finite difference solution is more ac-
curate and the difference seen in the temperature gradient at the cold end has
to due with the inaccuracies produced by the quadratic fit of the polynomial.
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Figure 2: Notice how the quadratic fit does not fit well when extrapolated beyond
200K, even though the fit was created with data from 20K to 230K.
Also, notice the mismatch near the left of the plot.

3.3 Boundary conditions

The astute reader will point out that we need more information for an answer
representative of the real system. The problem is the hot boundary condition.
By assuming a hot temperature, we are indirectly assuming the heat flow;
albeit, now it must be solved with an equation and integral. Engineers rarely
have a full thermal simulation available when designing supporting structures
yet estimating the heat leak is critical to system design.

To shed light on the nature of this boundary condition, consider a differ-
ent heat transfer problem: the 1967 vapor cooled tube experiment by A.G.
Fox and R.G. Scurlock[11]. In their experiment, two identical stainless steel
tubes of 12.5 mm diameter and 0.2 mm wall thickness led into the liquid
helium container (which was shielded with liquid nitrogen). One tube (up-
per temperature profile in Figure 4) was closed at the top. The authors
remarked,

It was found that when helium vapor flowed up both tubes,
the total heat reaching the liquid helium was 0.012W. Under
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Figure 3: Here, the governing equation was solved both analytically and with
finite differences. The analytical solution used a quadratic approxma-
tion for the thermal conductivity. The solution with finite differences,
on the other hand, interpolated linearly from tabulated thermal con-
ductivity data.

this condition, the calculated heat by [solid] conduction down
the open vapor-cooled tubes was less than 0.001W. However,
when one tube was closed off at the room temperature end, the
total heat was observed to increase to 0.028W: an increase of
0.016W. . . the increase therefore arose almost completely from
the conduction through the closed tube walls. . . the tempera-
ture profiles in the open and closed tubes were plotted using
a copper-constantan thermocouple. These are shown in the
figure and demonstrate clearly that the temperature gradient
was substantially reduced by vapour-cooling.
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Figure 4: Fox and Scurlock’s experimental data is depicted here; notice how the
hot boundary condition differs between the open and closed tubes
(lower and upper plots, respectively). Note that in this experiment,
‘open tube’ means the boil off gas was allowed to flow through the
tube. Later, ‘open end’ refers to a tube in a radiation environment so
be careful not to confuse the two.

Fox and Scurlock, by trying to point out the benefits of boil off cooling,
also demonstrated the way in which the hot boundary condition depends
upon external factors2. It is inappropriate to assume boundary conditions at
parts that are, essentially, in the middle of the thermal network. There is no
physical reason to justify this approach because there is no boundary con-
dition at that location. The strut is connected to several thermal pathways
before reaching the dominating environmental heat sinks. These pathways
coupled with the strut and the tank accurately determine the heat flux.

So far, our approach to estimating the hot boundary condition is, for a
ground test, to refer to past experiments or use heaters for hot temperature
control. In a ground based application, it is reasonable to assume ambient
conditions for the hot boundary temperature. For a spacecraft, on the other
hand, people often assume the environmental sink temperature is represen-
tative. Really, these techniques are all engineering approximations that serve

2With this view, a more accurate temperature profile would be obtained with a Neu-
mann boundary condition but that requires assuming the heat flow a priori.
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to get an estimate so other parts of the design may be appropriately sized.
Most of the time, in the literature, the reader will find authors using

something like the saturation temperature of the cryogenic fluid at the cold
boundary condition, roughly 20K for a representative liquid hydrogen tank
temperature. But there exists some mechanical link fastening the strut to
the tank and there will be a change in temperature across this interface.
This temperature change varies considerably depending on the method of
attachment. For an example, see the temperature change across the strut
attachment plate3 in Figure 5.

Also, observe the large thermal gradient across the struts in Figure 6.
We may conclude that because a large temperature gradient exists across
the struts, they must be design to perform well as insulators. Its clear that
the cross sectional area must be minimized. This problem may be solved
using an optimized combined thermal-structural-vibrations analysis such as
a modified version of the classic study4 by Bushnell[7]. An introduction to
the literature on this approach is given in section 5.2.3.

4 Combined mode radiation and conduction

with struts

Energy exchange via thermal radiation is happening all around us, every-
where, all of the time. It’s particularly important in space because heat
transfer is dominated by the combined modes of conduction and infrared ra-
diation. Herein are a few noteworthy solutions that I hope will provide some
insight into your own design problems.

3NASA Glenn Research Center’s Cryogenic Propellant Storage and Transfer program
funded a reduced boil-off technology (colloquially referred to as ‘Broad Area Cooling’)
demonstration called Cryogenic Boil-off Reduction System in 2012. The prototype was
undergoing bake-out at the time of this writing.

4To help the reader find this document: submitted February 21 1983; presented as
Paper 83-0829 at the AIAA/ASME/ASCE/AHS 24th Structures, Structural Dynamics
and Materials Conference, Lake Tahoe, Nevada, May 2-4, 1983; published by AIAA with
permission.
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4.1 Constant External Emissivity

Consider another stainless steel 304 strut, this time a 1 inch diameter tube
with a wall thickness of 0.06 inches and open ends. This strut now exists in
a radiation environment. We assume large, isothermal surroundings, gray-
diffuse radiation exchange, and neglect the radiation exchange internal to the
tube (for now)5.

If the surroundings temperature is between the hot and cold conduc-
tion boundaries (assume 150K, 300K, and 20K, respectively), a curious phe-
nomenon may occur. By definition, part of the strut will be warming and
part of it will be cooling. If the entire strut is coated with the same emissiv-
ity6, does there exist a value that minimizes the total heat flux? If so, what
is that value? 7

So, to observe trends, the graphical solution was obtained by sweeping
across the emissivity domain (see Figure 7). Although not shown in the plot,
when solving for a lower surroundings temperature, one may demonstrate
that the optimum amount of insulation falls with the surroundings temper-
ature. It becomes better to go more uninsulated in that case. Albeit, the
practical usefulness of this solution is typically limited–unless the strut has
a view to deep space, the surroundings temperature, defined by the vehicle’s
skin, is rarely less than 200K. From this we may draw the inference that, if
possible, struts and tanks should be given more view to deep space, although
the ability to do this is balanced by other concerns like micrometeorites and
orbital debris.

After reading carefully, one might ask, “But aren’t we restricting ourselves
by requiring that the entire surface have the same coating optical property?
What if we could put a high emissivity paint on the part of the strut warmer

5For more information about these assumptions, refer to chapters 12 and 13 of the
Fundamentals of Heat and Mass Transfer[14] by Incropera and DeWitt.

6I assumed constant emissivity in all of these cases, going against the advice given
including the temperature dependence. However, I have been unable to find wavelength
dependent emissivity data in the far infrared. Although temperature dependent emissivity
values for various metals have been published and may be utilized, at the time of writing,
I had not had a chance to implement this strategy via finite differences. Typically, this
requires re-calculating radiation conductors so, for folks using SINDA based tools, this
requires custom logic. Nevertheless, because the emissivity for most materials decreases
with decreasing temperature, using the room temperature value is conservative.

7I first saw this problem in CRTECH’s Sinaps User’s Manual, Cryogenic Tank Support
tutorial[10].
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than the surroundings temperature and just insulate the colder part?” Of
course, with enough information about the surroundings and view factors,
this is a nice passive technique for further reductions in heat leak. This
exercise is left for the reader.

4.2 Extending Boyle and Knoll’s Work on Radiation
Internal to the Tube

In November 1968, Robert Boyle and Richard Knoll published a NASA tech-
nical note titled, “Thermal analysis of shadow shields and structural mem-
bers in a vacuum”[6]. Several neat solutions were published, along with the
FORTRAN program they used to obtain their results. Essentially, they solve
shadow shield problems with an iterative method and strut problems with a
finite difference method.

Although they cover a variety of interesting and fundamental problems,
we will just focus on their work on the radiation exchange inside a conducting
hollow tube. Like me, they also considered a constant internal emissivity,
solving for a family of dimensionless heat transfer rate curves. Observe their
results in Figure 8. Notice the steep gradient near the lower emissivity values,
as well as the dependence on external emissivity.

Boyle and Knoll figured that the increase in heat transfer due to internal
radiation may be thought of as having two components:

From these figures, it can be seen that both the internal and ex-
ternal emissivities can affect the heat transfer rate...in these
cases, the surroundings were taken to be at zero temperature.
Increasing the internal emissivity causes an increase in the
heat transfer rate at the colder end of the strut in a twofold
manner. First, as the internal emissivity increases, the tem-
peratures along the strut increase. This increases the ther-
mal gradient at the colder end which results in an increased
conducted heat heat transfer rate. Second, for closed ends,
increasing the internal emissivity increases the amount of ra-
diant energy which is absorbed by the end of the strut.

In other words, some of the increased heating is due to the sidewalls and
some is due to the irradiation of the hot closed end and the absorption at
cold closed end. Boyle and Knoll do not discuss the relative magnitude of
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these two effects. But using axial shielding is a common practice (see Figure
9 for a depiction) so it is important to understand how much benefit we get
from the added complication of installing these shields8. So is it better to
insulate the sidewalls in the radial direction, perhaps with a rolled tube of
multilayer insulation? Or should one try to insulate the axial view, maybe
using discs spaced along the length of the strut? Or is some combination of
the two optimal?

I have answered that question for the case of a closed end, 12 inch stainless
steel 304 tube that is 1 inch in diameter and has a 0.06 inch wall thickness
(see Figure 10 for the solution and Figure 9 for a depiction of the finite dif-
ference and Monte Carlo thermal model). The hot, cold, and surroundings
temperatures were 300K, 20K, and 200K, and the internal emissivity (emis-
sivity of the inner wall of the tube, possibly under a blanket in some cases)
was swept from 0 to 1. The discs, or ‘shields’, if used, were coated with a
specified emissivity on both sides, assumed to have zero thickness and zero
heat capacity (arithmetic, or instant response, surfaces9), and were always
spaced equally.

Most importantly, the scale of these results show that for representative
struts, the internal radiation only increases the heat transfer by about 1%10

when compared to the solution neglecting this effect. Now, we will examine
the results in detail.

Starting at the top of the legend in Figure 10, the blue diamonds depict
re-radiating ends. This simulates perfectly insulated surfaces that do not
allow for radiation emission. Instead, they just reflect and absorb. Once
they are allowed to emit, like in the second series (red squares) notice how
the heat transfer rate increases. This suggests that the hot and cold ends’
views to each other and the sidewall is important in this problem11. Now,
when I add one disc of emissivity 0.28 to the middle of the strut, the heat

8If the shields are easy enough to install, this might not be much of a concern. So if
the reader has that opinion, then these results are just for general knowledge, because said
reader is going to use shielding anyways.

9This results in a faster run time for the steady state case but the validity of this
approach should be checked for a transient solution.

10In composite tubes, the decreased thermal conductivity makes radiation heat transfer
a little more important. So for composites, an increase in heat transfer rate of 5% is
typical. Obviously, the precise results for different materials and geometries needs to be
evaluated on a case by case basis taking into account the length to diameter ratio.

11By the way, only series 4, 7, 8, 9, 10, and 11 had exterior blankets. The rest of the
cases assumed no exterior blanket.
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leak actually gets worse (series 3, green triangles). It’s not much better if the
shield is 0.04 emissivity (series 5, blue lined ‘x’) and both one shield cases
are worse than no shield at all. Now, examine the solution with multilayer
insulation on the outside of the tube.

By leaving the single 0.04 emissivity shield in place and blanketing the
exterior with a typical blanket of effective emissivity 0.01, we find the curve
translates down significantly (series 4, violet ‘x’). So, for these boundary
conditions, the external surface blanket is very important12.

Getting rid of both the external blanket and the shield and instead insu-
lating the sidewall (series 6, filled orange circle) with a typical blanket (ef-
fective emissivity 0.01) results in somewhat worse performance, as expected
due to the removal of the exterior blanket.

Both the exterior and interior surfaces were blanketed in series 7 and no
shields were used (blue plus sign). Surprisingly, this one performs much like
the case with 7 shields but no blankets at all (series 12, orange triangles).
Another interesting fact is that it doesn’t appear to matter how well the
shields contact the tube (see series 9 and 10).

Obviously, the best case was series 13 (gray box with blue cross). Over
the entire domain, insulated sidewalls and seven radiation shields effectively
eliminate this small mode of heat leak.

4.3 The Critical Length

It turns out that when the large, isothermal surroundings temperature is
between the hot and cold boundary temperatures (such as 220K, 300K, and
20K, respectively), there is a critical length such that no matter how much
longer the tube is, the heat leak will not change. To see why, consider the
temperature profile solution (Figure 11) of two struts of the same emissivity,
only differing in length.

Observe the gradient near the cold side. Both curves end up having very
similar gradients such that the heat flux is negligibly different between these
two geometries, even though one is over twice as long. This happens because
the ‘warm’ section tries to equilibrate to 220K in both cases–more so in the
100 inch case–and if the tube is long enough, the ‘middle’ section will end
up at steady state with the surroundings.

12This dovetails with what we already know. Recall? In the previous section, we found
that for the 300K hot case with a 200K surroundings temperature, the optimal external
emissivity is 0.
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To find this critical length, consider an infinitely long rod in some large,
isothermal surroundings at some temperature of interest (in my example
220K) with a base temperature at the temperature of the cold sink (usually
close to a cryogenic fluid’s temperature) and solve for the location on the
tube where the temperature is some number very close to the surroundings
temperature, say within a fraction of 0.99. This is essentially the radiation
fin problem.

Readers interested in solving this problem will be able to adapt one of
A.R. Shouman’s excellent solutions[18] in “Nonlinear heat transfer and tem-
perature distribution through fins and electric filaments of arbitrary geometry
with temperature-dependent properties and heat generation”. Shouman also
provides a list of references of authors with the same solution but different
mathematical formulations.

5 Heat interception

The utility of sensible cryogenic heat interception via boil off gas was rec-
ognized many years ago. Further reductions in boil off rates require active
cooling. But as the operating temperature falls so does the coefficient of per-
formance. Since current technology requires significant size and input power
for adequate cooling capacity, maximizing the efficiency of the various cool-
ing schemes is paramount. And of equal importance is the concept of heat
interception, which reduces input power by picking up some heat at warmer
stages. In this section, these topics are discussed in detail.

5.1 Reduced boil off cooling via passive sensible energy

A cryogenic fluid is vented as it vaporizes. Like Fox and Scurlock[11] showed
many years ago, this gas may be used to intercept heat. If flowed concurrently
with the struts, the sensible energy of the gas stream increases as it pulls
heat away from the strut, transporting it to the vent where it is jettisoned.
A diagram of this system is shown in Figure 12.

Think about this problem for a moment. The radiation boundary con-
dition will necessitate blanketing on the outer cylinder. Expanding our
thoughts further, the pragmatic engineer would likely replace this concentric
tube configuration with a coil13. Some folks use a single vent line, wrapping

13There certainly exists optimum coil geometry for this case but I have neither attempted
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it around the system from strut to strut, coiling it for just a few turns at
discrete locations on each successive strut. Others might run a single line for
each strut, resulting in multiple vent holes. On the other hand, as opposed to
tubular struts, I have seen at least one reference to a design starting with a
solid rod and flowing the gas through an array of holes bored axially through
the solid, unifying and co-locating the strut attachment and the vent holes.

To press onward, we must settle with simplifications. The one-dimensional
concentric tube configuration is straightforward compared to a helical tube
analysis so that is a good place to start. The strut is considered to be well
insulated from the surroundings and the geometry should be known from a
structural optimization analysis14.

Obviously the result of the energy balance and Taylor expansion (ne-
glecting higher order terms) is two coupled first order ordinary differential
equations with variable coefficients:

d

dx

(
kA

dTs
dx

)
− hP (Ts − Tf ) = 0 (13)

ṁcp
dTf

dx
− hP (Ts − Tf ) = 0 (14)

Here, the thermal conductivity of the solid and the specific heat are func-
tions of temperature. The heat transfer coefficient is likely laminar and pos-
sibly in the entrance flow regime for some of the vent length. Chi K. Tsao,
carrying out research at the Naval Ship Research and Development Center,
solved this problem numerically in his well written paper titled, “Temper-
ature distribution and power loss of a gas-cooled support for a cryogenic
container”[19] with the restrictions of constant cross sectional area and con-
stant, fully developed heat transfer coefficient.

The cross sectional area could be a function of ‘x’15, if researchers found
a variable cross section to be optimal. For the sake of simplicity, assume the
thermo-physical properties, the cross sectional area, and the heat transfer
coefficient are all constant. Then this permits an analytical solution of the

nor found this solution. I would be surprised, though, if this problem has not already been
solved.

14I am not aware of a detailed combined boil off line and strut coupled thermo-
mechanical optimization solution. In my experience, engineers have been able to optimize
the strut via structural analysis, sizing the thermal system based on that design.

15Interestingly, Tsao considers the cross sectional area to be a function of temperature,
making passing mention of that idea in the introduction of his aforementioned paper.
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two temperature profiles and the heat current as a function of mass flow
rate16.

E. R. Canavan and F. K. Miller published[8] this solution in 2007 for the
Joint Cryogenic Engineering Conference for the case of Tc = 0. Building
off their work, I was able to extend the solution to all cold temperatures
using a simple and well known transform. To complete this analysis, first,
nondimensionalize all of the unknowns.

η = x/L (15)

τf =
(Tf − Tc)
(Th − Tc)

(16)

τs =
(Ts − Tc)
(Th − Tc)

(17)

β =
hPL

ṁcp
(18)

α =

(
L/(kA)

1/(hPL)

)1/2

(19)

The Dirichlet boundary conditions are given and transformed in the fol-
lowing three equations.

Ts(x = 0) = Tc ⇒ τs(η = 0) =
Ts(x = 0)− Tc

Th − Tc
(20)

Ts(x = L) = Th ⇒ τs(η = 1) =
Ts(x = L)− Tc

Th − Tc
(21)

Tf (x = 0) = Tc ⇒ τf (η = 0) =
Tf (x = 0)− Tc

Th − Tc
(22)

With some clever substitutions, transformations, and the assumption of
constant properties, the general equations may be written as follows:

d2τs
dη2

= α2(τs − τf ) (23)

16Because the solution is simply a function of mass flow rate, it is general and can be
extended to pumped loops.
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dτf
dη

= β(τs − τf ) (24)

This is the same system of equations solved by Canavan and Miller,
demonstrating how relaxing the restriction on the cold boundary condition
does not change the result significantly. For the reader’s convenience, Cana-
van and Miller’s extended solution is shown in equation 26, with the vast
majority of the credit belonging to them[8]. Note that in this formulation,
the arbitrary introduction of γ is motivated primarily for readability.

γ2 = 4α2 + β2 (25)

q̇′′

k(Th − Tc)/L
=

dτs
dη

∣∣∣∣∣
η→0

=
γ(γ2 − β2)

(γ + β)2e
γ−β
2 − 4γβ + (γ − β)2e−

γ+β
2

(26)

It’s not obvious at first glance but this solution is only dependent on
mass flow rate17. With that in mind, it’s relatively simple to extend the
solution to the boil-off rate problem for a single strut. Because the heat leak
is approximately equal to the product of the mass flow rate and the latent
heat of vaporization of the cryogenic fluid, equating those quantities and
solving iteratively results in simultaneous solution of the passively reduced
heat leak and the mass flow rate.

For more information, read Canavan and Miller’s publication[8] in full.
It’s a worthwhile read because they go on to discuss how to analytically
ballpark tube scaling with tank size as well as the numerical solution of a
helical tube bonded to a thin, squat cylindrical support.

5.2 Active cooling via cryocooler

5.2.1 Thermodynamics and Minimum Entropy Design

Imagine a strut being cooled continuously at each point by a different in-
finitesimal refrigeration cycle. In fact, each differential cooler could be con-
sidered a separate Carnot cycle. On the one hand, the coefficient of perfor-
mance decreases with decreasing temperature, favoring cooling on the warm

17To check this solution, set the mass flow rate equal to zero and see if the result matches
the solution for simple, constant properties conduction through the solid.
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side. But with prescribed boundary conditions, the effect of removing heat
at warmer temperatures is to increase the temperature gradient at the warm
end and decrease the temperature gradient at the cold end (see Figure 15). In
other words, the more heat removed close to the hot boundary, the more heat
that is pulled into the strut. With a little thought about these two conflicting
goals (see Figure 13), it becomes obvious that there exists a distribution of
heat removal which results in the minimum cycle input work.

A number of assumptions are required to derive the solution to this prob-
lem. The cooling is provided by a continuous distribution of differential, ideal,
reversible Carnot cycles. Keeping in mind the spirit of the ideal solution, also
neglect the constriction effects of shape factor and contact resistance between
the coolers and the strut. In summary, the conduction through the strut is
the only irreversible process being considered. Going further, it is logical to
assume constant area to length ratio and constant thermal conductivity18 for
the most basic analysis. One last simplification: the hot boundary temper-
ature equals the heat rejection temperature (this may not always be true,
especially in space applications).

The solution was, to my knowledge, first published by Adrian Bejan19 in
his 1975 doctoral thesis titled, “Improved thermal design of the cryogenic
cooling system for a superconducting synchronous generator”. On page 31,
Bejan notes that this problem is simplified if the entropy balance is considered
instead of the energy balance. This is a crucial observation that deserves a
historical perspective so, please, allow me to expand the discussion for a
moment.

It is entirely possible that this idea led to his research into, what he
has coined, the constructal law of nature. For our problem, the equivalence
between the minimum work and minimum entropy generating configurations
is just a special case of the constructal law which posits that for a finite sized
system (like a species, a tree, or a river bank) to continue to persist through

18Bejan solves the temperature dependent formulation of this problem numerically[3].
19Adrian Bejan, J.A. Jones Professor of the Duke Department of Mechanical Engineer-

ing and Materials Science, is ranked among the 100 most highly cited authors worldwide
in engineering (all fields, all countries), a recipient of 16 honorary doctorates from univer-
sities in 11 countries, and the author of 25 books and 530 peer-referred articles. He has
contributed significantly to the fields of thermodynamics, heat transfer, fluid mechanics,
convection, and porous media. He is credited with formulating the constructal law of
nature and has his own dimensionless number (the Bejan number, Be, is the ratio of heat
transfer irreversibility to total irreversibility due to both heat transfer and fluid friction).
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time, it must evolve such that, over time, it develops progressively easier
access to the imposed current[5]. This is widely considered a unifying law.
The best description is in his own words[5]:

The constructal law is the statement proclaiming the existence
and the time direction of the evolution of configuration. It is far
more general than ‘maximum entropy production’. It is not a
statement of optimality (min, max), end design or destiny. No
flow system is destined to end up in a certain configuration at
long times.

This formulation casts a wide net, covering both entropy generation min-
imization in biology and engineering and entropy generation maximization in
geophysics; from the minimization of flow resistance (rivers) or the maximiza-
tion of flow resistance (animal fur), to the origin of turbulence (maximization
of growth rate of flow deformations) to the homogeneous distribution of stress
in bones. In its most general form, this law includes time and provides a for-
mal framework for understanding the genesis of design in nature[5].

With that historical perspective, Bejan’s classical solution to the cryo-
genic strut minimum work is presented here to bring awareness to the useful-
ness of the exergy analysis. From first principles, Bejan shows that the total
rate of entropy generated by heat conduction between the two prescribed
boundaries is,

Ṡ =
∫ Th

Tc

q̇

T 2
dT (27)

This is a special case of the Gouy-Stodola theorem, which is the balance
between lost available energy (exergy) and the irreversible generation of en-
tropy. Bejan’s insight was that non-optimal refrigeration temperatures and
locations would naturally result in more entropy generation. If the problem
could be formulated in terms of entropy, then the generation of entropy could
possibly be minimized. And, of course, he was correct.

A constraint on this problem is that the strut geometry must remain
unchanged throughout the optimization process. Presumably, the finite size,
semi-unconstrained optimization problem is more in line with the modern
formulation of the constructal law. But that is a much more difficult problem
and will not be studied here. With that said, this geometrical constraint may
be expressed as a constant: the area to length ratio (equation 28),
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∫ L

0

1

A(x)
dx =

L

A
(28)

And from substituting for dx using Fourier’s Law,

L

A
=
∫ Th

Tc

k

q̇
dT (29)

Now, the problem reduces to finding the function q(T ) which minimizes
equation 27 while satisfying the geometrical constraint in equation 28. The
entropy minimizing heat removal solution20 to the variational calculus prob-
lem is,

q̇optimum = T

(
λk

Th

)1/2

= T
√
k
(
A

L

)(∫ Th

Tc

√
k

T
dT

)
=
kA

L
ln
(
Th
Tc

)
T (30)

where λ is the Lagrange multiplier. In the temperature dependent for-
mulation, λ equals,

λ = Th

(
A

L

)2
(∫ Th

Tc

√
k

T
dT

)2

(31)

and the corresponding minimum generation of entropy,

Ṡ =
A

L

(∫ Th

Tc

√
k

T
dT

)2

=
kA

L

[
ln
(
Th
Tc

)]2
(32)

The solution is in terms of temperature and implicitly x21. Note the
proportionality to the temperature. The amount of heat removed is propor-
tionately increasing with x, confirming the initial conjecture that it is more
efficient to remove bigger chunks of heat at the warmer temperatures.

Extending Bejan’s solution, M.A. Hilal and R.W. Boom showed[12] that
for the reversible case, as the number of intercepts increases to infinity, the
required Carnot cycle work is

20For readers interested in the full variational calculus problem, M.A. Hilal and R.W.
Boom give a nice summary in their 1977 paper, “Optimization of mechanical supports for
large superconductive magnets”[12].

21Bejan never solves for the temperature profile and neither does Hilal and Boom. As
far as I know, that is an open problem.
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Ẇ = Th

∫ Th

Tc

q̇

T 2
dT (33)

which, via transitive property with equations 27 and 32, reduces to the
following form:

Ẇ =
A

L
Th

(∫ Th

Tc

√
k

T
dT

)2

= Th
kA

L

[
ln
(
Th
Tc

)]2
(34)

This equation may be used as a baseline for comparison since it represents
the ideal, theoretical minimum refrigeration power. Of course, there are more
irreversibilities in a real system making this solution the theoretical lowest
bound.

5.2.2 Practical cooling scheme to reduce required cryocooler work

In reality, pragmatism grounds the design. It’s impossible to physically create
a continuous system of differential coolers. While Bejan showed continuous
cooling is most efficient, for most applications, it’s more practical to cool
struts at discrete locations. And although Bejan has shown entropy mini-
mization to be a powerful tool in this analysis, minimization utilizing the
energy balance is straightforward for the simplified, discrete, multiple stage
problem.

This problem has been solved by numerous authors using a variety of
approaches22. Besides Bejan, a few notable authors include Abramson, Hilal,
Chato, Khodadidi, and Smith. Bejan first worked on this problem with J.L.
Smith, Jr., publishing an article[4] preceding Bejan’s 1975 thesis. Hilal and
Boom[12] used a gradient based optimizer, Hilal and Eyssa[13] allowed for
variable cross sectional area, Chato and Khodadidi[9] minimize entropy by
postulating an effective thermal conductivity, and Augusto et al. solve the
energy equation analytically for a few special cases[2].

For a sizing calculation, the most expedient method is Hilal and Boom’s
because gradient based optimizers are so widely available, coming standard
with scientific computing packages like Mathematica, MATLAB, MathCAD,
and even Excel with the ‘Solver’ add-in. The basic idea is to set up the energy
balances and thermodynamic relationships then search the domain for the

22In fact, conceptually, it is the same problem as optimizing the location of an intercept
in multilayer insulation, only with different heat flow equations.
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minimum power solution under a set of constraints assuming each refrigerator
is a separate thermodynamic cycle (this assumption may be relaxed if more
information about the cycle is known).

This time, consider a constant cross sectional area stainless steel 304 tube
100 cm long. Taking advantage of the full interpolation capability of NIST’s
fit for stainless steel 304’s thermal conductivity, assume the strut’s cold pre-
scribed temperature is 4.2K and its hot prescribed temperature is 300K. The
tube23 is being cooled in two locations: one stage at the low temperature end
and the other stage at some intermediate temperature at some location on
the strut (see the lower drawing in Figure 14 for the schematic).

After specifying the boundary conditions and geometry of the problem,
the next step is to define the coefficient of performance, φ. It is well known
that in general, φ is a function of rejection temperature, Trej, but most au-
thors have drawn no distinction between hot prescribed conduction boundary
temperature and the cycle’s rejection temperature. Often, without saying,
they assume that Th = Trej. This is not much of a problem for ground based
superconducting magnets–the topic studied by those authors–because on the
ground, typically Tambient = Th = Trej. But in spaceflight, the radiator often
runs at a higher temperature than the vehicle skin so this distinction becomes
important. Even with that in mind, for the purposes of this example calcu-
lation, I assumed Th = Trej. Note that, mathematically, the Carnot cycle
assumption equilibrates the real and Carnot coefficients of performance.

φCarnot,c =
Tc

Trej − Tc
≡ φReal,c (35)

φCarnot,2 (T2) =
T2

Trej − T2
≡ φReal,2(T2) (36)

Many authors define the cycle difference factor, C. This is not necessary
because the expression that shows up later on, C(T )

(
Trej
T
− 1

)
, could just be

represented with the real coefficient of performance: C(T )
(
Trej
T
− 1

)
= 1

φReal
.

Nevertheless, authors writing in Hilal’s tradition have used this form.

Cc =
φCarnot,c
φReal,c

C2(T2) =
φCarnot,2(T2)

φReal,2
(37)

23I used the same assumptions Bejan used for this problem, including perfect heat
transfer at a point. Because the discontinuity is inherently neglected, I chose a gradient
based approach. In Figure 15, some example temperature profiles are shown.
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The energy balances must now be developed so the work may be calcu-
lated. Equation 38 defines the first design variable, ηAB (note that ηBC is
just derived from ηAB and is simply used for intermediate calculations). Al-
ternatively, one may formulate the segment length AB as the design variable,
but using ηAB is in the tradition of Hilal and a start towards full nondimen-
sionalization. Obviously, the other design variable is T2.

ηAB =
AB

L
and ηBC =

BC

L
= L(1− ηAB) (38)

With this relationship defined, the temperature dependent heat current
equations from C to B and from B to A are defined in the following manner:

q̇BA(T2, ηAB) =
A

AB

∫ Tc

T2
−k(T ) dT (39)

q̇CB(T2, ηAB) =
A

BC

∫ T2

Th

−k(T ) dT (40)

Clearly, the work done by the cold stage is defined by,

Ẇc(T2, ηAB) =
[
Cc(T2)

(
Trej
Tc
− 1

)]
(q̇BA(T2, ηAB)) (41)

and the difference between equation 39 and equation 40 is equivalent to
the heat picked up by the intercept, thus, the intercept’s work is defined as,

Ẇ2(T2, ηAB) =
[
C2(T2)

(
Trej
T2
− 1

)]
(q̇CB(T2, ηAB)− q̇BA(T2, ηAB)) (42)

Finally, the objective function is fully defined and shown in equation 43.

Ẇ (T2, ηAB) = Ẇc(T2, ηAB) + Ẇ2(T2, ηAB) (43)

Besides the constant geometry, this optimization is subject to a few other
constraints. The constraints on the design variables are easy to understand
(equation 44 and equation 45), however, equation 46–as obvious as it looks–is
easier to forget. Recall Figure 15 and the left most temperature profile. Un-
der certain conditions, its possible for the intercept stage to actually warm
the coldest stage, resulting in negative work. That situation is to be disal-
lowed.
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Table 1: Solutions to the two stage and three stage example optimization problem

Number of Stages Tc (K) T2 (K) T3(K) ηAB ηDE ηDF

2 4.2 40.0 - 0.351 - -

3 4.2 21.1 80.7 - 0.194 0.524

0 < ηAB < 1 (44)

Tc < T2 < Th (45)

Ẇc > 0 and Ẇ2 > 0 (46)

This solution is easily extended to more stages. Besides adding a cycle and
another strut heat transfer segment, additional constraints must be placed
on the solution:

0 < ηDE < ηEF < 1 (47)

Tc < T2 < T3 < Th (48)

Ẇc > 0 and Ẇ2 > 0 and Ẇ3 > 0 (49)

In Table 1, the solution to this example problem is shown. Compare this
result with Hilal and Boom’s in Figure 16. After grappling with a couple
nomenclature differences and a typographical error in Hilal and Boom’s table
(this is described in the Figure 16’s caption), it’s plain that the solutions
match24.

One notable special case of this problem is a cryocooler with a fixed
operating temperature. For the same problem, if the intercept temperature
was fixed instead to, say, 80K, the relative increase in power was only 25%

24The slight difference may be explained by variations in thermal conductivity approx-
imations, but, because Hilal and Boom never discuss their source of data, this assertion
cannot be verified.
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even though it was running at twice the optimum temperature. Here, the
optimal location was found to be ηAB = 0.642. This effect can be understood
by observing Figure 17; the ‘hull’ shape of the surface leaves a locus of roughly
equivalently performing combinations. In short, every fixed temperature has
a unique optimal location, many of which perform similarly.

5.2.3 Commentary on the full mechanical and thermal optimiza-
tion problem

Throughout this discussion, we have focused on the heat, mass, and entropy
transfer aspects of these problems. In all of the example problems, the strut
geometry is taken as known. In reality, the strut geometry is driven primarily
by the requirement to survive the launch vibrations environment.

In the early 1980s, David Bushnell published[7] the classic solution to this
vibrations problem. Relevant, but unrelated to structural analysis, in 2001,
Kokkolaras et al. extended Hilal and Boom’s work by using mixed variable
optimization to allow for different materials in the strut[16]. Then, in 2002,
Mark A. Abramson synthesized[1] those two analysis (even allowing for a
variable cross sectional area), but solved the static load case rather than the
vibrations case. His semi-unconstrained geometry, combined thermodynam-
ics, heat transfer, mixed material, and load-bearing solution is the current
state of the art for ground based systems, obtaining 50% less normalized
power[1] than the original design found by Hilal and Eyssa[13].

Still, there are advancements to be made. Abramson’s analysis needs
modification for vibrations and geometrical constraints–a full synthesis of
Bushnell’s work. Going further, including the shape factor, two dimensional
conduction, and the rest of the heat exchanger design would be a huge step
forward. Even with these significant increases in difficulty, we would still
be neglecting the multilayer insulation and environmental irradiation. It’s
exciting that after all these years–even after the groundbreaking work of
Bejan, Hilal, Bushnell, and Abramson–there remains unsolved problems in
this area of cryogenic engineering.
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Figure 5: This is a picture of a thermal model of the Cryogenic Boil off Reduc-
tion System test. Most of the tank is ‘cut away’ for easier viewing,
except for a central band, around which three ‘ear’ attachments create
the mounting interfact between the tank and the support struts. The
practicing engineer should expect a change in temperature across this
attachment fixture, as shown in the screen capture. (A ‘Cryogenic Boil off

Reduction System’ thermal model by J.P. Elchert)
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Figure 6: This is the same model shown in the previous figure, except this time
the emphasis is on the struts. The strut provides excellent thermal
isolation by utilizing a minimized area to length ratio, proper appli-
cation of blankets or surface coating, and the best material. When
considering all of these parameters, be sure to test several different
materials because some are inherently better than others.(A ‘Cryogenic

Boil off Reduction System’ thermal model by J.P. Elchert)
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Figure 7: In this case, the hot boundary was 300K and the cold boundary was
20K. The large, isothermal surroundings temperature was 150K. Keep
in mind that whether an optimum actually appears is also a function of
the surroundings temperature. For example, if the surroundings tem-
perature was 200K, the heat leak increases monotonically as a function
of emissivity thus the optimum external emissivity is 0. Perfectly in-
sulated from thermal radiation would be best for that case.
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Figure 8: In Boyle and Knoll’s analysis, the external, large, isothermal surround-
ings temperature was taken to be 0K.
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Figure 9: This is an example of a solved seven shield case. I always spaced
shields equally, although I suspect a variable spacing is optimal. But
that problem isn’t terribly important to solve because the magnitude
of the internal radiation effect is roughly 1% of the total heat transfer.
I should point out that in composite tubes, the magnitude of internal
radiation heat rate is roughly 5% due to radiation heat transfer being
a bit more dominant for low conductivity materials.
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Figure 10: For the colorblind, the third series from the top of the legend (green
triangles) has a peak magnitude of roughly 0.928W. Series 2 (red
squares) also peaks around this number; series 1 (blue diamonds)
peaks around 0.926W. For a detailed description of these curves,
please see sub-section 4.2. 36



Figure 11: In this particular case, the tube had a high emissivity on the external
surface, making it sensitive to the 220K boundary. That nonlinearity
results in both tubes having roughly the same net heat leak into the
cold boundary node–even though one is over twice as long. This illus-
trates the problem with using simple one-dimensional, linear analogies
in a nonlinear domain. As soon as temperature dependent proper-
ties and thermal radiation enters the picture, the problem becomes
strongly nonlinear, making any simple model useless for detailed de-
sign.
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Figure 12: We are restricted to constant properties with no radiation for the
analytical solution of the boil off problem.
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Figure 13: This figure depicts the abstract idea of infinitesimal refrigeration cy-
cles continuously cooling every point along the strut. Bejan solved[3]
this classical minimization problem, discovering the lowest possible
bound for the total required refrigeration input power by hypoth-
esizing continuous, differential, ideal, reversible Carnot cycles with
perfect heat transfer. In a real application, the heat transfer area, at-
tachment method, and contact resistance would result in the need for
more heat removal than predicted. Nevertheless, this classic solution–
now nearly 40 years old–was a valuable contribution to cryogenics
research.

39



Figure 14: The lower drawing depicts two stage cooling whereas the upper draw-
ing shows three stage cooling. In my formulation, all stages are mea-
sured from the cold end (ηAB, for example). Notice that in Hilal and
Boom’s formulation, only the distance between stages is measured
(∆x1/L, ∆x2/L, or ∆x3/L).
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Figure 15: This figure depicts various ideal temperature profiles of a strut. The
solid line shows the conduction only solution (no discrete cooling).
The other lines show cooling at various locations on the strut, each
at the same temperature. Observe that the effect of cooling is to
decrease the temperature gradient at the cold end and increase the
gradient at the warm end. The dash-dotted line actually shows a case
where the coldest boundary is being warmed by the intercept. In that
case, the intercept was located closer to the cold boundary than where
the strut would naturally equal the intercept’s temperature with no
cooling at all. Here, the situation is reversed: the gradient at the cold
end increased while the gradient at the hot end decreased.
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Figure 16: The covered discrete, two stage optimization example problem
matches Hilal and Boom’s 1977 solution[12] to the same problem.
Note that when comparing forumlations, Tc goes unlisted in Hilal’s
table, and T2Elchert = T1Hilal and T3Elchert = T2Hilal. Also, note that
Hilal does not explicitly show ηDF in the table, instead representing
it indirectly with ∆x1/L + ∆x2/L. This can be a bit confusing for
folks who mistakenly assume ∆x2/L ≡ ηDF , which is false.
Also, Hilal and Boom went further by including a real coefficient
of performance (A, ‘actual cycle efficiencies used’). Unfortunately,
there’s a typographical error in their table. Observe the first and
second rows. The second row matches the first row (except for the
[Watts/(area-to-length ratio)]).
In my estimate, the second row is actually correct. Because solving
the Carnot case gives T2 = 40K and ηAB = 0.351 and when I tested
a sample real coefficient of performance, I found roughly T2 = 39K
and ηAB = 0.33. So the first row–the Carnot case–was misprinted.
Hilal and Boom actually had solutions up to four stages and also stud-
ied the same solutions for Narmco 570 cloth, but that information,
being irrelevant, was omitted.
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Figure 17: The surface represents, graphically, how the required refrigeration
work changes with the location and temperature of the intercept stage
(two stage, Carnot example with 100 cm stainless steel 304). Surpris-
ingly, because of the hull-shaped surface, there exists a locus of points
in the domain giving roughly the same value in the range. Note that
the nondimensional location in the Figure is equivalent to ηAB in the
text.
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