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(57) 	 ABSTRACT 

This invention develops a mathematical model to describe 
battery behavior during individual discharge cycles as well as 
over its cycle life. The basis for the form of the model has been 
linked to the internal processes of the battery and validated 
using experimental data. Effects of temperature and load 
current have also been incorporated into the model. Subse-
quently, the model has been used in a Particle Filtering frame-
work to make predictions of remaining useful life for indi-
vidual discharge cycles as well as for cycle life. The 
prediction performance was found to be satisfactory as mea-
sured by performance metrics customized for prognostics for 
a sample case. The work presented here provides initial steps 
towards a comprehensive health management solution for 
energy storage devices. 
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MODEL-BASED PROGNOSTICS FOR 
BATTERIES WHICH ESTIMATES USEFUL 

LIFE AND USES A PROBABILITY DENSITY 
FUNCTION 

5 

ORIGIN OF THE INVENTION 

The invention described herein was made in the perfor-
mance of work under a NASA contract and by an employee of 
the United States Government and is subject to the provisions 10 

of Public Law 96-517 (35 U.S.C. §202) and may be manu-
factured and used by or for the Government for governmental 
purposes without the payment of any royalties thereon or 
therefore. In accordance with 35 U.S.C. §202, the contractor 15  
elected not to retain title. 

FIELD OF THE INVENTION 

This invention relates to prognostics and estimation of 20  
remaining useful life (RUL) of an object in use. 

BACKGROUND OF THE INVENTION 

Americans purchase nearly 3 billion batteries (dry-cells) 25 
every year. On average, each person in the US disposes of 8 
batteries every year (PKIDs, 2009). A rechargeable battery 
can replace hundreds of single-use batteries over its life. Also, 
all batteries contain metals such as mercury, lead, cadmium, 
nickel and lithium, which may contaminate the environment 30 

if disposed of improperly, hence reducing consumption eases 
the strain on natural resources. 

During Operation Iraqi Freedom, the Marines used an esti-
mated average of 3,028 batteries per day, which was half the 
requirement of the entire battlefield. Apart from the issue of 35 

increasing efficiency, and reducing cost and wastage, 
rechargeable batteries are a key enabling technology for solv-
ing energy problems of the future. One key feature of renew-
able energy sources, such as solar, wind, tidal, hydropower, 
etc. is that these sources are not continually available. A report 40 

by the California ISO Board notes that, "Wind generation 
energy production is extremely variable, and in California, it 
often produces its highest energy output when the demand for 
power is at a low point' (CA ISO, 2008). An energy storage 
facility coupled with these power generation sources would 45 

make these solutions more economically feasible. Such 
energy storages, comprising batteries, fuel cell or super-ca-
pacitors, would in turn need reliable health monitoring sys-
tems to ensure viable levels of system availability, reliability 
and sustainability and to protect the assets from degradation 50 

due to non-optimal usage. Battery health management will 
also play a critical role in electric vehicles that will be depen-
dant on an accurate gauge for remaining electrical charge and 
for trade-offs in long-term durability and short-term usage 
needs. 55 

A primary purpose of modeling battery aging is to enable 
effective battery health monitoring (BHM) applications that 
ensure that the battery operation stays within design limits 
and to provide warning or mitigate damage when these limits 
are exceeded. Current BHM efforts come in many flavors, 60 

from the data-driven (Rufus et al., 2008) to the model-based 
(Plett, 2004) and even hybrid approaches (Goebel et al., 
2008). Implementation complexity can range from intermit-
tent manual measurements of voltage and electrolyte specific 
gravity to fully automated online supervision of various mea- 65 

sured and estimated battery parameters using dynamic mod-
els. The sophistication of the models also varies from a col- 

2 
lection of basis functions (Stamps et al., 2005) to detailed 
formulations derived from physical analysis of the cell (Hart-
ley and 7annette, 2005). 

Viewing the issue from the applications perspective, 
researchers in the aerospace domain have examined the vari-
ous failure modes of the battery subsystems. Different diag-
nostic methods have been evaluated, like discharge to a fixed 
cut-off voltage, open circuit voltage, voltage under load and 
electrochemical impedance spectrometry (EIS) (Vutetakis 
and Viswanathan, 1995). In the field of telecommunications, 
workers have sought to combine conductance technology 
with other measured parameters like battery temperature/ 
differential information and the amount of float charge (Cox 
and Perez-Kite, 2000). 

Other workers have concentrated more on the prognostic 
approach than on the diagnostic one. Statistical parametric 
models have been built to predict time to failure (7aworski, 
1999). Electric and hybrid vehicles have been another fertile 
area for battery health monitoring (Meissner and Richter, 
2003). Impedance spectroscopy has been used to build bat-
tery models for cranking capability prognosis (Blanke et al., 
2005). State estimation techniques, such as the Extended 
Kalman Filter (EKE), have been applied for real-time predic-
tion of state-of-charge (SOC) and state-of-life (SOL) of auto-
motive batteries (Bhangu et al., 2005; Plett, 2004). A deci-
sion-level fusion of data-driven algorithms, such as 
Autoregressive Integrated Moving Average (ARIMA) and 
neural networks, has been investigated for both diagnostics 
and prognostics (Kozlowski, 2003). As the popular cell chem-
istries changed from lead acid to nickel metal hydride to 
lithium ion, cell characterization efforts have kept pace. 
Dynamic models for the lithium ion batteries that take into 
consideration nonlinear equilibrium potentials, rate and tem-
perature dependencies, thermal effects and transient power 
response have been built (Gao et al., 2002; Hartmann II, 2008; 
Santhanagopalan et al., 2008). 

However, a need still exists for a flexible prognostics 
framework that combines the sensor data from battery moni-
tors, the models developed, and the appropriate state estima-
tion and prediction algorithms, in the form of an integrated 
BHM solution. 
Battery Characteristics. 

Batteries are essentially energy storage devices that facili-
tate the conversion, or transduction, of chemical energy into 
electrical energy, and vice versa (Huggins, 2008). A battery 
includes apair of electrodes (anode and cathode) immersed in 
an electrolyte and sometimes separated by a separator. The 
chemical driving force across the cell is due to the difference 
in the chemical potentials of its two electrodes, which is 
determined by the difference between the standard Gibbs free 
energies the products of the reaction and of the reactants. The 
theoretical open circuit voltage, E ° , of a battery is measured 
when all reactants are at 25° C. and at 1M concentration or 1 
arm pressure. However, this voltage is not available during 
use, due to the various passive components inside like the 
electrolyte, the separator, terminal leads, etc. The voltage 
drop due to these factors can be mainly categorized as: 

IR drop This drop in cell voltage is due to the current 
flowing across the internal resistance of the battery. 

Activation polarization This term refers to the various 
retarding factors inherent to the kinetics of an electro- 
chemical reaction, like the work function that ions must 
overcome at the junction between the electrodes and the 
electrolyte. 

Concentration polarization This factor takes into account 
the resistance faced by the mass transfer (e.g. diffusion) 
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process by which ions are transported across the elec-
trolyte from one electrode to another. 

FIG. 1 illustrates a typical polarization curve of a battery 
with the contributions of all three of the above factors shown 
as a function of the current drawn from the cell. Since, these 
factors are current-dependent, i.e. they come into play only 
when some current is drawn from the battery, the voltage drop 
caused by them usually increases with increasing output cur-
rent. 

Because the output current plays such a big role in deter-
mining the losses inside a battery, it is an important parameter 
to consider when comparing battery performance. The term 
most often used to indicate the rate at which a battery is 
discharged is the C-Rate (Huggins, 2008). The discharge rate 
(C-rate) of a battery is expressed as C/r, where r is the number 
of hours required to completely discharge the nominal capac-
ity of the battery. Thus, a 2 Amp-hour battery discharging at 
a rate of C110 or 0.2 Amps would last for 10 hours. The 
terminal voltage of a battery, and the charge delivered, can 
vary appreciably with changes in the C-Rate. Further, the 
amount of energy supplied, related to the area under the 
discharge curve, is also strongly C-Rate dependent. FIG. 2 
illustrates a typical discharge of a battery and its variation 
with C-Rate. Each curve corresponds to a different C-Rate or 
Clr value (the lower the r the higher the current) and assumes 
constant temperature conditions. 

Moving on from the theoretical aspects to the application 
point of view, the relevant physical properties of a battery may 
be different in different cases. Sometimes specific energy and 
specific power (energy and power available per unit weight) 
are important, as in vehicle propulsion applications. Other 
times the amount of energy stored per unit volume, called the 
energy density, can be more important for batteries that power 
portable electronic devices, like cell-phones, laptop comput-
ers, cameras, etc., while power per unit volume, known as 
power density, can be important for some uses like cordless 
power tools. However, in recent times when the use of 
rechargeable batteries is proliferating in consumer products, 
an important parameter to consider is cycle life, which is the 
number of times a battery can be recharged before its capacity 
has faded beyond acceptable limits (typically about 20-30 
percent). 

The degradation of battery capacity with aging, as mani-
fested by the cycle life parameter, can be modeled using 
Coulombic efficiency rl  ,, defined as the fraction of the prior 
charge capacity that is available during the following dis-
charge cycle (Huggins, 2008). This depends upon a number 
of factors, especially current and depth of discharge in each 
cycle. The temperature at which batteries are stored and oper-
ated under also has a significant effect on the Coulombic 
efficiency. FIG. 3 illustrates the degradation of battery capac-
ity with increase of cycles for different values of Coulombic 
efficiency. Note how even a small inefficiency factor of 0.5 
percent (Coulombic efficiency -0.995) can reduce the capac-
ity by about 60 percent within 100 cycles. 

SUMMARY OF THE INVENTION 

These needs are met by the invention, which provides as 
many as eight different battery prognostic modes for estimat-
ing, or estimating and predicting state of charge (SOC), state 
of life (SOL), end of discharge (EOD) and/or end of life 
(EOD) for a battery that is undergoing active use. Estimation 
of present state of charge (SOC) is referred to herein as mode 
A; estimation of state of life (SOL) is referred to herein as 
mode B; rediction of end of discharge (EOD) is referred to 
herein as mode C; and prediction of end of life (EOL) is 

4 
referred to herein as mode D. Mode A must precede mode C, 
and mode B must precede mode D. Ar least eight different 
combinations of the modes A, B, C and D are possible: A, 
A+C, B, B+D, A+B, A+C+B, A+B+D, and A+C+B+D. Dif- 

5  ferent analyses are performed for the modes A and C (Eqs. 
(1)-(5), (7), (8), and optionally (11) and (12) in the following) 
and for the modes B and D (Eqs. (6), (9), (10) and optionally 
(11) in the following). 

10 	BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a graphical view of voltage versus current for a 
battery. 

FIG. 2 graphically illustrates influence of current density 
i5 

upon a discharge curve for a battery. 
FIG. 3 graphically illustrates influence of Coulombic effi- 

ciency on available charge capacity during battery recycling. 
FIG. 4 exhibits a lumped parameter electrical circuit model 

20  used for a Li-ion battery. 
FIG. 5 graphically illustrates decomposition of a Li-ion 

battery discharge profile into different contributions. 
FIG. 6 graphically illustrates discharge and self-recharge 

for a Li-ion battery. 
25 	FIG. 7 graphically illustrates end-of-discharge (EOD) pre- 

diction according to the present invention. 
FIG. 8 graphically illustrates a-X, performance for EOD 

prediction. 
FIG. 9 graphically illustrates end-of-life (EOL) prediction 

30 for a Li-ion battery that is cycled many times. 
FIG. 10 is a flow chart illustrating the procedure for prac-

ticing the invention in regards to estimating SOC and predict-
ing EOD. 

FIG. 11 is a flow chart illustrating the procedure for prac-
35 ticing the invention in regards to estimating SOL and predict-

ing EOL. 

DESCRIPTION OF BEST MODES OF THE 
INVENTION 

40 

Li Ion Batteries Characteristics 

Several rechargeable battery technologies are available on 
the market at present, each having distinct characteristics. 

45 However, Li-ion batteries ("LIBs") are becoming increas-
ingly popular for a variety of applications, from consumer 
electronics to power tools to electric vehicles and even to 
space applications. Li-ion batteries have a number of impor-
tant advantages over competing technologies (Huggins, 

50 2008): 
Since the electrodes of a Li-ion battery are made of light-

weight lithium and carbon, they are usually lighter than 
other types of rechargeable batteries of the same size. 
Lithium is also a highly reactive element; hence a lot of 

55 energy can be stored in its atomic bonds. This translates 
into a very high energy density for Li-ion batteries as 
compared to other chemistries like lead-acid or NiCd 
(nickel-cadmium) or NiMH (nickel-metal hydride). 

LIBs have a low self-discharge rate so that they hold their 
60 charge for longer periods of time. Self-discharge is 

caused by the residual ionic and electronic flow through 
a cell even when there is no external current being 
drawn. 

LIBs have no memory effect so they do not have to be 
65 completely discharged before recharging in order to 

retain full charge capacity, as with some battery chem-
istries like NiCd. 
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LIBs have a long cycle life. They can handle hundreds of 
charge and discharge cycles without significant degra-
dation of their capacity. 

However, LIBs have some disadvantages as well (Buch-
mann, 2001; Huggins, 2008): 

The service life or shelf life of a Li-ion battery decreases 
with aging even if the battery is not used, unlike other 
battery chemistries. This means that from the time of 
manufacturing, regardless of the number of times it was 
cycled, the capacity of a Li-ion battery will decline 
gradually. This is due to an increase in internal resis-
tance, which makes the problem more pronounced in 
high-current applications than low-current ones. 

They are more sensitive to high temperatures than most 
other chemistries. Hot storage and operating conditions 
causes Li-ion battery packs to degrade much faster than 
they normally would. 

Li-ion batteries can be severely damaged by deep dis-
charge, i.e. by discharging them below the minimum 
voltage threshold recommended by the manufacturer 
(usually 2.7 Volts for a single 18650 Li-ion cell). Con-
sequently, Li-ion battery packs come with an on-board 
circuit to manage the battery. This adds to the expense of 
a Li-ion battery. 

In general Li-ion chemistry is not as safe as NiCd or NiMH 
chemistry. This is because the anode produces heat dur-
ing use, while the cathode produces oxygen (not for all 
Li-ion chemistries). Lithium, being highly reactive, can 
combine with this oxygen, leading to the possibility of 
the battery catching on fire. 

Considering both the advantages and the drawbacks, Li-
ion batteries seem one of the more important battery technol-
ogy for the present and the foreseeable future. It is for this 
reason that we chose them for our battery prognostics 
research. 
Modeling Approaches. 

Modeling a Li-ion battery from first principles of internal 
electrochemical reactions can be very tedious and computa-
tionally intractable. The various losses inside a battery, such 
as the IR drop, activation polarization and concentration 
polarization, are represented as impedances in a lumped 
parameter model in FIG. 4. The IR drop due to electrolyte 
resistance is denoted as Rx. The activation polarization is 
modeled as a charge transfer resistance R,T  and a dual layer 
capacitance CD, in parallel, while the concentration polariza-
tion effect is encapsulated as the Warburg impedance R,. 

This lumped parameter model may be analyzed in the time 
domain to derive the discharge curves of the battery or in the 
frequency domain to derive the Nyquist plots. The latter can 
be achieved by EIS measurements, and the plots can subse-
quently be used to reason about the internal degradation pro-
cesses. However, EIS measurements require specialized 
equipment and measurement conditions that prevent them 
from being widely used in everyday applications. 
End-of-Discharge (EOD). 

The goal of this research is to predict the RUL for any given 
discharge cycle of the battery as well as the cycle life. This is 
a two-part problem with different physical processes affect-
ing the RUL prediction for the end-of-discharge (EOD) and 
end-of-life (EOL) (Saba and Goebel, 2009). To tackle the 
EOD problem, we need to predict the way the impedance 
parameters change with charge depletion during the dis-
charge cycle. Since the impedance parameters are essentially 
representations of electrochemical reactions and transport 
processes inside the battery, they are strongly affected by the 
internal temperature of the battery, the current load and the 
ionic concentrations of the reactants. We postulate that as 

6 
discharge progresses the heat generated by the reactions and 
the current flow causes the internal temperature to go up, 
effectively increasing the mobility of the ions in the electro-
lyte, thus decreasing R,. However, decreasing R. increases 

5 the self-discharge rate, effectively increasing the electrolyte 
resistance RE  of the battery. Also, the increase in temperature 
results in faster consumption of the cell reactants causing 
them to be used up rapidly near the end of the discharge 
resulting in an increase in R,T  and a sharp drop in the cell 

io voltage. End of discharge (EOD) is reached when the output 
voltage hits the minimum safe voltage threshold, EEOD,  of the 
cell. For a cell current of I, the output voltage is given by 

E=E°-I(R E+R CZ+R,,,). 	 (1) 

15 	The variations in E °  with internal temperature (Hartmann 
II, 2008) are not explicitly modeled, but accounted for by the 
adaptive powers of the PF framework described later. For the 
empirical charge depletion model considered here, the output 
voltage is expressed in terms of the effects of the changes in 

20  the internal parameters: 

E(t) E°-DE,a(t)-DE,a(t)-DE_,(t), 	 (2) 

where t is a time variable during a discharge cycle, AE sd(t) is 
a voltage drop due to self-discharge, AE,, is the drop due to 

25 
cell reactant depletion and AE mt  denotes the voltage drop due 
to internal resistance to mass transfer (diffusion of ions). 
These individual effects are modeled as 

AEjt) -a_.-p{-az/4 	 (3) 

30 	AE,d(t)-r 3exp(a4t}, 	 (4) 

AEmr(t)=AE,sr a5t 	 (5) 

where, AE,„,t  is the initial voltage drop when current I flows 
through the initial value of the internal resistance R E  at the 

35  start of the discharge cycle, and a={a 1 ,a2,a3,a4,a5 } repre-
sents a set of model parameters to be estimated from the data. 
FIG. 5 illustrates how the different voltage drop components 
defined in eqns. (3)-(5) combine to give the Li-ion discharge 
profile. 

40  End-of-Life (EOL). 
In order to effectively determine the EOL of a Li-ion bat-

tery, one needs to understand how the different operational 
modes, namely charge, discharge and rest, influence the 
charge capacity, C. The aging model presented in (Hartmann 

45  II, 2008) considers only the reduction in capacity with usage 
while neglecting the effects of rest periods. Use of a smooth-
ing filter on the capacity measurements also reduces the fidel-
ity of the prediction scheme. 

In the work presented here, the combined effects of charge 
50 and discharge cycles is captured by the Coulombic efficiency 

factor 'q O, as described in Section 4. The remaining factor to 
be accounted for is the self-recharge during rest. In any bat-
tery, reaction products build up around the electrodes and 
slow the reaction (HowStuffWorks, 2000). By providing rest 

55 for the battery, the reaction products have a chance to dissi-
pate, thus increasing the available capacity for the next cycle. 
For the empirical model used here, this self-recharge is rep-
resented as an exponential process, as suggested by data. The 
equation for battery aging can then be written as 

60 
C, -q,Cx+P.-p{- Pz/Atj, 	 (6) 

where Ck  denotes the charge capacity of cycle k, At, is a rest 
period length between cycles k and k+1, and R 1 and (3 2  are 
model parameters to be determined. FIG. 6 indicates the 

65 validity of Eqs. (2)-(6) in modeling the discharge and self- 
recharge processes for an actual Li-ion battery cycle. 
Although the model is used to estimate the cell voltage during 
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the self-recharge process in, It is assumed that the SOC of the 
battery is correlated to the voltage during rest or relaxation 
periods (Huggins, 2008), when no external current is being 
drawn, so as to maintain the exponential functional form. 
Particle Filtering (PF) Framework. 

The formulation of a model is part of, but not the whole, 
solution. As discussed in thepreceding, a number of unknown 
parameters need to be identified. Even after identification, 
they may not be directly applicable to the test set since the 
values may differ from one battery to another, or for the same 
battery from one cycle to the next. Further, for any given cycle 
the parameter values may be non-stationary. In general, given 
a model, the task of tracking a state variable and predicting 
future values is usually cast as a filtering problem. The variety 
of filtering techniques published in literature is enormous, 
with each approach having performance advantages over oth-
ers depending upon the application. For the task of battery 
prognostics, including the prediction of EOD and EOL, this 
method must be reconciled with non-exact non-linear non-
stationary models with non-Gaussian noise. Particle Filtering 
provides us a viable framework that allows us to explicitly 
represent and manage the uncertainties inherent to our prob-
lem. 

Particle Filters (Gordon et al., 1993) are a novel class of 
non-linear filters that combine Bayesian learning techniques 
with importance sampling to provide good state tracking 
performance while keeping the computational load tractable. 
The system state (in this case the battery SOC or voltage or 
capacity) is represented as a probability density function 
(pdf) that is approximated by a set of particles (points) rep-
resenting sampled values from the unknown state space, and 
a set of associated weights denoting discrete probability 
masses. The particles are generated from an a priori estimate 
of the state pdf, propagated through time using a nonlinear 
process model, and recursively updated from measurements 
through a measurement model. The main advantage of PFs 
here is that model parameters can be included as a part of the 
state vector to be tracked, thus performing model identifica-
tion in conjunction with state estimation (Saba et al., 2009). 
After the model has been tuned to reflect the dynamics of the 
specific system being tracked, it can then be used to propagate 
the particles till the failure (e.g. EOD or EOL) threshold to 
give the RUL pdf (Saba et al., 2009). 

In the case of our application, the EOD estimation problem 
is cast in the PF framework as follows. A state transition 
model and a measurement model are adopted: 

aj,=+i aj,;+wj iY_1, .. 1 5), 	 (7.1) 

E,+1  =E,  {ai taz i-P(-a2,lt)/(t2) -a3,=a4,=eXp(a4,=t) - 
as,,}/f +w,,, 	 (7.2) 

E,=E,+v„ 	 (8) 

where i is a time index, f is a sampling frequency, E, denotes 
the measured cell voltage at time index i, and w j  (j=1, ... , 5,), 
w, and v, are independent zero-mean Gaussian noise terms. 

Equation 7 is used to propagate the particles representing 
the state vector (comprised of E and a) through each itera-
tion of the particle filter. Equation 8 is used to update the 
weights of the particles using the terminal voltage measure-
ments. This simultaneously tunes the model parameters, a, 
along with estimating the state. At the point where prognosis 
is desired, the tuned model parameters are substituted into 
Equation 7, which is then computed in an iterative manner 
until the state value, in this case the terminal voltage E , , 
reaches a predetermined cut-off threshold. 

8 
The EOL estimation problem is similarly recast as a state 

transition model 

Njk+1 NJ,k+~J k,V =1,2), 	 (9.1) 

5 

C, — q CCk+N l,kexp L — N2,lt Atk)+(P7n 	 (9.2) 

Ck Ck+'P" 	 (10) 

10 where k is a cycle index, Ck  denotes charge capacity of the 
battery (component) measured (as an integral of current over 
discharge time until cell voltage reaches EEO ) at cycle index 
k, and ~ 1,k, C,k, ~k and 1Uk  are independent zero-mean Gaus-
sian noise terms. The first term on the right hand side in Eq. 

15 (9.2) reflects the Coulombic efficiency factor, while the sec-
ond term models the capacity gain due to battery rest. 

Again similar to the EOD case, equation 9 is used to propa-
gate the particles representing the state vector (comprised of 
Ck  and R.) through each iteration of the particle filter. Equa- 

20  tion 10 is used to update the weights of the particles using the 
terminal voltage measurements. This simultaneously tunes 
the model parameters, (3, along with estimating the state. At 
the point where prognosis is desired, the tuned model param-
eters are substituted into Equation 9, which is then computed 

25  in an iterative manner until the state value, in this case the 
battery capacity C k, reaches a predetermined cut-off thresh-
old. 

Note that in both state equations (7) and (9), the model 
parameter is included as part of the state vector so that the PF 

30 can perform model identification in conjunction with state 
tracking. 

Temperature dependence (T) of one or more of the param-
eters discussed in the preceding, including but not limited to 
state of charge SOC, charge capacity C, hours to drain nomi- 

35  nal capacity r, Coulombic efficiency q c, electrolyte resis-
tance RE, charge transfer resistance R cr, dual layer capaci-
tance CD,, Warburg resistance R., theoretical open circuit 
voltage E°, voltage drop due to self-discharge AE,, voltage 
drop due to reactant depletion, AE d, voltage drop due to mass 

40 transfer resistance AE, initial voltage drop during discharge 
AE i„it, one or more model parameters a,, one or more model 
parameters P,, time t,,D  at which voltage E reaches E,, D, 
EOL capacity threshold CEO,, and cycle index kEO,  at which 
C reaches CEO„  can be represented by an Arrhenius factor 

45 

AF=A(T/T,)"exp{-(y z/7)Y 3 }, 	 (11) 

where A is a physical parameter in appropriate units, T o  is a 
reference temperature and (y i , yz, y3) are Arrhenius param- 

50 eters associated with the particular electrochemical process 
variable being considered. 

Some of these parameters, namely the initial voltage drop 
during discharge AE ~„it  and the model parameters a,, are also 
dependent upon the load current I. This dependence is mod- 

55 eled by a linear proportionality factor 

EF=6T, 	 (12) 

where 0 is a proportionality constant whose value will be 
different for the different model parameters. 

60 	It is also important to note that the PF framework can not 
only be used for prognosis but for mission planning (deci-
sioning) as well. If at the point of prediction the current 
prognosis, either in the EOD or the EOL case, does not meet 
the required usage or mission objectives, i.e., the battery does 

65 not have enough charge or cycle life, then a population of 
different future usage conditions (including but not limited to 
load current, temperature, charge and discharge duration) can 
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be run through the prediction phase of the PF framework to 
come up with an alternate plan. 

A PROCEDURE FOR PRACTICING THE 
INVENTION 

FIG. 10 is a flowchart illustrating a procedure for practic-
ing the part of the invention that relates to estimating the SOC 
and predicting EOD. In step 101, a mathematical model of the 
electro -chemical processes that are active during the dis-
charge of the battery, including Eqs. (1)-(5), (7) and (8), and 
optionally Eqs. (11) and (12), is formulated. In step 103, 
training data are collected for a representative battery, includ-
ing operating conditions, sensor measurements like load cur-
rent and temperature, and ground truth for battery discharge, 
which in our case in terminal voltage. In step 105, we extract 
or identify the parameters of the underlying electro -chemical 
process models, given by Eqs. (1)-(5), (7) and (8), and option-
ally Eqs. (11) and (12), that can be combined to explain the 
battery discharge behavior. We quantify the uncertainties in 
the models and sensors to initialize the respective probability 
distributions in step 107. Next, in step 109, we combine the 
individual models of the different processes along with the 
initial estimates of the uncertainty distributions to form the 
overall discharge model of the battery. The steps described till 
now are performed offline. The next steps are meant to be 
performed online, but may also be performed offline. 

In step 111, we collect run-time data, including operating 
conditions of the battery, and sensor measurements like load 
current and terminal voltage. Then, in step 113, we use the 
battery model in a particle filtering framework, Eqs. (7) and 
(8), to track the variable of interest, like state-of-charge 
(SOC) or terminal voltage, and simultaneously tune the 
model parameters. Steps 111 and 113 comprise the tracking 
phase of the PF framework and needs to be repeated until the 
point where prediction is desired, depending upon some bat-
tery voltage threshold or some such user-determined criteria. 

In step 115, we start the prediction routine while the track-
ing loop continues to run. In step 117, we estimate future 
usage conditions including load and temperature as well as 
their uncertainties in terms of probability distributions. Next, 
in step 119, we propagate the current distribution of the vari-
able of interest, like SOC or terminal voltage, using the tuned 
model obtained in step 113, until a predetermined EOD 
threshold is reached. In step 121, we compute the remaining 
useful life (RUL) distribution w.r.t SOC by subtracting the 
time when prediction was started in step 115 from time when 
the EOD threshold is reached in step 119. Steps 115 to 119 
comprise the prognosis part of the invention as applicable to 
the SOC of the battery. 

The next steps indicate how the PF framework may be 
additionally used to decision making in the SOC context. If 
the RUL computed in step 121 does not meet usage require-
ments, i.e. remaining battery charge is too low, then, in step 
123, we re-execute the prognosis process from step 117 with 
alternate future load profiles until the requirements are met. 
Subsequently, in step 125, we prescribe the viable alternate 
future usage that will satisfy user requirements. 

In the case of a specific application domain like vehicles 
with electric propulsion based on batteries, several factors 
like acceleration, trajectory gradient or drag and ambient 
temperature can affect battery performance. In such cases, 
EOD prediction and decision making, steps 117-125, can be 
based on future use conditions that include navigation and 
route planning in conjunction with terrain and weather infor-
mation. 

10 
The flowchart in FIG. 11 that describes the procedure for 

estimating SOL and predicting EOL follows the samelogic as 
the flowchart in FIG. 10 described above, with the steps 
number 2XY corresponding to the steps numbered 1XY in 

5 FIG. 10. There are some differences in this case which are 
discussed below. 

The mathematical model considered tries to encapsulate 
the aging behavior of the battery as it cycles through charge, 
discharge and rest or relaxation periods. The relevant electro- 

io chemical processes are represented by Eqs, (6), (9), (10) and 
optionally (11). The state variable of interest is SOL or battery 
capacity, C. The future usage conditions include charge and 
discharge profiles, relaxation periods and temperature as well 
as their uncertainties in terms of probability distributions. The 

15 user requirements will not be in terms of  battery charge, but in 
terms of battery life or capacity. In the case of electric 
vehicles, the prognosis can be conditioned on factors like 
traffic patterns and diving profiles in addition to environmen-
tal factors like temperature. 

20 Sample Results. 
The data used to validate the above approach have been 

collected from a custom built battery prognostics testbed at 
the NASA Ames Prognostics Center of Excellence (PCoE). 
This testbed comprises: 

25 	Commercially available Li-ion 18650 sized rechargeable 
batteries, 

Programmable 4-channel DC electronic load, 
Programmable 4-channel DC power supply, 
Voltmeter, ammeter and thermocouple sensor suite, 

30 Custom EIS equipment, 
Environmental chamber to impose various operational 

conditions, 
PXI chassis based DAQ and experiment control, and 
MATLAB based experiment control, data acquisition and 

35 prognostics algorithm evaluation setup. 
In this testbed, Li-ion batteries were run through  different 

operational profiles (charge, discharge and EIS) at room tem-
perature, 23° C. Charging was carried out in a constant cur-
rent (CC) mode at 1.5 A until the battery voltage reached 4.2 

40 V and then continued in a constant voltage (CV) mode until 
the charge current dropped to 20 mAmp. Discharge was car-
ried out at a constant current (CC) level of 2 A until the battery 
voltage fell to 2.7 V. Repeated charge and discharge cycles 
result in accelerated aging of the batteries. The experiments 

45 were stopped when the batteries reached the EOL criteria of 
30 percent fade in rated capacity (from 2 Amp-hour to 1.4 
Amp-hour). Due to the differences in depth-of-discharge 
(DOD), the duration of rest periods and intrinsic variability, 
no two cells have the same SOL at the same cycle index. The 

5o aim is to be able to manage this uncertainty, which is repre-
sentative of actual usage, and make reliable predictions of 
RUL in both the EOD and EOL contexts. Although several 
(>20) batteries were aged in this setup, we present the results 
from a single battery. The accuracy and precision of the 

55 predictions shown below is representative of the performance 
on the other batteries as well. 

FIG. 7 illustrates the EOD predictions generated by the PF 
algorithm for an arbitrarily selected discharge cycle of a Li-
ion battery under test. The red solid line shows the measured 

60 cell voltage, while the green patch represents the envelope of 
the PF tracking performance. The battery model is tuned 
continuously until we reach one of the predetermined predic-
tion points (denoted by blue asterisks), at which time we 
freeze the model and use it to extrapolate the particle distri- 

65 bution till the EEO ) threshold. 
It is to be noted that we do not generate a single-valued 

prediction or a mean value with confidence bounds, but a full 
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EOD pdf. Predictions are made at multiple points to test the 
robustness of the algorithm to model parameter drift. Thepdfs 
generated have high accuracy and precision as can be seen 
from the overlap of the blue shaded areas to the right of FIG. 
7 and t,,D  marked by the vertical red broken line. Because the 
pdfs overlap each other, they are differentiated by varying 
shades of a color (e.g., blue) with the earliest one being the 
lightest and the later ones being progressively darker. Also, to 
improve visibility, the pdfs have been scaled by a factor of 50 
and shifted to the ExoD) threshold. 

In order to better quantify the prognostic performance, we 
calculate the a-X, performance metric, as defined in (Saxena 
et al., 2008), for the prediction means computed as the 
weighted sum of the particle populations. We include several 
more prediction points in order to compute this metric, as 
shown by the asterisks in FIG. 8. It can be seen that we achieve 
90 percent accuracy (a -0.1) right from the first prediction 
point onwards (X-0). This means that 500 seconds into the 
discharge, which is about 55 minutes long, one can predict the 
EOD point to within ±4  minute confidence limits. Halfway 
into the discharge we can predict to within ±2  minutes 45 
seconds, and so on. 

The performance of the PF algorithm for EOL prediction 
problem is shown in FIG. 9. The measured capacity values are 
shown by the red solid line, the PF tracking by the green patch 
and the prediction points by the blue asterisks. The EOL pdfs 
are denoted by the blue patches, lighter shades indicating 
earlier predictions. Note that modeling the capacity gain due 
to rest, as shown in Eq. (9), allows the PF to maintain track of 
the capacity during rests and make predictions accordingly. 
When predicting, the planned future usage and rest conditions 
are made available to the PF framework. As can be seen, the 
EOL pdfs do overlap the cycles where the measured capacity 
crosses the EOL threshold of 1.4 Amp-hour. Further enhance-
ments of this approach will be tackled in future research; 
however, the feasibility of this PF based prognostics method-
ology has been demonstrated. 

CONCLUSION 

In summary, this disclosure sets forth an empirical model 
to describe battery behavior during individual discharge 
cycles as well as over its cycle life. The basis for the form of 
the model has been linked to the internal processes of the 
battery and validated using experimental data. 

Subsequently, the model has been used in a PF framework 
to make predictions of EOD and EOL effectively. Although 
the model has been developed with Li-ion battery chemistries 
in mind, it can be applied to other batteries as long as effects 
specific to those chemistries are modeled as well (e.g. the 
memory effect in Ni—Cd rechargeable batteries). 

The prediction results have been satisfactory so far, how-
ever, there remains considerable room for improvement. The 
model fidelity will improve when the influence of factors like 
temperature, discharge C-rate, DOD, SOC after charging, 
etc., are explicitly incorporated. This requires further inten-
sive theoretical as well as experimental investigation of bat-
tery behavior. As the understanding of these factors improves, 
we will be able to better take advantage of advanced filtering 
techniques like unscented PF, Rao-Blackwellized PF (Saba et 
al., 2009), and others, to further refine prognostic perfor-
mance. 

12 
Nomenclature 

5 	
DOD depth-of-discharge 
EOD end-of-discharge 
EOL end-of-life 
RUL remaining useful life 
SOC state-of-charge 
SOL state-of-life 
C charge capacity 

10 	I load current 
r hours required to drain nominal capacity 

q  Coulombic efficiency 
RE  electrolyte resistance 
RC7  charge transfer resistance 
CDL  dual-layer capacitance 

15 	R ye  Warburg resistance 
t time variable 
i time index 
k cycle index 
E cell voltage 
E° theoretical open circuit voltage 

20 EEOD 

AE,d  voltage drop due to self-discharge 
AE,d  voltage drop due to reactant depletion 
AE_ voltage drop due to mass transfer resistance 
AE;,, ; , initial voltage drop during discharge 
A Arrhenius physical parameter (dependent upon process) 

25 T 
battery temperature 

To  reference temperature (dependent upon process) 

0-i-1 	5  EOD model parameters for charge depletion 

Nj —1 z EOL model parameters for discharge cycles 

Yj —1, ... , 3 Arrhenius model parameters 
0 proportionality constant with respect to current I 
At, length of rest period between cycles k and k + 1 

30 	w, v, (p, y zero-mean Gaussian noise terms 

EEOD EOD voltage threshold (e.g., 2.7 Volt) 

tEOD time at which E reaches EEOD 

CEOL EOL capacity threshold (e.g., 1.4 Amp-hour) 

kEOL cycle when C reaches CEOL 

35 
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What is claimed is: 
1. A method for estimating remaining useful life (RUL) of 

a battery during discharge of the battery, the method compris- 
15 ing providing a computer system that is programmed: 

to provide or receive a quantitative empirical model with at 
least one associated model parameter for at least one 
electro -chemical process that is active during discharge 
of the battery; 

20 to receive and use measured values provided by one or 
more sensors for at least one electro -chemical process 
that is active during discharge of the battery; 

to receive and use training data comprising at least one of: 
at least one operating, condition for the battery, at least 

25 one sensor measurement value for battery operation, and 
at least one ground truth attribute for battery discharge; 

to compute and incorporate at least one numerical param-
eter value for the electro-chemical process that charac-
terizes battery discharge behavior; 

30 	to identify at least one uncertainty in the quantitative 
model, including an uncertainty range for the at least one 
model parameter and an uncertainty range for the at least 
one measured sensor value; 

to provide and incorporate at least one numerical value for 
35 at least one probability density function (pdf) corre-

sponding to a distribution of the at least one uncertainty; 
to provide at least one process model of at least one process 

component with at least one estimate of an value of a 
probability density function (pdf) for a distribution of at 

40 	least one uncertainty in the at least one process model, to 
provide a characterization of battery discharge; 

to provide or receive run-time data, including the at least 
one battery operating condition and at least one sensor 
measurement value; and 

45 	to apply the quantitative model of the battery in a particle 
filtering framework to estimate at least one battery dis-
charge variable of interest, comprising at least one of 
state of charge (SOC) and terminal voltage of the battery, 
and to contemporaneously modify the at least one model 

50 	parameter value used in the quantitative model. 
2. The method of claim 1, wherein said computer is further 

programmed to choose said battery operating condition from 
a group of conditions comprising battery terminal voltage, 
battery load current, and battery temperature. 

55 	3. The method of claim 1, wherein said computer is further 
programmed to incorporate ambient temperature in said at 
least one operating condition. 

4. The method of claim 1, further comprising decomposing 
said battery discharge behavior into a plurality of sub-pro- 

60 cesses of said battery, with at least one sub-process compris-
ing at least one of mass-transfer, battery self-discharge, and 
reactant depletion, with corresponding model parameters and 
uncertainty distributions. 

5. The method of claim 1, wherein said computer is further 
65 programmed so that, when a user of said computer program 

indicates that prediction of said battery discharge behavior is 
desired, said computer is further programmed: 
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to provide or receive at least one anticipated future use 
condition of said battery; 

to provide or receive at least one said pdf that is associated 
with said at least one uncertainty distribution in said at 
least one sensor measurement value associated with 5  
operation of said battery; 

to propagate said at least one battery discharge variable of 
interest to a selected time later than present time or to at 
least one predetermined threshold value for said battery 
discharge variable of interest being propagated; and l0 

to estimate said RUL of said battery during discharge, said 
RUL comprising time remaining until said battery 
reaches an end-of-discharge (EOD) state. 

6. The method of claim 5, further comprising decomposing 15  
said battery discharge behavior into a plurality of sub-pro-
cesses of said battery, with at least one sub-process compris-
ing at least one of mass-transfer, self-discharge; and reactant 
depletion, with corresponding model parameters and uncer-
tainty distributions. 	 20 

7. The method of claim 6, applied to a vehicle having 
partial or complete electric propulsion, where said future use 
conditions comprise at least one of desired destination, terrain 
information for a desired route, trajectory gradient informa-
tion for the desired route, traffic information for the desired 25  
route, weather data, and expected temperature profile along 
the desired route. 

8. The method of claim 7, further comprising using infor-
mation on said EOD with at least one of said destination 
information, said terrain information, and said traffic infor- 30 

mation to provide at least one driving recommendation that 
may extend a time at which said EOD will occur, determined 
by performing a trade-off analysis of at least two load sce-
narios for said battery. 	 35  

9. A method for estimating remaining useful life (RUL) of 
a battery over battery cycle life as the battery experiences a 
plurality of charge, discharge, and rest periods, the method 
comprising providing a computer system that is programmed: 

to provide or receive a quantitative empirical model with at 40 

least one associated parameter to be determined from 
sensor measurements, wherein the basis for the form of 
the model is linked to at least one internal electro-chemi- 
cal process of the battery that is active during at least one 
of charge, discharge and rest period of the battery; 	45 

to receive and use at least one of said measured values 
provided by one or more sensors for the at least one 
electro -chemical process that is active during the at least 
one of the charge, discharge and rest periods of the 
battery, to infer or estimate at least one numerical param- 50 

eter value for the model; 
to receive training data, comprising at least one of: at least 

one operating condition for the battery, battery storage 
condition, at least one measured sensor value for battery 

55 
operation, and at least one ground truth attribute for 
battery capacity; 

to identify at least one uncertainty in the quantitative 
model, including an uncertainty range for at least one 
model parameter and an uncertainty range for at least 60  
one measured sensor value, and to initialize at least one 
probability density function (pdf) for a distribution of 
the at least one uncertainty; 

to provide at least one process model of at least one process 
component with at least one estimate of the at least one 65 

uncertainty pdf to provide a characterization of battery 
ageing behavior; 

16 
to provide or receive run-time data, including the at least 

one battery operating condition, battery storage condi-
tion, and the at least one sensor measurement value for 
battery operation; and 

to apply the quantitative model of the battery in a particle 
filtering framework to track or monitor at least one bat-
tery cycle life variable of interest, comprising at least 
one of state of life (SOL) and capacity of the battery, and 
to contemporaneously modify at least one model param-
eter value used in the quantitative model. 

10. The method of claim 9, wherein said computer is fur-
ther programmed to choose said at least one battery operating 
condition from at least one condition, comprising battery 
depth of discharge (DOD), battery charge current, and battery 
storage state of charge SOC. 

11. The method of claim 10, wherein said battery storage 
includes at least first and second battery rest periods having 
different rest period lengths. 

12. The method of claim 9, wherein said computer is fur-
ther programmed to incorporate ambient temperature in said 
at least one operating condition. 

13. The method of claim 9, wherein said battery ageing 
behavior is decomposed into a plurality of sub-processes of 
said battery, wherein at least one sub-process comprises at 
least one of capacity loss due to Coulombic efficiency factor 
and capacity recovery during rest, with corresponding model 
parameters and uncertainty distributions. 

14. The method of claim 9, wherein said at least one battery 
cycle life variable of interest is based on a lumped parameter 
model, in which at least one component, comprising electro-
lyte resistance, Warburg resistance, charge transfer resis-
tance, and dual-layer capacitance, is determined by electro-
chemical impedance spectroscopy (EIS) measurements. 

15. The method of claim 9, wherein said computer is fur-
ther programmed so that, when a user of said computer pro-
gram indicates that prediction of battery life is desired, said 
computer is further programmed: 

to provide or receive at least one anticipated future use 
condition of said battery, comprising at least one battery 
charge profile, at least one battery discharge profile, and 
at least one battery storage condition; 

to provide or receive said at least one pdf that is associated 
with a distribution of said at least one uncertainty in said 
at least one sensor value associated with use of said 
battery; 

to propagate said at least one battery cycle life variable of 
interest to a selected time later than present time or to at 
least one predetermined threshold value for said at least 
one battery cycle life variable of interest being propa-
gated; and 

to estimate said RUL of said battery, said RUL comprising 
a time remaining until said battery reaches an end-of-life 
(EOL) state. 

16. The method of claim 15, further comprising decom-
posing battery ageing behavior into a plurality of sub-pro-
cesses of said battery, with at least one of the sub-processes 
comprising at least one of capacity loss due to Coulombic 
efficiency factor, and capacity recovery during rest, with cor-
responding model parameters and uncertainty distributions. 

17. The method of claim 15, wherein said at least one 
battery cycle life variable of interest is based on a lumped 
parameter model, in which at least one component, compris-
ing electrolyte resistance, Warburg resistance, charge transfer 
resistance, and dual-layer capacitance, is determined by at 
least one EIS measurement. 

18. The method of claim 15, applied to a vehicle with 
partial or complete electric propulsion, where said future use 
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conditions comprise at least one of vehicle driving profiles, 
vehicle storage conditions and vehicle maintenance sched-
ules. 

19. The method of claim 18, wherein information on cli-
mate and terrain and said EO state are received or provided to 5  
formulate at least one of storage recommendation and main-
tenance recommendation that may extend a time at which said 
EOL state will occur, by performing a trade-off analysis of at 
least two use scenarios for said battery. 

20. A system for estimating remaining useful life (RUL) of l0 

a battery during discharge of the battery, embodying a pro-
gram on instructions executable by a computer, wherein the 
computer system is programmed: 

to provide or receive a quantitative empirical model with at 15  
least one associated model parameter for at least one 
electro -chemical process that is active during discharge 
of the battery; 

to receive and use measured values provided by one or 
more sensors for at least one electro -chemical process 20 

that is active during discharge of the battery; 
to receive and use training data comprising at least one of: 

at least one operating condition for the battery, at least 
one sensor measurement value for battery operation, and 
at least one ground truth attribute for battery discharge; 25 

to compute and incorporate at least one numerical param-
eter value for the electro-chemical process that charac-
terizes battery discharge behavior; 

to identify at least one uncertainty in the quantitative 
model, including an uncertainty range for at least one 30 

model parameter and an uncertainty range for at least 
one measured sensor value; 

to provide and incorporate at least one numerical value for 
at least one probability density function (pdf) corre-
sponding to a distribution of the at least one uncertainty; 35 

to provide at least one process model of at least one process 
component with at least one estimate of a value of a 
probability density function (pdf) for a distribution of at 
least one uncertainty in the at least one process model, to 
provide a characterization of battery discharge; 40 

to provide or receive run-time data, including the at least 
one battery operating condition and the at least one 
sensor measurement value; and 

to apply the quantitative model of the battery in a particle 
filtering framework to provide an estimate of at least one 45 

battery discharge variable of interest, comprising state 
of charge (SOC) and terminal voltage of the battery, and 
to contemporaneously modify at least one model param-
eter value used in the quantitative model. 

21. The system of claim 20, wherein said computer system 50 

is further programmed to choose said battery operating con-
dition from a group of conditions comprising battery terminal 
voltage, battery load current, and battery temperature. 

22. The system of claim 20, wherein said computer system 
is further programmed to incorporate ambient temperature in 55 

at least one of said operating conditions. 
23. The system of claim 20, wherein said computer system 

is further programmed to decompose said battery discharge 
behavior into aplurality of sub-processes of said battery, with 
at least one sub-process comprising at least one of mass- 60 

transfer, battery self-discharge, and reactant depletion, with 
corresponding model parameters and uncertainty distribu-
tions. 

24. The system of claim 20, wherein when a user of said 
computer system indicates that prediction of said battery 65 

discharge behavior is desired, said computer system is further 
programmed:  

18 
to provide or receive at least one anticipated future use 

condition of said battery; 
to provide or receive at least one said pdf that is associated 

with said at least one uncertainty distribution in said at 
least one sensor measurement value associated with 
operation of said battery; 

to propagate said at least one battery discharge variable of 
interest to a selected time later than present time or to at 
least one predetermined threshold value for said battery 
discharge variable of interest being propagated; and 

to estimate said RUL of said battery during discharge, said 
RUL comprising time remaining until said battery 
reaches an end-of-discharge (EOD) state. 

25. The system of claim 24, wherein said computer system 
is further programmed to decompose said battery discharge 
behavior into a plurality of sub-processes of said battery, with 
at least one sub-process comprising at least one of mass-
transfer, self-discharge, and reactant depletion, with corre-
sponding model parameters and uncertainty distributions. 

26. The system of claim 25, wherein said computer system 
is applied to a vehicle having partial or complete electric 
propulsion, where said future use conditions comprise at least 
one of desired destination, terrain information for a desired 
route, trajectory gradient information for the desired route, 
traffic information for the desired route, weather data, and 
expected temperature profile along the desired route. 

27. The system of claim 26, wherein said computer system 
is further programmed to use information on said EOD with 
at least one of said destination information, said terrain infor-
mation, and said traffic information to provide at least one 
driving recommendation that may extend a time at which said 
EOD will occur, determined by performing a trade-off analy-
sis of at least two load scenarios for said battery. 

28. A system for estimating remaining useful life (RUL) of 
a battery over battery cycle life as the battery experiences a 
plurality of charge, discharge, and rest periods, embodying a 
program on instructions executable by a computer, wherein 
the computer system is programmed: 

to provide or receive a quantitative empirical model with at 
least one associated parameter to be determined from 
sensor measurements, wherein the basis for the form of 
the model is linked to at least one internal electro-chemi-
cal process of the battery that is active during at least one 
of charge, discharge and rest period of the battery; 

to receive and use at least one measured value provided by 
one or more sensors for the at least one electro -chemical 
process that is active during the at least one of the charge, 
discharge and rest periods of the battery, to infer or 
estimate at least one numerical parameter value for the 
model; 

to receive training data, comprising at least one of: at least 
one operating condition for the battery, battery storage 
condition, at least one measured sensor value for battery 
operation, and at least one ground truth attribute for 
battery capacity; 

to identify at least one uncertainty in the quantitative 
model, including an uncertainty range for at least one 
model parameter and an uncertainty range for at least 
one measured sensor value, and to initialize at least one 
probability density function (pdf) for a distribution of 
the at least one uncertainty; 

to provide at least one process model of at least one process 
component with at least one estimate of the at least one 
uncertainty pdf to provide a characterization of battery 
ageing behavior; 
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to provide or receive run-time data, including at least one of 
battery operating condition, battery storage condition, 
and the at least one sensor measurement value for battery 
operation; and 

to apply the quantitative model of the battery in a particle 
filtering framework to provide an estimate of at least one 
battery cycle life variable of interest, comprising state of 
life (SOL) and capacity of the battery, and to contempo-
raneously modify at least one model parameter value 
used in the quantitative model. 

29. The system of claim 28, wherein said computer system 
is further programmed to choose said battery operating con-
dition from at least one condition, comprising battery depth of 
discharge (DOD), battery charge current, and battery storage 
state of charge SOC. 

30. The system of claim 29, wherein said battery storage 
includes at least first and second battery rest periods having 
different rest period lengths. 

31. The system of claim 28, wherein said computer system 
is further programmed to incorporate ambient temperature in 
said at least one operating condition. 

32. The system of claim 28, wherein said computer system 
is further programmed to decompose said battery ageing 
behavior into a plurality of sub-processes of said battery, 
wherein at least one sub-process comprises at least one of 
capacity loss due to Coulombic efficiency factor and capacity 
recovery during rest, with corresponding model parameters 
and uncertainty distributions. 

33. The system of claim 28, wherein said computer system 
is further programmed so that said at least one battery cycle 
life variable of interest is based on a lumped parameter model, 
in which at least one component, comprising electrolyte resis-
tance, Warburg resistance, charge transfer resistance, and 
dual-layer capacitance, is determined by electrochemical 
impedance spectroscopy (EIS) measurements. 

34. The system of claim 28, wherein when a user of said 
computer system indicates that prediction of battery life is 
desired, said computer system is further programmed: 

to provide or receive at least one anticipated future use 
condition of said battery, drawn from a group of condi- 

20 
tions comprising at least one battery charge profile, at 
least one battery discharge profile, and at least one bat-
tery storage condition; 

to provide or receive said at least one pdf that is associated 
5  with a distribution of said at least one uncertainty in said 

at least one sensor value associated with use of said 
battery; 

to propagate said at least one variable of interest to a 
selected time later than present time or to at least one 

10 	
predetermined threshold value for said at least one bat- 
tery cycle life variable of interest being propagated; and 

to estimate said RUL of said battery, said RUL comprising 
a time remaining until said battery reaches an end-of-life 
(EOL) state. 

35. The system of claim 34, wherein said computer system 
is is further programmed to decompose said battery ageing 

behavior into a plurality of sub-processes of said battery, with 
at least one of the sub-processes comprising at least one of 
capacity loss due to Coulombic efficiency factor, and capacity 

20  recovery during rest, with corresponding model parameters 
and uncertainty distributions. 

36. The system of claim 34, wherein said computer system 
is further programmed so that said at least one battery cycle 
life variable of interest is based on a lumped parameter model, 
in which at least one component, comprising electrolyte resis- 

25 
tance, Warburg resistance, charge transfer resistance, and 
dual-layer capacitance, is determined by at least one EIS 
measurement. 

37. The system of claim 34, wherein said computer system 

30 
is applied to a vehicle with partial or complete electric pro-
pulsion, where said future use conditions comprise at least 
one of vehicle driving profiles, vehicle storage conditions and 
vehicle maintenance schedules. 

38. The system of claim 37, wherein said computer system 
is further programmed so that information on climate and 

35 
terrain and said EOL state are received or provided to formu-
late at least one of storage recommendation and maintenance 
recommendation that may extend a time at which said EOL 
state will occur by performing a trade-off analysis of at least 

40 
two use scenarios for said battery. 
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