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Abstract
Three high order shock-capturing schemes are compared for large eddy simulations (LES)
of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc)
ranging from the quasi-incompressible regime to highly compressible supersonic regime.
The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO
(WENO7) and the associated eighth-order central spatial base scheme with the dissipative
portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order
nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June
22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of
shock-free compressible turbulence, turbulence with shocklets and turbulence with strong
shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using
the same scheme parameter agree well with experimental results of Barone et al. (2006),
and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and
Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with
experimental data and DNS computations.

Key words: High order numerical methods, Numerical methods for turbulence with
shocks, DNS, LES, Mixing layer

1. Introduction

Part of the inaccuracy in direct numerical simulations (DNS) and large eddy simulations
(LES) of turbulent flow using standard high order shock-capturing schemes is due to the fact
that this type of computation involves long time integrations. Standard stability and accu-
racy theories in numerical analysis are not applicable to long time wave propagations and/or
long time integrations [38]. The original construction of modern shock-capturing schemes
was developed for rapidly developing unsteady shock interactions and short time integra-
tions. Any numerical dissipation inherent in the scheme, even for high resolution shock-

1This work was performed while the third author was a visiting scholar at the Center for Turbulence
Research, Stanford University.
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capturing schemes that maintain their high order accuracy in smooth regions (e.g., fifth-
or seventh-order WENO schemes (WENO5 and WENO7)), will be compounded over long
time integration leading to smearing of turbulence fluctuations to un-recognizable forms.

In compressible turbulent combustion/nonequilibrium flows, the constructions of nu-
merical schemes for (a) stable and accurate simulation of turbulence with strong shocks, and
(b) obtaining correct propagation speed of discontinuities for stiff reacting terms on “coarse
grids” share one important ingredient - minimization of numerical dissipation while main-
taining numerical stability. Here “coarse grids” means standard mesh density requirement
for accurate simulation of typical non-reacting flows. This dual requirement to achieve
both numerical stability and accuracy with zero or minimal use of numerical dissipation is
most often conflicting for existing schemes that were designed for non-reacting flows. In
addition to the minimization of numerical dissipation while maintaining numerical stabil-
ity in compressible turbulence with strong shock, Yee & Sjögreen, Yee and Yee & Sweby
[46, 47, 43, 42] discussed a general framework for the design of such schemes. Yee &
Sjögreen [51], Sjögreen & Yee [37, 36] and Wei et al. [39, 40] and references cited therein
present their recent progress on the subject. In [55], a short overview of this recent progress
is given. The discussion addresses three separate yet interwoven types of numerical chal-
lenges for high speed turbulent reacting flows containing discontinuities. This paper is
confined to the comparison of three specific high order shock-capturing methods on tur-
bulent mixing for non-reacting flows. The study for turbulent mixing for reacting flows is
planned.

2. Recent Progress in Numerical Methods for Turbulence with Strong Shocks

The current trends in the containment of numerical dissipation in DNS and LES of tur-
bulence with shocks are summarized in Yee & Sjögreen and Yee et al. [51, 50, 54]. See
the cited references for details on these current trends. Before presenting the improved
filter schemes and their application to the temporally evolving mixing layers (TML), the
key ingredients and the performance of the high order nonlinear filter schemes with pre-
processing and post-processing steps in conjunction with the use of a high order non-
dissipative spatial base scheme [51, 54] are briefly illustrated for two test cases.

2.1. High Order Nonlinear Filter Schemes [34, 49, 51, 54]
Before the application of a high order non-dissipative spatial base scheme, the pre-

processing step to improve stability had split inviscid flux derivatives of the governing
equation(s) in the following three ways, depending on the flow types and the desire for
rigorous mathematical analysis or physical argument.

• Entropy splitting of Olsson & Oliger [25] and Yee et al. [45, 46]: The resulting
form is non-conservative and the derivation is based on entropy norm stability with
numerical boundary closure for the initial value boundary problem.
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• The system form of the Ducros et al. splitting [6]: This is a conservative splitting and
the derivation is based on physical arguments.

• Tadmor entropy conservation formulation for systems (Sjögreen & Yee [35]): The
derivation is based on mathematical analysis. It is a generalization of Tadmor’s en-
tropy formulation to systems and has not been fully tested on complex flows.

After the application of a non-dissipative high order spatial base scheme on the split
form of the governing equation(s), to further improve nonlinear stability from the non-
dissipative spatial base scheme, the post-processing step of Yee & Sjögreen [49, 51],
Sjögreen & Yee [34] nonlinearly filtered the solution by a dissipative portion of a high order
shock-capturing scheme with a local flow sensor. These flow sensors provide locations and
amounts of built-in shock-capturing dissipation that can be further reduced or eliminated.
For all the computations shown, the Ducros et al. splitting is employed since a conserva-
tive splitting is more appropriate if one does not know if the subject flow is shock-free or
turbulence with shocks. Some attributes of the high order filter approach are:

• Spatial Base Scheme: High order and conservative with high order freestream preser-
vation metric evaluation for curvilinear grids. (no flux limiter or Riemann solver)

• Physical Viscosity: Automatically taken into consideration by the base scheme. The
same order of central differencing for the viscous derivative as the convective flux
derivatives are used.

• Efficiency: One Riemann solve per dimension per time step, independent of time dis-
cretizations (less CPU time and fewer grid points than their standard shock-capturing
scheme counterparts)

• Accuracy: Containment of numerical dissipation via local wavelet flow sensor

• Well-balanced scheme: These nonlinear filter schemes are well-balanced schemes for
certain chemical reacting flows and problem containing geometric source terms [39]

• Stiff Combustion with Discontinuities: For some stiff reacting flow test cases, the
high order filter scheme is able to obtain the correct propagation speed of discontinu-
ities whereas the standard high order WENO scheme cannot [19, 56].

• Parallel Algorithm: Suitable for most current supercomputer architectures

2.2. Sample test Cases Illustrating the Efficiency and Accuracy of High Order Filter
Schemes

These filter schemes are efficient, and the total computational cost for a given error tol-
erance is lower than for standard shock-capturing schemes of the same order. This is of
importance, for example, in DNS and in flow control optimization to improve aerodynamic
properties, where the flow simulation must be carried out many times during the optimiza-
tion loop. The efficiency and accuracy of the schemes for a wide variety of flow problems
can be found in aforementioned cited references. Here two test cases are illustrated.
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CPU Comparison (2-D Shock/Vorticity Interaction)  

    Adpative Filter Approach vs. Hybrid Approach!
(RK4, Same 8th-Order Central (D08), WENO7 Dissipation & Switch)!

CPU time (integrate to dimensionless time 25) for different methods 

2nd-order TVD:             57 s!

WENO7:                       338 s!

D08 + hybrid WENO7: 103 s!

D08 + filter WENO7:     47 s!

Single processor!

Schemes of same order,  no gain in accuracy, high gain in CPU!

Figure 1: CPU comparison of four shock-capturing schemes.

2.2.1. 2D Shock/Vorticity Interaction
Figure 1 shows a comparison of a second-order TVD, seventh-order WENO (WENO7),

hybrid scheme (switch between eighth-order spatial central scheme and WENO7 using
wavelet flow sensor as the switch indicator) and the filter scheme WENO7fi (an eighth-
order spatial central base scheme and the dissipative portion of WENO7 and the same
wavelet flow sensor to guide where the WENO7 dissipation should be applied at the post-
possessing nonlinear filter step). A second-order Runge-Kutta method was used for the
TVD scheme and the classical fourth-order Runge Kutta method was used for the rest of
the spatial scheme. For this particular simple 2D shock-vorticity interaction test case with a
simple weak planar shock without structure, WENO7, hybrid, and WENO7fi give the same
accuracy. However, there is large gain in CPU time by the filter scheme for this turbulence-
free test case. For turbulence with shocks, there is a more beneficial gain both in accuracy
and CPU time of the filter schemes over the their standard WENO counterparts.

2.2.2. 1D Shock/Turbulence Interaction Problem
This 1-D compressible inviscid ideal gas problem is one of the most computed

test cases in the literature to assess the capability of a shock-capturing scheme in the
presence of shock/turbulence interactions. The flow consists of a shock at Mach 3
propagating into a sinusoidal density field with initial data given by (ρL, uL, pL) =
(3.857143, 2.629369, 10.33333) to the left of a shock located at x = −4, and
(ρR, uR, pR) = (1 + 0.2 sin(5x), 0, 1) to the right of the shock, where ρ is the den-
sity, u is the velocity and p is the pressure. The computational domain is [−5, 5] and the
computation stops at time equal to 1.8. Figure 2 shows the comparison among WENO3,
WENO5 and WENO7, and their corresponding filter schemes WENO3fi, WENO5fi and
WENO7fi using a very coarse uniform grid of 200 points with the reference solution. The
reference solution is obtained with WENO5 using 16000 grid points. WENO5fi required
at the most 50% of the CPU time of WENO5 if third or fourth-order Runge-Kutta time
discretization were used. In order for WENO5 to obtain a similar accuracy as WENO5fi, at
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Figure 2:

least two times the number of grid points is needed. Moreover, the accuracy of WENO5fi
is similar to WENO9 (computation not shown).

2.3. Objective and Outline
The objective of this paper is to use the same TML problem setup and convective

Mach cases as in [13] to compare the performance of WENO7fi with standard WENO5
and WENO7 for convective Mach Mc = 0.1, 0.3, 0.8, 1.0, 1.5. For WENO7fi, no tuning of
scheme parameters is needed for all theMc cases. For detailed physics, see [13].

The outline of this paper is as follows: The high order nonlinear filter methods are sum-
marized in Section 2. Recent improvement of the scheme will also be briefly discussed.
The problem setup for the temporally resolving mixing layer (TML) is given in Section
3. Numerical results comparing the performance among WENO5, WENO7 and the as-
sociated WENO7fi are then presented in Section 4. The comparison is focused only on
the momentum thickness and compressibility factor as a function of the studied convective
Mach numbers. Even WENO5 is two order lower than WENO7 WENO7fi, it is chosen for
the comparison as a benchmark study. This is due to the fact that WENO5 has been widely
used for many applications.

3. Numerical Methods

This section summarizes the numerical methods to be used for the turbulent TML study.
The numerical methods solve the split form of the inviscid flux derivatives according to the
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pre-processing step. The discussion is broken up into two subsections.

3.1. Original High Order Filter Method

For turbulence with shocks, instead of solely relying on very high order high-resolution
shock-capturing methods for accuracy, the filter schemes [44, 45, 34, 48, 49] take advantage
of the effectiveness of the nonlinear dissipation contained in good shock-capturing schemes
as stabilizing mechanisms at locations where needed. Such a filter method consists of two
steps: a full time step using a spatially high-order non-dissipative base scheme, followed
by a post-processing filter step. The post-processing filter step consists of the products
of wavelet-based flow sensors and nonlinear numerical dissipations. The flow sensor is
used in an adaptive procedure to analyze the computed flow data and indicate the location
and type of built-in numerical dissipation that can be eliminated or further reduced. The
nonlinear dissipative portion of a high-resolution shock-capturing scheme can be any TVD,
MUSCL, ENO, or WENO scheme. By design, the flow sensors, spatial base schemes
and nonlinear dissipation models are standalone modules. Therefore, a whole class of low
dissipative high order schemes can be derived with ease. Unlike standard shock-capturing
and/or hybrid shock-capturing methods, the nonlinear filter method requires one Riemann
solve per dimension, independent of time discretizations. The nonlinear filter method is
more efficient than its shock-capturing method counterparts employing the same order of
the respective methods.

Recently, these filter schemes were proven to be well-balanced schemes [39] in the
sense that these schemes preserve exactly certain steady state solutions of the chemical
nonequilibrium governing equation. With this added property these filter schemes can
better minimize spurious numerics in reacting flows containing mixed steady shocks and
unsteady turbulence with shocklet components than standard non-well-balanced shock-
capturing schemes. In addition, for some stiff reacting flow test cases, the high order filter
scheme is able to obtain the correct propagation speed of discontinuities whereas the stan-
dard high order WENO scheme cannot [19, 56].

For simplicity of the presentation the discussion for the base scheme and post-
processing step of the filter scheme is restricted to the inviscid part of the Navier-Stokes
equations. For viscous gas dynamics the same order of spatial centered base scheme for the
convection terms and the viscous terms are employed. For all of the LES computations the
classical fourth-order Runge-Kutta time discretization is employed.

Consider the 3-D compressible Euler equations in Cartesian geometry,

Ut +∇ · F = 0; U =




ρ

m
e



 ; F =




ρu

ρuuT + p

u(e+ p)



 . (1)

Here the velocity vector u = (u, v, w)T , the momentum vector m = (ρu, ρv, ρw), ρ is the
density, and e is the total energy.
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In a Cartesian grid denote the grid indices for the three spatial directions as (j, k, l).
The spatial base scheme to approximate the x inviscid flux derivatives F (U)x (with the grid
indices k and l for the y- and z-directions suppressed) is written as, e.g.,

∂F

∂x
≈ D08Fj, (2)

where D08 is the standard eighth-order accurate centered difference operator. See [35] for
the split form of 2.

After the completion of a full Runge-Kutta time step of the base scheme step, the second
step is to adaptively apply a post-processing nonlinear filter. The nonlinear filter can be
obtained e.g., in the x-direction by taking the full seventh-order WENO scheme (WENO7)
[16] for the inviscid flux derivative in the x-direction and subtracting D08Fj . The final
update of the solution is (with the numerical fluxes in the y- and z-directions suppressed as
well as their corresponding y- and z-directions indices on the x inviscid flux suppressed)

U
n+1
j,k,l = U

∗
j,k,l −

∆t

∆x
[H∗

j+1/2 −H
∗
j−1/2]. (3)

The nonlinear filter numerical fluxes usually involve the use of field-by-field approxi-
mate Riemann solvers. If the Roe type of approximate Riemann solver [30] is employed,
for example, the x-filter numerical flux vector Hj+1/2 evaluated at the U∗ solution from the
base scheme step is

Hj+1/2 = Rj+1/2Hj+1/2,

where Rj+1/2 is the matrix of right eigenvectors of the Jacobian of the inviscid flux vector in
terms of the Roe’s average states. Denote the elements of the vector Hj+1/2 by h

l
j+1/2, l =

1, 2, ..., 5. The nonlinear portion of the filter hl
j+1/2 has the form

h
l
j+1/2 =

κ

2
ω
l
j+1/2φ

l
j+1/2. (4)

Here ω
l
j+1/2 is the wavelet flow sensor to activate the nonlinear numerical dissipation

1
2φ

l
j+1/2 and the original formulation for κ is a positive parameter that is less than or equal

to one. Some tuning of the parameter κ is needed for different flow types. A local κ to be
discussed next, depending on the local Mach number for low speed flows and depending
on local shock strength for high speed flows, would minimize the tuning of parameters. A
local flow sensor was discussed by Lo et al. [24] by taking advantge of the Ducros et al.
shock flow sensor [7] to obtain a local artificial compression method (ACM) sensor for the
original Yee et al. filter scheme [44].

The dissipative portion of the nonlinear filter 1
2φ

l
j+1/2 = g

l
j+1/2−b

l
j+1/2 is the dissipative

portion of, e.g., WENO7 for the local lth-characteristic wave. Here g
l
j+1/2 and b

l
j+1/2 are

numerical fluxes of WENO7 and the eighth-order central scheme for the lth characteristic,
respectively. Hereafter, we denote this filter scheme as WENO7fi.
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Figure 3: Mach number sensors. f(M) (blue) function by Li and Gu, f1(M) (red) modified f(M), and
f2(M) (black) (includes low supersonic Mach numbers).

A summary of the three basic steps to obtain ω
l
j+1/2 can be found in [34, 49]. For ex-

ample, the flow sensor ωl
j+1/2 to activate the shock-capturing dissipation using the cut off

procedure is a vector (if applied dimension-by-dimension) consisting of “1’s” and “0’s”.
For all of the computations, a three-level second-order Harten multiresolution wavelet de-
composition of the computed density and pressure is used as the flow sensor [34].

3.2. Improved High Order Filter Method

Previous numerical experiments on a wide range of flow conditions [44, 45, 34, 48, 49]
indicated that the original filter scheme improves the overall accuracy of the computation
compared with standard shock-capturing schemes of the same order. Studies found that
the improved accuracy is more pronounced if the parameter κ in (4) is tuned according
to the flow type locally. For hypersonic flows with strong shocks, κ is set to 1. For high
subsonic and supersonic flows with strong shocks, κ is in the range of (0.3, 0.9). For low
speed turbulent flows without shocks or long time integration of smooth flows, κ can be
one to two orders of magnitude smaller than 1. In other words, κ should be flow location,
shock strength and local flow type dependent. The improved κ proposed in [51] consists of
a simple global κ for smooth flows and a local κ for problems with shocks and turbulence.

3.2.1. An efficient global κ for low Mach number and smooth flows:
The flow speed indicator formula of Li & Gu to overcome the shortcomings of “low

speed Roe scheme” [23] was modified to obtain an improved global κ denoted by κ for (4)
to minimize the tuning of the original κ for low Mach number flows. κ has the form:
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κ = f1(M)κ, (5)

with

f1(M) = min

�
M

2

2

�
4 + (1−M2)2

1 +M2
, 1

�
. (6)

Here M is the maximum Mach number of the entire computational domain at each stage
of the time evolution. f1(M) has the same form as [23] except there is an extra factor “M

2 ”
added to the first argument on the right-hand-side of the original form f(M) in equation
(18) of [23]. The added factor provides a similar value of the tuning κ observed from nu-
merical experimentation reported in aforementioned cited references. With the flow speed
indicator f1(M) in front of κ, the same κ used for the supersonic shock problem can be used
without any tuning for the very low speed turbulent flow cases. Another minor modification
of the above is,

f1(M) = max

�
min

�
M

2

2

�
4 + (1−M2)2

1 +M2
, 1

�
, �

�
,

where � is a small threshold value to avoid completely switching off the dissipation. A
function which retains the majority of f1(M) but includes larger Mach number for not very
strong shocks is

f2(M) = (Q(M, 2) +Q(M, 3.5))/2

or
f2(M) = max((Q(M, 2) +Q(M, 3.5))/2, �),

where

Q(M,a) =

�
P (M/a) M < a

1 otherwise
.

The polynomial
P (x) = x

4(35− 84x+ 70x2 − 20x3)

is monotonically increasing from P (0) = 0 to P (1) = 1 and has the property that P �(x)
has three continuous derivatives at x = 0 and at x = 1.

Below supersonic speeds, a simple and efficient global κ can be obtained according to
the maximum Mach number of the entire flow field and the value is determined by f1(M)
or f2(M) for non-zero ω

l
j+1/2. It is noted that if the original f(M) were used instead of

f1(M) or f2(M) in Eq.(5), the amount of nonlinear filter dissipation could be too large for
very low speed turbulent flows (for the same fixed κ). See Fig. 3 for details.
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3.2.2. Local flow sensor for a wide spectrum of flow speed and shock strength
At each time step and grid point, the aforementioned global κ is not sufficient to reduce

the amount of numerical dissipation where needed for flows that contains a variety of flow
features. A more appropriate approach is to obtain a“local κ” that is determined according
to the above at each grid point. If known, a dominating shock jump variable should be used
for shock detections. In other words, the filter numerical flux indicated in Eq.(4) is replaced
by:

h
l
j+1/2 =

1

2
[κl

j+1/2ω
l
j+1/2φ

l
j+1/2]. (7)

In the case of unknown physics and without experimental data or theory for compari-
son, κl

j+1/2 has to depend on the local Mach number in low speed or smooth flow regions,
depend on local shock strength in shock regions and depend on turbulent fluctuations in
vortical regions in order to minimize the tuning of parameters. According to the flow type
locally, for each non-zero wavelet indicator ωl

j+1/2, κ
l
j+1/2 should provide the aforemen-

tioned amount (between (0, 1)) to be filtered by the shock-capturing dissipation φ
l
j+1/2. For

problems containing turbulence and strong shocks, the shock strength should come into
play. One measure of the shock strength can be based on the numerical Schlieren formula
[12] for the chosen variables that exhibit the strongest shock strength. In the vicinity of
turbulent fluctuation locations, κl

j+1/2 will be kept to the same order as in the nearly incom-
pressible case, except in the vicinity of high shear and shocklets.

Due to the fact that κ works well for local Mach number below 0.4, κ only needs to be
modified in regions that are above 0.4. In other words, the final value of κl

j+1/2 is determined
by the previous local κ, if the local Mach number is below 0.4. If the local Mach number
is above 0.4, at discontinuities detected by the non-zero wavelet indicator ωl

j+1/2, κl
j+1/2

is determined by the shock strength (normalized between (0, 1)) based on the Schlieren
formula near discontinuities. Again, if known, dominating shock jump variables should be
used for shock detections. At locations with turbulence, determined by the turbulent sensor
(e.g., ωl

j+1/2 obtained from employing wavelets with higher order vanishing moments),
κ
l
j+1/2 is kept to the same order as in the nearly incompressible case, except in the vicinity

of high shear and shocklet locations, where a slightly larger κl
j+1/2 would be used. Methods

in detecting turbulent flow can be (a) Wavelets with higher order vanishing moments, and
(b) Wavelet based Coherent Vortex Extraction (CVE) of Farge et al. [8] (Split the flow into
two parts: Active coherent vortices and incoherent background flow).

Results by the local κl
j+1/2 that take the local flow speed and shock strength into consid-

eration will be reported in [53], an expanded version of [51]. Preliminary study with more
complex shock turbulence problems and the applicability of even wider flow types indicates
the necessity of the local κl

j+1/2.

In this paper, all the computations use the global κ, the Ducros et al. splitting of the
inviscid flux derivatives and WENO7fi using the global κ in conjunction with the classical
fourth-order Runge-Kutta temporal discretization. κ = 0.7 for all test cases.
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4. Description of the Physical Problem and Computational Setup

LES using the subgrid model of [27] of a TML between two streams with equal and
opposite velocities was considered in [13]. In [13] the three main characteristics of com-
pressible TML (the self similarity property, compressibility effects and the presence of
large-scale structure with shocklets for high Mc) were considered for the LES study. The
role of compressibility in turbulent mixing layers remains an important issue in aeronautics.
For example, in the design of high-speed (supersonic or hypersonic) propulsion devices, the
stabilizing effect of compressibility may reduce the efficiency of engines in mixing the fuel
and the oxidizer. One of the objectives of the study in [13] is to use WENO7fi to in-
vestigate the compressibility effects in highly sheared turbulent flows subjected to strong
shocks. Here WENO7fi refers to the pre-processing step (Ducros et al. splitting of the
inviscid flux derivative) in conjunction with the eighth-order central spatial base scheme
with the dissipative portion of WENO7 and the global flow sensor discussed in Section 2
as the post-processing nonlinear filter step. The objective of the current investigation is to
compare the performance among WENO7fi, WENO5 and WENO7 using the same problem
setup, computational domain and grid size as in [13].

4.1. TML Problem Setup in [13]
The configuration of the TML is shown in Fig.4. Five test cases are carried out with

different convective Mach numbers (Mc = 0.1, 0.3, 0.8, 1.0 and 1.5) ranging from the in-
compressible case Mc = 0.1 up to the supersonic case Mc = 1.5. The Mc = 1.5 case
correspond to a highly compressible mixing layer, whereas the first two cases Mc = 0.1
and Mc = 0.3 can be considered as quasi-incompressible and are used to compare with
the experimental results of an incompressible shear layer. All of the simulations described
below are performed at an initial Reynolds number, Reω0 , based on the mean velocity dif-
ference ∆U = 2U1 = −2U2, the average viscosity of the free streams and the vorticity
thickness δω0 of 800 with δw0 = 4 δθ0 , where δω = ∆U/�∂u/∂y�max is the vorticity thick-
ness of the shear layer, and δθ is the momentum thickness (see [13] for details). The values
of Reω can be as large as 3× 105 at the end of the simulation, which is one order of magni-
tude higher than similar DNS and LES computations reported in the literature [28, 26, 9].
The mean flow is initialized with a tangent hyperbolic profile for the streamwise velocity,
u(y) = 1

2∆U tanh [y/(2 δθ0)], while the two other velocity components are set to zero. In
addition to these mean values, three-dimensional turbulent fluctuations (u�

, v
�
, w

�) are im-
posed, while initial pressure and density are set constant. Since the simulation is temporal,
the initial velocity perturbations are computed using a digital filter technique [18]. This
procedure utilizes the prescribed Reynolds stress tensor and length scales of the problem
concerned to generate the corresponding fluctuating velocity field, taking into account the
nature of the autocorrelation function for the prevailing turbulence. See [13] for details.The
digital filter algorithm is given in Appendix B of [13]. The length scales are chosen as δw0

in each direction. The Reynolds stresses have a Gaussian shape in y with amplitudes chosen
to be similar to the experimental peak intensities observed in incompressible mixing layer
[2].
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Figure 4: Schematic configuration of temporal mixing layer.

Periodic boundary conditions are enforced in the streamwise (x) and spanwise (z) di-
rections, while non-reflecting conditions are applied at both top and bottom boundaries (y
direction). The use of a periodic boundary condition in the x direction corresponds to the
temporal formulation of mixing layer evolution, which evolves only in time as it spreads in
y.

4.2. Mesh Requirements
Similar to [9], a computational domain of lengths Lx×Ly ×Lz = 1200 δθ0 × 370 δθ0 ×

270 δθ0 is used with the corresponding mesh points Nx ×Ny ×Nz = 512× 211× 131.
The same grid system uniformly spaced in the x and z directions and stretched in the y

direction is employed for all considered cases. The stretching function for the y-direction
is based on Ly

2
sinh(byη)

sinhby
, where Ly is the box size in the y-direction and the stretching factor

by = 3.4. The mapped coordinate η is equally spaced and runs from −1 to 1. The grid used
in this study contains an order of magnitude fewer cells than that of the DNS of Pantano and
Sarkar [28] compared to the domain length. To ensure that the computational domain in the
x- and z-directions is sufficiently wide, the two-point correlation functions were analyzed
in [13].

5. Numerical Results

LES using the subgrid model of [27] and WENO7fi was performed in [13] on the TML
problems at different convective Mach numbers Mc (0.1, 0.3, 0.8, 1.0, 1.5). Studies in [13]
show the level of good agreement obtained between LES and DNS for convective Mach
number 0.3. In higher convective Mach numbers (up to 1.5), LES results are in good agree-
ment with the experiments. Also, the principal compressibility effects such as the reduction
of the spreading rate and the turbulence intensities are well predicted.
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Figure 5: 2-D cut at midplane of instantaneous dilatation flow-field at τ = 1000 for three different convective
Mach numbers (Mc = 1.5 (top), 1.0 (middle), and 0.8 (bottom)).
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The flow features of this TML are determined by Mc. LES computations are carried
out up to dimensionless time τ = t∆U/δθ0 � 3000 for the higher convective Mach number
cases and τ � 1200 for the quasi-incompressible cases. Shocklets developed for Mc ≥ 0.8.
The shocklets are stronger and more complicated as Mc increases. Figure 4 shows the 2-D
cut at midplane of instantaneous dilatation flow field at τ = 1000 for three different convec-
tive Mach numbers (Mc = 1.5, 1.0, and 0.8). Figure 4 indicates the different flow pattern
as a function of Mc. Figure 5 shows the 2-D cut at mid plane and 3-D of instantaneous nu-
merical Schlieren of vorticity at τ = 2000 and Mc = 1.5 by WENO7fi. Figure 6 shows 3-D
iso-surfaces of instantaneous vorticity field from different viewing angles for Mc = 1.5.

For each Mc, after a transient phase, the momentum thickness approaches a separate
linear growth regime. LES results by WENO7fi for different convective Mach numbers
agree well with the analytically predicted slopes whereas WENO5 and WENO7 do not
agree well with the predicted slope for most of the Mc cases.

Figures 7-11 show the momentum thickness comparison among the three schemes for
each of the Mc cases. It is interesting to note that the global κ used by WENO7fi only shows
a slight improvement over WENO5 and WENO7 for Mc = 0.8 and 1.0. For the compress-
ibility factor computations to be shown next, WENO7fi compares well with experimental
data for all studied Mc, whereas this is not the case for WENO5 and WENO7.

Figure 12 displays the compressibility factor as a function of Mc by three high order
schemes comparing with published work and experiments. This figure shows the superior
performance of WENO7fi compared with WENO5 and WENO7. The LES results using
WENO7fi agree well with experimental results of Barone et al. (2006) [1], and published
direct numerical simulations (DNS) work of Rogers & Moser (1994) [31] and Pantano &
Sarkar (2002) [28]. In all Mc cases, no tuning of WENO7fi scheme parameters was needed.
For all the Mc cases considered, solutions by WENO5 and WENO7 compared poorly with
experimental data and DNS computations.

The unsteady time evolution of turbulence with shocklets for Mc = 0.8, 1.0 and 1.5
among WENO5, WENO7 and WENO7fi are very different in terms of the location and
strength of the shocklets and turbulent fluctuation pattern. Figure 13 shows the 2-D cut
at midplane of the numerical Schlieren of vorticity at τ = 2000 and Mc = 1.5 computed
by WENO7fi and WENO5. Figure 14 shows the 2-D cut at midplane of instantaneous
dilatation flow-field at τ = 2000 and Mc = 1.5 computed by WENO7fi and WENO5.

6. Concluding Remarks

The present work serves as a validation and performance study of the improved filter
schemes of [51] on a representative complex compressible turbulent flow consisting of a
wide range of flow speeds. All the computations use the global κ, the Ducros et al. splitting
of the inviscid flux derivatives and WENO7fi with κ = 0.7 described in Section 2.2.1. In all
Mc cases, no tuning of WENO7fi scheme parameters were needed. Studies indicated that
WENO7fi compared well with experimental data and published DNS work. For all the Mc
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Figure 6: Instantaneous numerical Schlieren pictures at τ = 2000 and Mc = 1.5 by WENO7fi indicating
shocklets formation.

15



Figure 7: Temporal mixing: Instantaneous numerical Schlieren of vorticity by WENO7fi at τ = 2000, Mc =
1.5, top and side views.
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Figure 8: Temporal mixing: Momentum thickness comparison for Mc = 0.1
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Figure 9: Temporal mixing: Momentum thickness comparison for Mc = 0.3
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Figure 10: Temporal mixing: Momentum thickness comparison for Mc = 0.8
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Figure 11: Temporal mixing: Momentum thickness comparison for Mc = 1.0
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Figure 12: Temporal mixing: Momentum thickness comparison for Mc = 1.5

.

cases considered, solutions by WENO5 and WENO7 compared poorly with experimental
data and DNS computations.

The same high order filter scheme is being used for the simulation of two much higher
Mc cases of Mc = 2, 3. The computational box size, especially in the y-direction has to
be doubled or more. A finer grid is also needed in order to obtain an accurate and stable
solution. These computations are many times more CPU-intensive than the lower Mc cases.
Results will be reported in a forthcoming paper.
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