Changes in Liver Metabolic Gene Expression after Radiation Exposure

C.P. Peters¹ and V. E. Wotring, Ph.D.²,³

¹Bethel University, St. Paul MN
²Pharmacology Discipline, NASA Johnson Space Center, ³Universities Space Research Association, Houston TX

Of 86 drug metabolism genes examined, expression of 52 were unchanged by any treatment level, some interesting trends are evident. It has metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. In other cases, there is little correlation of expression with dose (Cyp17a1, Cyp19a1). Some genes exhibited a post-exposure temporal pattern that is consistent regardless of dose (Cyp17a1, Cyb5r3, Adh5).

Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a damaged liver, removing effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver.

Although this was a preliminary study and the gene expression results have yet to be verified at the protein level, some interesting trends are evident. It has previously been shown that gamma radiation causes physiological oxidation (Ding, et. al., 2005). Many of the affected genes in this study are involved in reduction or removal of oxidized compounds. The greatest expression changes were in M2 (metalllothionein) and Cyp17a1, one of the cytochrome p450 enzymes. In these two cases, large expression increases were seen in response to high and low + high exposures. Metallothionein is usually thought to remove heavy metals from the body, but may also play a role in inflammation and oxygen free radical regulation (Sato et al., 2002). Expression of this gene is regulated by redox state (which can be affected by radiation exposure) in addition to metal concentrations and glucocorticoids. Increases in metallothionein expression have also been reported in livers of fish exposed to 75 mGy γ radiation (Olsvik et al., 2010). Cyp17a1 encodes an enzyme that adds an hydroxyl group to progesterone, which can then be converted to testosterone, estrogen or glucocorticoids. It seems likely that radiation exposure triggers a variety of homeostatic mechanisms, which could include alterations of gene expression. Better understanding of these pathways could aid in development of new countermeasures to ameliorate or prevent radiation-induced damage to cells and tissues.

It seems likely that radiation exposure triggers a variety of homeostatic mechanisms, which could include alternations of gene expression. Better understanding of these pathways could aid in development of new countermeasures to ameliorate or prevent radiation-induced damage to cells and tissues.

REFERENCES

ACKNOWLEDGEMENTS

The authors would like to thank Ms. Michelle Bassett for excellent animal care and Dr. Robert Ploutz-Snyder for statistical expertise. Treated tissue courtesy of J.H. Wu, NASA JSC via DOE grant. The JSC Human Health and Countermeasures Division Core Laboratories provided necessary instrumentation. C. P. Peters was supported by the Minnesota Space Grant. Funds for qPCR experiments were provided to V. Wotring by NASA JSC Human Research Program.