

# [4903]

# **Evaluation of Ocular Outcomes** in two 14-day Bed Rest Studies





Giovanni Taibbi, MD¹ Ronita L. Cromwell, PhD² Susana B. Zanello, PhD² Patrice O. Yarbough, PhD² Gianmarco Vizzeri, MD¹

Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX 2 Universities Space Research Association, Division of Space Life Sciences, Houston, TX

# **BACKGROUND**

• Ophthalmological changes have been recently reported in some astronauts involved in long-duration space missions:





 Head-down tilt Bed Rest (BR): ground-based analog to simulate the effects of microgravity on the human body

#### **PURPOSE**

• To evaluate ophthalmological changes in two 14-day BR studies

#### **METHODS**

- Two integrated, multidisciplinary 14-day BR studies at NASA Flight Analogs Research Unit (FARU): 0° (supine) and -6° head-down tilt
- · NASA standard screening procedures for BR studies

#### NASA bed rest studies STANDARDIZED CONDITIONS

- ✓ Subject to rest in bed at all times
- ✓ Monitoring by a subject monitor and an in room camera
   24 hours a day
- Daily measurement of vital signs, body weight, fluid intake and fluid output
- ✓ No napping permitted between 6:00 am and 10:00 pm
- ✓ Standardized diet

# NASA Flight Analogs Research Unit (FARU)



| integrated resistance and aerobic training: 6 days/wk | Exercise During BR | NO                                    |
|-------------------------------------------------------|--------------------|---------------------------------------|
|                                                       | OCULAR EXAMS:      |                                       |
| YES<br>1 Baseline (Office; BR -9)                     | Pre-BR             | YES<br>2 Baselines (Office; BR -10,-3 |
| NO                                                    | During BR          | YES Weekly (FARU; BR 4,11)            |
| YES<br>1 (Office; BR +4)                              | Post-BR            | YES<br>1 (Office; BR +2)              |

# **METHODS**

- Ophthalmoscopic evaluation of the retina and the optic disc (0° BR, pre- and post-BR)
- Stereophotographs of the retina and the optic disc (-6° BR, pre- and post-BR)
- Cycloplegic refraction and Best Corrected Visual Acuity (BCVA, at all time points)
- Intraocular pressure (IOP): Goldmann (pre- and post-BR); iCare (-6° BR, at all time points; IOP measured with Tonopen in 5 subjects)
- · SPECTRAL-DOMAIN OCT (pre- and post-BR):
- ✓ Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA; vers. 5.0):
  - > Optic disc parameters
  - > Average Retinal Nerve Fiber Layer (RNFL) thickness
  - ➤ Macular Cube average thickness
- ✓ Spectralis OCT (Heidelberg Engineering, GmbH, Heidelberg, Germany; vers. 5.1.3.0):
  - > Average RNFL thickness and total retinal thickness (macular, peripapillary)

#### **RESULTS**

|                                              | 0° Bed Rest        |                   |                | -6° Bed Rest         |                      |      |
|----------------------------------------------|--------------------|-------------------|----------------|----------------------|----------------------|------|
|                                              | Pre-BR *           | Post-BR *         | P <sup>5</sup> | Pre-BR *             | Post-BR *            | P 5  |
| Best Corrected Visual Acuity (logMAR)        | 0.00 (-0.12; 0.00) | 0.00 (0.00; 0.00) | 0.99           | -0.17 (-0.20; -0.11) | -0.20 (-0.24; -0.16) | 0.16 |
| Spherical Equivalent (Dioptres)              | -0.27 (1.62)       | -0.79 (1.72)      | 1.00           | -0.07 (1.33)         | -0.24 (1.36)         | 0.96 |
| CIRRUS HD-OCT:                               |                    |                   |                |                      |                      |      |
| Rim Area (mm²)                               | 1.34 (0.19)        | 1.36 (0.19)       | 0.83           | 1.37 (0.18)          | 1.38 (0.21)          | 0.96 |
| Cup Volume (mm3)                             | 0.02 (0.00; 0.26)  | 0.02 (0.00; 0.10) | 0.99           | 0.08 (0.03; 0.11)    | 0.07 (0.03; 0.12)    | 1.00 |
| Average RNFL Thickness (µm)                  | 93.56 (10.79)      | 92.00 (8.21)      | 1.00           | 93.41 (7.35)         | 93.72 (7.9)          | 0.96 |
| Macular Cube Average Thickness (µm)          | 280.56 (15.66)     | 277.13 (11.40)    | 0.99           | 282.97 (11.85)       | 284.25 (11.99)       | 0.99 |
| SPECTRALIS OCT:                              |                    |                   |                |                      |                      |      |
| Average Macular Thickness (µm)               | 331.96 (18.37)     | 331.19 (14.93)    | 0.49           | 332.80 (12.57)       | 331.88 (12.39)       | 0.83 |
| Average Peripapillary Retinal Thickness (µm) | 364.54 (31.67)     | 376.34 (34.40)    | 0.77           | 350.27 (29.34)       | 354.41 (29.93)       | 0.83 |
| Average RNFL Thickness (µm)                  | 97.33 (9.47)       | 96.00 (8.45)      | 1.00           | 96.94 (8.97)         | 98.09 (8.77)         | 0.50 |

BR, Bed Rest; MAR, Minimum Angle of Resolution; RNFL, Retinal Nerve Fiber Layer.

Mean (standard deviation) values for normally distributed variables; Median (first quartile, third quartile) values for non-normally distributed variables; \*Kolmogorov-Smirnov est for equality of distribution functions.





## **RESULTS**

| 0° BR        | -6° BR                          | Р                                                |
|--------------|---------------------------------|--------------------------------------------------|
| 9            | 16                              | -                                                |
| 34.00 (8.51) | 37.75 (8.78)                    | 0.31 *                                           |
| 8/1          | 12/4                            | 0.40 5                                           |
|              |                                 |                                                  |
| 5/2          | 11/5                            | 0.90 §                                           |
| 2            | -                               | -                                                |
|              | 9<br>34.00 (8.51)<br>8/1<br>5/2 | 9 16 34.00 (8.51) 37.75 (8.78) 8/1 12/4 5/2 11/5 |

BR, Bed Rest; \* Unpaired t-test; § Chi-square test.

- Three healthy subjects who completed the 0° BR study also completed the -6° BR study (at least 3-month interval between the two studies)
- BCVA was 20/20 or better pre- and post-BR in all participants.
   Baseline demographic and ophthalmic characteristics were not significantly different between the two studies (0.09 ≤ P ≤ 1.00)
- Subjects remained asymptomatic throughout the duration of BR
- In both studies, no significant changes compared to baseline were detected for the ocular parameters measured (see results Table and IOP box plots)
- In -6° BR study, IOP increased on average 1.8 mmHg (+13.3%) at BR 3 and 1.7 mmHg (+12.6%) at BR 10 from baseline. At BR +2, IOP decreased on average 1.1 mmHg (-7.2%) from BR 10. A case-by-case analysis revealed different patterns of IOP changes (see, for example, panels L-P)

## CONCLUSIONS

- -6° head-down tilt BR produced, in most cases, an initial increase in IOP, with subsequent stabilization and tendency to return to baseline values after BR
- More research is needed to evaluate ocular changes and to better characterize patterns of IOP changes related to long-duration BR
- Further studies will determine the validity of head-down tilt BR as a ground-based analog to study microgravity-induced ocular changes

#### SUPPORT

NASA Flight Analogs Project, 516724.03.04.01

## **DISCLOSURE**

Taibbi, G None; Cromwell, RL None; Zanello, SB None; Yarbough, PO None; Vizzeri, G None

gitaibbi@utmb.edu