
I/O Performance Characterization of Lustre and NASA Applications on Pleiades

Subhash Saini, Jason Rappleye, Johnny Chang, David Barker, Piyush Mehrotra, Rupak Biswas
NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center
Moffett Field, California 94035-1000, USA

{subhash.saini, jason.rappleye, johnny.chang, david.p.barker, piyush.mehrotra, rupak.biswas}@nasa.gov

Abstract—In this paper we study the performance of the
Lustre file system using five scientific and engineering
applications representative of NASA workload on large-scale
supercomputing systems such as NASA’s Pleiades. In order to
facilitate the collection of Lustre performance metrics, we
have developed a software tool that exports a wide variety of
client and server-side metrics using SGI's Performance Co-
Pilot (PCP), and generates a human readable report on key
metrics at the end of a batch job. These performance metrics
are (a) amount of data read and written, (b) number of files
opened and closed, and (c) remote procedure call (RPC) size
distribution (4 KB to 1024 KB, in powers of 2) for I/O
operations. RPC size distribution measures the efficiency of
the Lustre client and can pinpoint problems such as small
write sizes, disk fragmentation, etc. These extracted statistics
are useful in determining the I/O pattern of the application
and can assist in identifying possible improvements for users’
applications. Information on the number of file operations
enables a scientist to optimize the I/O performance of their
applications. Amount of I/O data helps users choose the
optimal stripe size and stripe count to enhance I/O
performance. In this paper, we demonstrate the usefulness of
this tool on Pleiades for five production quality NASA
scientific and engineering applications. We compare the
latency of read and write operations under Lustre to that with
NFS by tracing system calls and signals. We also investigate
the read and write policies and study the effect of page cache
size on I/O operations. We examine the performance impact
of Lustre stripe size and stripe count along with performance
evaluation of file per process and single shared file accessed
by all the processes for NASA workload using parameterized
IOR benchmark.

Key words: Lustre file system, I/O performance evaluation,
benchmarking, computational fluid dynamics, climate
modeling, Read and Write Policy, I/O cache effect, I/O latency.

I. INTRODUCTION
Several scientific and engineering applications running

on petaflop class supercomputers deal with increasingly
large data sets, and thus, the time required for input and
output of data can become a significant bottleneck [1]. It is
important for supercomputers to be not only balanced with
respect to the compute processor, memory, and
interconnect, but also with respect to the I/O performance.
That is, it is not just the number of petaflops per second that
matters, but also how many gigabytes per second or
terabytes per second of data can applications really move in
and out of disks that will affect whether these high
performance computing systems can be used productively
for new scientific discoveries. It is important that

application scientists begin to examine the characteristics of
the I/O resources available to them and how to best utilize
their capabilities. Parallel file systems such as Lustre [2-4]
are becoming very large, especially when supporting
petaflop class systems such as NASA’s Pleiades system. In
order to address these issues, the performance, stability,
robustness, and reliability of the Lustre parallel file system
needs to be studied.

In addition, recently the Open Scalable File Systems
(OpenSFS) Benchmarking Workgroup has been formed
with a plan to provide an I/O benchmark suite for the
scalable parallel file system administrators and users of
petaflop class computing facilities [5]. NASA is a member
of OpenSFS and its benchmarking working group. As a first
step, this group aims to characterize the I/O workloads of
parallel file systems deployed at various high-performance
computing facilities. Using these characteristics, the
working group will develop a suite of I/O benchmarks to
emulate these workloads.

Recently, several researchers have conducted
performance evaluation and characterization of parallel file
systems such as CXFS, GPFS, PVFS2, Lustre, etc. Saini et
al used I/O benchmarks and applications on SGI Altix and
NEC SX-8 super clusters [6]. Using the MADbench2
benchmark Borrill et al studied the I/O performance on
several supercomputers ([7-8]. Yu et al characterized the
performance of several I/O benchmarks on the Lustre file
system [9]. These investigations did not collect
performance metrics of Lustre file system using
performance monitors or measured the overhead of I/O
operations using system calls and signals.

To the best of our knowledge, our contributions in this
paper are as follows:

• Conducted a survey of the NASA scientific and
engineering workload applications to characterize the
I/O requirements and thus define the parameters for
I/O benchmarks.

• Developed the NAS Lustre Performance (NLP)
package to collect Lustre performance data at the end
of a batch job.

• Used our newly developed performance tool to collect
Lustre performance data for five production quality
NASA applications from different disciplines such as
structured and unstructured computational fluid
dynamics, climate and cosmology [12-16].

• Investigated the latency of read and write system calls
under Lustre and NFS on Pleiades [2-4, 17-18]

• Investigated the read and write policies of Lustre.
• Investigated the effect of page cache on I/O.
• Investigated the optimal Lustre stripe size and stripe

count on Pleiades using I/O parameters representative
of NASA workload.

• Modeled and parameterized the NASA workload
using IOR benchmark [19] to study the performance
of file per process and single shared file paradigms.

The remainder of the paper is organized as follows.
Section II gives details of the NASA I/O workload. In
section III we present the computing platform and I/O file
system used in this paper. Section IV presents performance
metrics of the Lustre parallel file system. Section V
describes the I/O benchmarks used in the present study.
Section VI presents the methodology followed in the paper.
Section VII gives an overview of production level
applications used. Section VIII gives the results of our
investigation. Finally, Section IX contains the conclusion
and future work.

II. NASA I/O WORKLOAD
Based on our survey of the NASA scientific and
engineering applications, we characterized the I/O
requirements of typical applications run on our system
based on the following parameters:
• access pattern (random/sequential and read/write),
• size of each read and write operation,
• file type (shared: all processes read/write one shared

file, or one-file-per-processor: each process
reads/writes its own separate file), and

• programming interface (POSIX, MPI-IO, HDF5,
Parallel-HDF5, NetCDF and pNetCDF).

The major results of this survey include:

• Random access is rare for NASA applications; I/O
access is dominated by sequential operations.

• Write is dominated by append-only writes
• I/O read and write sizes vary widely: from a few KB to

several GB.
• The majority of applications perform sequential I/O

where each process/rank sends its data to the master
(rank 0), which then writes the data to a single file. The
advantages of this approach are that it is simple and the
performance is reasonable for small IO sizes. The
disadvantages are that it is not scalable and efficient,
slow for large number of processes (ranks) or data
sizes, and may not be possible if rank 0 is memory
constrained.

• Few applications use HDF5 and NetCDF.

Five production-quality NASA applications were
selected that provide good coverage of the above set of I/O
characteristics [12-16]. They are described in Section VII.

III. COMPUTING PLATFORM AND I/O FILE SYSTEM
NASA’s Pleiades supercomputer system is located at

NASA Ames Research Center. Pleiades comprises 11,776
nodes (126,720 cores) based on four different Intel Xeon
processors: Harpertown, Nehalem-EP, Westmere-EP and
Sandy Bridge-EP. The nodes are interconnected with three
generations of InfiniBand (IB) network in a hypercube
topology: DDR, QDR and FDR data rates. In this study, we
used only the Westmere-EP based nodes using QDR IB
interconnect [18]. Pleiades has two file systems, namely, an
NFS home file system and a Lustre parallel file system.
A. Home File System: NFS

The home file system on Pleiades is exported from an
SGI XE500 with two quad-core Nehalem processors and
48 GB of RAM. It is a Network File System (NFS)
mounted on all of the Pleiades front-ends, bridge nodes and
compute nodes [17]. It consists of a single 4 + 1 RAID 5
volume on an SGI IS220 controller, providing 1 TB of
usable storage [18].

B. Parallel File System: Lustre
The Lustre file system is composed of four components:

Lustre clients, object storage servers (OSS), object storage
targets (OST), and Metadata servers (MDS). Figure 1 is a
schematic diagram of these four components of Lustre.

Figure 1. Lustre components.

The file metadata is controlled by a MDS and stored on
a Metadata Target (MDT). OSSs manage a set of OSTs by
controlling I/O access and handling network requests to
them. OSSs contain metadata about the files stored on their
OSTs. OSTs are block storage devices that store user file
data in one or more objects, with each object stored on a
separate OST.

Pleiades has six Lustre file systems each containing one
MDS and one MDT, eight OSSs, 60 to 120 OSTs that
provide a total of 6.8 PB of storage and serve thousands of
compute nodes. MDT sizes range from 0.6 TB to 0.9
TB [18]. Sizes of OSTs are from 7.1 TB to 15 TB. Total
space available in each file system is from 424 TB to
1.7 PB. The default stripe size and stripe count are 4 MB

and 1, respectively. Currently, Lustre version 1.8.6 is used
to manage these file systems.

IV. LUSTRE PERFORMANCE METRICS
Lustre provides a wealth of performance information on

both clients and servers via the Linux proc file system. This
includes the client read and write remote procedure
call (RPC) size distribution, metadata operation counters,
distributed lock manager metrics, and the per block-device
I/O sizes. This performance data can be used to characterize
the performance of one or more Lustre clients in
aggregate!usually in terms of a single batch job!and also
of the Lustre servers themselves.

The bulk of the analysis performed in this paper is the
result of examining the RPC size distributions and metadata
operation counts when running various applications on
Pleiades. Lustre, being a POSIX-compliant file system,
presents a unified file system interface such as open(),
read(), write(), etc. to the user. In Linux, this unified
interface is achieved through the Virtual File System (VFS)
layer. There is a thin layer in Lustre called Lustre Lite
(llite) that is hooked with VFS to present that interface. The
file operation requests that reach llite go through the whole
Lustre software stack to access the Lustre file system.

It is worth noting that for many reasons, there is not a
one-to-one correspondence between system calls and RPCs,
and also between RPCs and disk I/O. For example, when
buffered I/O is used (as opposed to direct I/O), applications
write system calls result in dirtying pages in the page cache.
Lustre will aggregate multiple pages together when sending
an RPC. Thus, a series of small sequential writes may result
in a much larger RPC being sent to the server. For read
system calls to sequential locations in a file, the Lustre
read-ahead mechanism can result in a larger read RPC
being issued than the size specified in the system call itself.

V. I/O BENCHMARKS
In this section we describe the I/O benchmarks used in

our study.
A. Sequential I/O Benchmark
Sequential Write Read (SWR) is a single process I/O
benchmark that writes and reads any size of file using
various block sizes, stripe sizes and stripe counts. This
benchmark mimics sequential I/O where all the processes
send data to a master process, which writes to disk.
B. IOR HPC Benchmark:

Lawrence Livermore National Laboratory (LLNL)
developed Interleaved Or Random (IOR) benchmark to
procure their supercomputers [19]. It can do
parallel/sequential read/write operations that are typical in
scientific applications. It has options for one file per process
or single shared file accesses by all the processes.
Furthermore, its API provides the option for modern file
systems such as POSIX (shared or unshared), MPI-IO,
pHDF5, and pNetCDF.

VI. METHODOLOGY
In this section we describe the methodology adopted in

this study. All I/O runs were done during production time
so performance depends on other jobs running on the
system. We ran each benchmark five times and present the
best value.

A. Package for Collecting Lustre Performance Metrics

We have developed the NAS Lustre Performance (NLP)
package, based on two components of SGI’s PCP
package [10], to collect Lustre performance data and
produce human-readable reports at the end of each Pleiades
batch job. The package consists of two main components.
First is an agent that uses the Performance Metrics Domain
Agent (PMDA) interface [11] to collect performance
metrics provided by Lustre in the proc file system. In
general, a PMDA collects a specific set of metrics and
implements a specific set of API calls that are used by
another daemon to fetch the data when it is needed.

As the second component of the NLP package, we have
implemented a set of scripts that gathers metrics from the
agent, aggregates them together, and generates the Lustre
performance report for each job. The Lustre metrics are
collected from each compute node in a job using a script
that invokes the performance metrics value
dumper (pmval) command [20] provided in the
Performance Co-Pilot (PCP) package. The pmval command
retrieves the value of a metric from a local or remote host.
The metadata, bytes read, bytes written, and RPC histogram
are collected and stored on a per file system basis. The RPC
histograms require some additional processing. The Lustre
clients store the histograms on a per-OST basis, therefore
the RPC counts must be added up for all OSTs on each file
system. The metrics are collected at the beginning and end
of each job. The delta is calculated, and a report is
generated that is included in the output for the user's job.

Sample performance statistics for the Enzo application
reads and writes to Lustre file system extracted by the NLP
package is shown in Tables I and II. The statistics block
lists the number of Lustre operations and the volume of
Lustre I/O generated for each file system. The I/O volume
is listed in total, and is broken out by RPC size. The
following metadata operations statistics are also listed:

• Number of file opens and closures on the Lustre file
system

• Number of stat and statfs query operations invoked by
commands such as "ls -l" and “du”

• Total amount of data read and written in gigabytes.

TABLE I. EXTRACTED PERFORMANCE METRICS USING NLP
PACKAGE.

I/O
RPC Size (KB)

4 8 16 32 64 128 256 512 1024
Read 12243 264 56 81 242 269 543 1812 26572
Write 393 62 198 155 96 74 199 595 52606

TABLE II. EXTRACTED PERFORMANCE METRICS USING NLP
PACKAGE.

Number of files stats Amount of data (GB)
Open Close stat statfs Read Write
5303 5769 12460 0 54 56

The read and write operations are further broken down
into buckets based on RPC size. In Table I, the first bucket
reveals that 12243 data reads occurred in blocks between 0
and 4 KB in size, 264 data reads occurred with RPC sizes
between 4 KB and 8 KB, and so on. As noted before, the
RPC size data may be affected by library and system
operations and, therefore, could differ from expected
values. That is, small reads or writes by the program might
be aggregated into larger RPC operations, and large reads
or writes might be broken into smaller pieces. High counts
in the smaller buckets in the I/O pattern of the application
are an indication of I/O inefficiency.

These client-side metrics can also be useful in detecting
problems after a Lustre upgrade. For example, a recent
regression in the read ahead code caused some previously
well-behaved access patterns - resulting in mostly 1 MB
RPCs – to generate 8 KB RPCs instead. Comparison of per-
job Lustre metrics for similar workloads, before and after
an upgrade, can help to uncover future regressions in the
Lustre file system client code.

B. IOR Parameters
The IOR benchmark provides an option of choosing

several parameters [19]. Table III gives IOR parameters we
used in our study. With appropriate choice of the IOR
parameters, one can emulate I/O pattern to closely match
the data access pattern of applications.

TABLE III. IMPORTANT IOR BENCHMARK PARAMETERS.

Parameter Description Parameter Choices
 API File format POSIX, MPI-IO, HDF5
 FilePerProc One/file/proc, shared True or False
 WriteFile Write file on disk True or False
 ReadFile Read file from disk True or False
 NumTasks Number of tasks System limited
 BlockSize Blocks to write/task KB, MB or GB
 TransferSize I/O transaction/task Divisible by BlockSize

C. Lustre Parameters: Stripe Size and Stripe Counts

A key feature of the Lustre file system is its capability
to distribute the pieces of a file across several OSTs,
essentially a set of parallel IO disks, using a technique
called file striping.

A file is striped when data is separated into stripes
(small chunks), so that read and write operations can access
multiple OSTs concurrently. Stripe size is the amount of
data to store on one OST before moving to the next. Stripe
count is the number of OSTs over which to stripe a file.

File striping will most likely improve performance of
applications that read or write to a single or multiple large

shared files. Striping will likely have little effect for the
following types of I/O patterns:

• Sequential I/O where a single process performs all
the I/O, (stripe size will have little effect, but stripe
count does have a large effect).

• Multiple nodes perform I/O, but access files at
different times.

• Multiple nodes perform I/O simultaneously to
different files that are small (each < 100 MB).

Storing a single file across multiple OSTs may increase
the bandwidth available when accessing the file. However,
striping has disadvantages, namely, increased overhead due
to network operations and having to access multiple servers.

VII. SCIENCE AND ENGINEERING APPLICATIONS
We used the following five production quality full

applications representative of NASA’s workload to collect
the Lustre performance metrics on Pleiades. Brief
description of these applications is given below.

OVERFLOW-2 is a general-purpose Navier-Stokes solver
for CFD problems [12]. The code uses finite differences in
space with implicit time stepping. It uses overset-structured
grids to accommodate arbitrarily complex moving
geometries. The dataset used is a wing-body-nacelle-pylon
geometry (DLRF6), with 23 zones and 36 million grid
points. The input dataset is 1.6 GB in size, and the solution
file is 2 GB.

CART3D is a high fidelity, inviscid CFD application that
solves the Euler equations of fluid dynamics [13]. It
includes a solver called Flowchart, which uses a second-
order, cell-centered, finite volume upwind spatial
discretization scheme, in conjunction with a multi-grid
accelerated Runge-Kutta method for steady-state cases. In
this study, we used the geometry of the Space Shuttle
Launch Vehicle (SSLV) for the simulations. The SSLV
uses 24 million cells for computation, and the input dataset
is 1.8 GB and output file is 1 GB. The application requires
16 GB of memory to run.

USM3D is a 3-D unstructured tetrahedral, cell-centered,
finite volume Euler and Navier-Stokes flow solver [14].
Spatial discretization is accomplished using an analytical
reconstruction process for computing solution gradients
within tetrahedral cells. The solution is advanced in time to
a steady-state condition by an implicit Euler time-stepping
scheme. The test case used 10 million tetrahedral meshes,
requiring about 16 GB of memory and 10 GB of disk space.
Input and output files are 1 GB and 8 GB respectively.

MITgcm (MIT General Circulation Model) is a global
ocean simulation model for solving the fluid equations of
motion using the hydrostatic approximation [15]. The
MITgcm test case uses 50 million grid points and requires
32 GB of system memory and 20 GB of disk to run. Input

file is 1 GB. It writes checkpoint file of 8 GB of data using
Fortran I/O. The test case is a ! degree global ocean
simulation with a simulated elapsed time of two days.

Enzo is an adaptive mesh refinement (AMR), grid-based
hybrid parallel code for astrophysics and cosmology
simulations and uses hybrid physics (fluid + particle +
gravity + radiation) and has physics capabilities like ideal
magneto hydro dynamics (MHD), radiation transport (ray
tracing and flux limited diffusion), star particle class,
metallicity-dependent cooling, and several new hydro
solvers [16]. Input and output files are 54 GB and 56 GB
respectively. The root grid is read into the root core and
then partitioned to separate cores using MPI
communication.

VIII. RESULTS
In this section we present the performance metrics

(amount of read and write, number of file opens and
closures and RPC size distribution) for five NASA
applications extracted by the NLP package we developed.
We also present the latency of open and close operations by
monitoring all the relevant system calls using a Linux utility
called Strace for both NFS and Lustre file system. Finally,
we characterize the Pleiades Lustre file system to determine
the optimal stripe size and stripe counts that can enhance
the performance of the applications.

A. Extraction of Performance Metrics

In this section we present the performance metrics such
as total amount of data read and written, total number of file
opens and closures and RPC size distribution of write and
read data.

1) Amount of Read and Write Data

Figure 2 shows total amount of data read and written by
the five applications for our chosen datasets. Amount of
read data is 1 GB, 2 GB, 4 GB, 6 GB, and 54 GB for
MITgcm, Overflow, Cart3D, USM3D and Enzo
respectively. The smallest grid read is by MITgcm,
whereas Enzo reads the largest. All five applications
perform sequential I/O where the master process reads the
input data and then either broadcasts (Cart3D) or uses
sends/receives to communicate the relevant portions to the
other processes. Amount of write data is 9 GB, 3 GB, 1 GB,
1 GB, and 56 GB for MITgcm, Overflow, Cart3D, USM3D
and Enzo respectively. For write, the master process
collects data from other processes and then writes to the
file. For applications with large grid files or large output
files (i.e. checkpoint, restart, or visualization files)
sequential I/O is a bottleneck, especially with large numbers
of cores. Although these applications perform sequential
I/O, they can benefit from using large stripe size and stripe
counts as discussed in Section VIII-C-2.

Figure 2. Amount of read and write data for five applications.

2) Number of File Opens and Closes
 Figure 3 shows the number of files opened and closed

by three applications (USM3D, Overflow and Cart3D) for
cores ranging from 32 to 128. For all three applications, the
number of file opens and closures are under 60 and increase
with increasing number of cores as each core writes its own
intermediate data during computation. However, major
potions of the I/O are done while reading in a grid file at the
beginning and writing a checkpoint or restart file at the end.
Figure 4 shows the corresponding data for MITgcm and
Enzo. Number of file opens and closures for these two
applications is much higher than those of Figure 3. It is
clear that MITgcm and Enzo are I/O intensive and will
benefit from using optimal stripe size and stripe count (see
Section VIII-C-2). Large numbers of file opens and
closures in MITgcm and Enzo lead to poor scalability as
overhead (latency) in open, close and read/write in Lustre is
very high (see Section VIII-B).

Figure 3. Number of files opens and closes for three applications.

Figure 4. Number of file opens and closes for MITgcm and Enzo.

3) RPC Size Distribution:

In this subsection we present RPC size distribution of
read and write as measured by our newly developed tool for
five applications (Overflow, Cart3D, USM3D, MITgcm
and Enzo) under Lustre on Pleiades.
Overflow: Figure 5 shows RPC size distribution under
Lustre for Overflow on number of cores ranging from 8 to
128. Most of the reads and writes (number of RPC blocks
ranging from 1550 to 1950) are with RPC size of 1024 KB
on all the cores. Number of reads (input grid file of 2 GB)
with RPC size 4 KB increase gradually from 264 to 2016
with increasing core counts from 8 to 128 whereas
corresponding writes (3 GB restart/output file) remain
almost constant between 22 and 27. Number of reads is
higher than writes by a factor of 10 and 20 for 256 KB and
512 KB RPC sizes. However, for an RPC size of 1024 KB,
number of writes is higher than reads by 400. Large
number of RPC for 4 KB is an indication of inefficiency of
Lustre file system.

Figure 5. RPC size distribution under Lustre for Overflow.

Cart3D: Figure 6 shows RPC size distribution under Lustre
for Cart3D on number of cores ranging from 8 to 128. Most
of the reads (input grid file is 4 GB) and writes (output file
of 1 GB) are either for RPC sizes 4 KB or 1024 KB. For an
RPC size of 4 KB, number of reads are always much higher
than number of writes and increase with core counts.
However, for an RPC size of 1024 KB, number of reads is
almost constant ranging from 1662 to 1672 and there are no
writes.

Figure 6. RPC distribution under Lustre for Cart3D.

USM3D: Figure 7 shows RPC size distribution for USM3D
for 32, 64 and 128 cores. Most of the writes (1 GB) are
done using RPC size of 1024 KB. However, reads (6 GB
grid file) are done using RPC sizes of 4 KB and 1024 KB.

Figure 7. RPC size distribution under Lustre for USM3D.

MITgcm: Figure 8 shows RPC size distribution for

MITgcm for cores ranging from 64 to 240. Most reading
(grid file of 1 GB) is done using RPC size 4 KB whereas
most of the writes (check-point file of 8 GB) use 1024 KB
RPC size. In addition to the checkpoint file, MITgcm does a
lot of other writes amounting to 1 GB as is evident from the
very the high numbers of file opens and closures (see
Figure 4) and uses RPC sizes ranging from 4 KB to 1024
KB. Most of the writes (8 GB out of total of 9 GB) are a
final checkpoint file and a remaining 1 GB is written by
thousands of cores, which need to perform I/O and these
small I/O operations (including open, close, read, write,
etc.) are very expensive (see Section VIII-B). This
performance bottleneck in MITgcm related to opening and
closing thousands of files has been detected for the first
time by our Lustre performance metric extraction tool.

Figure 8. RPC size distribution under Lustre for MITgcm

Enzo: Figure 9 shows RPC size distribution of Enzo for
RPC sizes ranging from 4 KB to 1024 KB. Amount of read
and write data is 54 GB and 56 GB respectively. Most of
the reads and writes are done using an RPC size of 4KB and
1024KB. For 4 KB, the number of reads and writes are
12243 and 393 respectively and corresponding numbers for
1024 KB are 36576 and 52606.

Figure 9. RPC size distribution under Lustre for Enzo.

In summary, large number of RPC for 4 KB is an
indication of inefficiency of Lustre file system because
latency for 4 KB RPC size is 256 times higher than 1024
KB RPC size.
B. Lustre Read and write Latency

The performance indicator that most directly impacts
clients is latency. Writes are typically fast until Lustre's per-
OST dirty page limit is reached. Reads are typically issued
immediately and, when Lustre read ahead is triggered, will
result in large RPCs. However, even for well-formed client
RPCs, other factors can impact the per-request latency (e.g.
server load from other jobs, on-disk and memory
fragmentation on the server, and network problems).

Determining the latency distribution for high-level
Lustre metrics and the key internal operations that drive
them would benefit us in a couple of ways. First, looking at
shifts in the distribution from the norm would allow us to
determine when the system is performing poorly. Second,
examining the latency of underlying operations will help
drive root cause analysis. For example, slow writes can be
caused by a number of different factors, including waiting
for block allocations, slow disk controllers, and waiting for
a journal checkpoint to complete.

It is not necessary for an application to do I/O in very
large chunks because Lustre and the page cache will
aggregate I/O. Typically, Lustre client nodes will do their
best to aggregate I/O into 1 MB chunks and keep up to 8
I/O requests "in flight" at a time, per OST. There is a per
syscall (Linux system calls) overhead for locking and such,
so using 1 MB or larger read/write requests will minimize
this overhead.

In view of the aforesaid, we have measured the latency
for writing and reading 8 bytes of data on the Lustre file
system. We used the Linux utility Strace to track all the
system calls and signals for read and write operations under
both NFS and Lustre [2-4, 17, 21]. In order to open a file to
read or write 8 bytes and then close it, the following system
calls are invoked by the Fortran run time library: getcwd,
open, ioctl, fstat, lseek, ftruncate, write, and close. The
getcwd function determines the path name of the existing
directory. To open a file one uses the fopen function, which
returns a file pointer. Once the file is opened, the file
pointer is used to let the I/O library perform input and
output operations on the file. ioctl is for device-specific read

/write operations. The fstat function obtains information
about an open file associated with the file descriptor and
writes it to the area pointed to by the buffer. The lseek is to
change the position of a file pointer. The ftruncate truncates
the file. The close is to close the file.

To assess the overhead of write and read operations
under Lustre, we also ran the Strace benchmark under NFS.
We ran the benchmark five times and found that latency is
almost constant. Figure 10 shows the average write latency
for 8 bytes of data for each of these nine system calls on
both Lustre and NFS file systems. Write latency for open,
fstat, ftruncate and write on Lustre is higher by a factor of
1.6, 39.9, 3.6 and 2.0 than that on NFS respectively.

Figure 10. Write latency for 8 bytes on Lustre and NFS file systems.

Figure 11 show the average read latency for 8 bytes of
data for each of these seven system calls on both Lustre and
NFS file systems. Read latency for fstat, read and close on
Lustre is higher by a factor of 83.1, 3.1 and 22 than on NFS
respectively.

Figure 11. Read latency for 8 bytes on Lustre and NFS file systems.

C. Modeling I/O Behavior of Applications
In this subsection we model the I/O of four applications

used in this paper (Overflow, Cart3D, USM3D and
MITgcm). These four applications perform sequential I/O
(reading grid file and writing checkpoint/restart file), i.e., all
the processes send data (using MPI-Send/Recv or
MPI_Gather) to rank 0, which writes it to the file. For read,
rank 0 reads the data from file and then sends (using
MPI_Send/Recv or MPI_Bcast) to other ranks. Memory of
a node we studied is 24 GB. File size was chosen to be 8
GB and 56 GB to ensure that for 8GB data comes from
memory cache and for 56 GB it comes from disk. We did
not include application Enzo as it uses HDF5 format. In
addition, we present results on multiple OSTs with various
stripe sizes and block sizes to find an optimum set of Lustre

parameters that can give the highest I/O performance for the
NASA applications investigated in this paper.

1) Performance on a Single OST

We investigated the write and read policies on both NFS
and Lustre on Pleiades. We ran the SWR benchmark for
writing and reading 8 GB and 56 GB files. It may be
recalled that the Pleiades Westmere node (12 cores) has 24
GB of memory. The kernel uses 1 GB and the rest is
available for user applications. We wanted to investigate
whether a write operation goes straight to disk or the data is
stored in page cache before being written out and whether a
read operation reads data from the disk or the memory
buffer. Note that the I/O controllers have policies for both
read and write operations:
Read Policy: The read policy dictates whether the
controller reads sequential sectors of the logical drive when
seeking data or not.
• Read-Ahead policy is one in which the controller reads

sequential sectors of the logical drive prior to the
issuance of the read instruction. This improves system
performance if the data actually exists on sequential
sectors of the logical drive.

• No-Read-Ahead policy is one where the controller does
not use read-ahead policy.

• Adaptive Read-Ahead policy is one where the
controller initiates read-ahead only if the two most
recent read requests accessed sequential sectors of the
storage disk. If subsequent read requests access random
sectors of the disk, then the controller reverts back to
no-read-ahead policy. The controller continues to
monitor whether read requests are accessing sequential
sectors of the disk or not, and can initiate read-ahead if
necessary.

Write Policy: The write policy controls whether the
controller sends a write-request completion signal as soon
as the data is in the buffer cache or after it has been written
to disk.
• Write-back caching is one in which the controller sends

a write-request completion signal as soon as the data is
in the controller cache but has not yet been written to
disk. Write-back caching improves performance since
subsequent read requests can more quickly retrieve
data from the controller cache than they could from the
disk. Write-back caching however entails a data
integrity risk, since a system failure could prevent the
data from being written to disk even though the
controller has sent a write-request completion signal. In
this case, data may be lost. Other applications may also
experience problems when taking actions that assume
the data is available on the disk.

• Write-through caching is one in which the controller
sends a write-request completion signal only after the
data is written to the disk. Write-through caching
provides better data security than write-back caching,
since the system assumes and reports that a write has
been completed only after it has been safely written to
the disk.

Figure 12 shows write and read bandwidth for 8 GB and
56 GB files. Write bandwidth is same for both 8 GB and 56
GB file: averages are 223 MB/s and 217 MB/s for 8 GB and
56 GB file respectively. On the other hand read bandwidth
is 4853 MB/s and 370 MB/s for 8 GB and 56 GB file i.e.
bandwidth for 8 GB file is higher than that for 56 GB file
by a factor of 13. Clearly for 8 GB file, data is being read
from page cache. On the other hand, for the 56 GB file,
data is being read from disk as there is not enough memory
on the node to cache the 56 GB file. The disparity between
the write bandwidth for both file sizes and the read
bandwidth for the 8 GB file (being read from cache) would
seem to indicate a write-through caching policy is in effect.
However, we know that this is not necessarily the case
under Linux unless one is performing direct I/O. Some
mechanisms in Lustre may be limiting the single process,
single OST throughput, including the per-OST limit of 32
MB of dirty data and the per-OST maximum of eight
outstanding RPCs at any given instance. Further testing is
needed to find if one or a combination of these two factors,
or possibly some other factor, is limiting write performance.

Figure 12. I/O bandwidth for 8 GB and 56 GB disk files.

Figure 13 shows the write bandwidth of a single writer
to a single OST by varying the block size for writing 56 GB
file on a disk. It is clear from this figure that write and read
bandwidth does not depend on the block size (amount of
data transferred per read or write call). The average write
bandwidth on NFS and Lustre is 270 MB/s and 220 MB/s
respectively – better by 19% on NFS than that on the
Lustre. The reason for this is that the latency for fstat and
writes is much higher on Lustre (see Figures 10). Read
bandwidth on Lustre is better by 66% than on NFS (385
MB/s versus 232 MB/s respectively).

Figure 13. I/O bandwidth on NFS and Lustre using single OST.

2) Performance on Multiple OSTs
In this subsection, we present results for multiple OSTs

with various stripe sizes and block sizes to find optimum
Lustre parameters that can give the highest I/O
performance. Figure 14 shows the write bandwidth on 16
OSTs and for various stripe sizes ranging from 1 MB to 64
MB and block sizes ranging from 4 KB to 16384 KB.
Maximum write bandwidth is 714 MB/s for 1 MB block
size and 32 MB stripe size. As mentioned earlier the write
bandwidth for single OST is 220 MB/s so with 16 OSTs it
has increased by a factor of 3.2. Lowest write bandwidth is
for 4 KB block size and then it increases gradually until 256
KB. The reason for this is that there is more overhead for a
small block size compared to a large block size. Figure 15
shows the corresponding results for read bandwidth.
Maximum read bandwidth is 920 MB/s for 2 MB block size
and 1 MB stripe size. It may be recalled that for single OST
read bandwidth is 385 MB/s so with 16 OSTs it has
increased by a factor of 2.4. Clearly, 16 OSTs increase both
the write and read bandwidths, by factors of 3.2 and 2.4,
respectively.

Figure 14. Write bandwidth for various stripe sizes on 16 OSTs.

Figure 15. Read bandwidth for various stripe sizes on 16 OSTs.

Figure 16 shows the I/O (write and read) bandwidth for
single OST and 16 OSTs. We notice that write bandwidth is
much better with 16 OSTs compared to that on a single
OST. Figure 17 shows the percentage improvement of I/O
on 16 OSTs relative to 1 OST. Maximum percentage
improvement is 239% and 170% for write and read
respectively. Maximum for write and read is for a block
size of 1024 KB and 256 KB respectively.

Figure 16. I/O bandwidth single OST and 16 OSTs.

Figure 17. Percentage I/O improvement with 16 OSTs over 1 OST.

D. File per Process vs. Single Shared File
In this section we compare the performance of file-per-

process and single-shared-file approaches using IOR in
POSIX mode. We used a transfer size of 16 MB and block
sizes ranging from 16 MB to 8 GB. We used 8 cores per
node). The aggregate file size ranged from 128 MB to 128
GB. All the tests were conducted in non-dedicated mode,
i.e. with users running on other parts of the system. To
account for this, we ran each test 5 times and used the
maximum performance rate (MB/s).

In measuring the I/O performance, file caching due to
page cache results in measured read bandwidth rate to be
very high as the data is being buffered in memory rather
than being written directly to the disk. The page cache uses
unused memory of a compute node to buffer I/O
transactions and flush them to disk later on to improve I/O
performance for small files. In order to avoid the caching
effect on I/O performance, we used the I/O files to be much
larger than compute node memory size. As noted before,
each Pleiades Westmere compute node has 24 GB of
memory.

Figure 18 shows the measured aggregate I/O bandwidth
for 8 processes using one file per process and single shared
file strategy for different aggregate file sizes. Aggregate file
sizes was changed by changing the block size, i.e. aggregate
file size = BlockSize*NumTasks, while TransferFile size
was fixed at 16 MB. When the file size is small (4 GB or
less), file caching has a considerable effect on the
performance. For read bandwidth there are clearly two
performance regions on Pleiades. When the file size is from
128 MB to 4 GB, read bandwidth for both single file per

process and single shared file ranges from 5 GB/s to 9
GB/s, which shows that the data clearly remains in the page
cache after it is written. During this regime, the read
performance corresponds to the memory read performance.
As the file size increases, the page cache can no longer hold
all the data and the read operation must get the data from
the disk. The read performance degrades and gradually
becomes stable when all data access is from disks. When
the read data comes from disk, read bandwidth is 1 GB/s
and 250 GB/s for file-per-process and single shared file
respectively. We see no memory buffer or caching effect on
write bandwidth for both single-file-per-process and single
shared file and write rates vary from 790 MB/s to 1.295
GB/s and 251 MB/s to 204 MB/s respectively. Write
bandwidth for single file per process is higher than single
shared file by a factor of 3.1 to 6.3.

Figure 18. I/O bandwidth of file per process and shared file.

IX. CONCLUSIONS
In this work, we analyzed the NASA scientific and

engineering workload to develop a better understanding of
the I/O strategies used by a diverse array of applications.
We developed a performance metric tool to determine the
RPC size distribution; useful information to pinpoint the
bottlenecks because more I/O done using small RPCs points
to inefficient use of Lustre file system. RPC size
distribution measures the efficiency of the Lustre system.
Knowledge of number of file opens and closes enables an
application scientist to use I/O strategies to increase the
performance of I/O in their applications. Information about
amount of I/O data helps users choose the optimal stripe
size and stripe counts to enhance I/O performance. The
extracted statistics are useful in determining the I/O pattern
of the application and can assist in identifying possible
improvements of users applications.

We also measured the overhead associated with write
and read and write operations on both NFS and Lustre
system. We examined the read and write policies on
Pleiades Lustre file system and found that when compared
to read performance, write performance behaved as if it
were being performed using a write-through caching policy,
and reads can have a higher performance when they come
from page cache. Finally, we also investigated the “cache
effect” on the I/O operations.

We characterized the Pleiades Lustre file system to
determine the optimal stripe size and stripe counts, which

enhance the performance of the applications significantly.
We studied the I/O performance for single file per rank and
single shared file accessed by all the ranks on Pleiades. We
have shown that the I/O performance on Pleiades is highly
dependent on file access type, access pattern, size, and I/O
transaction size. We found that performance of file per
process is much better than that using single shared file.

It is clear that increasingly larger-scale supercomputers
will require that application developers examine the I/O
capabilities that will be available to them and determine
how best to utilize them.

References
[1] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,

“I/O performance challenges at leadership scale,” in Proceedings of
Supercomputing, SC09, November 2009.

[2] Lustre: http://wiki.lustre.org/index.php/Main_Page
[3] Lustre Operations Manual –Version 1.8,

http://wiki.lustre.org/index.php/Lustre_Documentation
[4] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and I. Huang.

Understanding Lustre filesystem internals. Technical Report,
ORNL/TM-2009/117, Oak Ridge National Lab., National Center for
Computational Sciences, 2009.
http://wiki.lustre.org/index.php/Lustre_Center_of_Excellence_at_O
ak_Ridge_National_Laboratory

[5] OpenSFS: Open Scalable File system Inc., http://www.opensfs.org/
[6] S. Saini, D. Talcott, R. Thakur, P. A. Adamidis, R. Rabenseifner,

and R. Ciotti, “Parallel I/O Performance Characterization of
Columbia and NEC SX-8 Superclusters,” in IPDPS, 2007.

[7] J. Borrill, L. Oliker, J. Shalf, and H. Shan,“ Investigation of leading
HPC I/O performance using a scientific-application derived
benchmark,” in SC, 2007.

[8] J. Borrill, L. Oliker, J. Shalf, H. Shan, and A. Uselton,“ HPC Global
File System Performance Analysis Using a Scientific-Application
Derived Benchmark,” Parallel Computing, vol.35, no.6, pp. 358–
373, 2009.

[9] W. Yu, J. Vetter, and S. Oral. Performance characterization and
optimization of parallel I/O on the Cray XT. In Proceedings of 22nd
IEEE International Parallel and Distributed Processing Symposium
(IPDPS'08), Miami, FL, 2008.

[10] Performance Co-Pilot User's and Administrator's Guide and
Performance Co-Pilot Programmer's Guide,
http://oss.sgi.com/projects/pcp/documentation.html

[11] PMDA: Performance Metrics Domain Agent,
http://techpubs.sgi.com/library/manuals/4000/007-4993-
004/sgi_html/ch05.html

[12] Overflow, http://aaac.larc.nasa.gov/~buning/
[13] D. J. Mavriplis, M. J. Aftosmis, and M. Berger. High Resolution

Aerospace Applications using the NASA Columbia Supercomputer,
Proc. ACM/IEEE SC05, Seattle, Washington, Nov. 2005.

[14] USM3D: http://tetruss.larc.nasa.gov/usm3d/
[15] M.I.T General Circulation Model (MITgcm), http://mitgcm.org/
[16] Enzo Version 2.0, http://enzo.googlecode.com
[17] Linux NFS Overview: http://nfs.sourceforge.net/
[18] Pleiades. http://www.nas.nasa.gov/hecc/resources/pleiades.html
[19] IOR HPC Benchmark: , http://sourceforge.net/projects/ior-sio
[20] PMVAL: Performance Metrics Value Dumper,

http://oss.sgi.com/projects/pcp/man/man1/pmval.1.html
[21] strace(1): trace system calls/signals - Linux man page

http://linux.die.net/man/1/strace,
http://sourceforge.net/projects/strace/

