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Abstract 

Self-tuning aircraft engine models can be applied for control 
and health management applications. The self-tuning feature 
of these models minimizes the mismatch between any given 
engine and the underlying engineering model describing an 
engine family. This paper provides details of the construction 
of a self-tuning engine model centered on a piecewise linear 
Kalman filter design. Starting from a nonlinear transient 
aerothermal model, a piecewise linear representation is first 
extracted. The linearization procedure creates a database of 
trim vectors and state-space matrices that are subsequently 
scheduled for interpolation based on engine operating point. A 
series of steady-state Kalman gains can next be constructed 
from a reduced-order form of the piecewise linear model. 
Reduction of the piecewise linear model to an observable 
dimension with respect to available sensed engine measure-
ments can be achieved using either a subset or an optimal 
linear combination of “health” parameters, which describe 
engine performance. The resulting piecewise linear Kalman 
filter is then implemented for faster-than-real-time processing 
of sensed engine measurements, generating outputs appropri-
ate for trending engine performance, estimating both measured 
and unmeasured parameters for control purposes, and 
performing on-board gas-path fault diagnostics. Computation-
al efficiency is achieved by designing multidimensional 
interpolation algorithms that exploit the shared scheduling of 
multiple trim vectors and system matrices. An example 
application illustrates the accuracy of a self-tuning piecewise 
linear Kalman filter model when applied to a nonlinear 
turbofan engine simulation. Additional discussions focus on 
the issue of transient response accuracy and the advantages of 
a piecewise linear Kalman filter in the context of validation 
and verification. The techniques described provide a frame-
work for constructing efficient self-tuning aircraft engine 
models from complex nonlinear simulations. 

Nomenclature 
A, B, C,  linear state-space system matrices 
D, F, G,  
L, M, N 
d, d’ distance in interpolation calculations 
h health parameter vector 
q engine tuning parameter vector 
U engine control input vector 
V* transformation matrix mapping health parameters 

to engine tuning parameters 
X,Y,Z interpolation scheduling axes 
f nonlinear function of engine state derivatives 
g nonlinear function of engine outputs 
u control inputs 
v value placeholder for interpolation 
w weighting for interpolation 
x engine state vector 
y engine sensed measurement vector 
z engine unmeasured parameter vector 
z-1 unit sample delay 
Δ prefix deviation from trim value 
δ prefix perturbation value 

Subscripts 
c  corrected value 
k discrete time index 
ref health parameter reference vector 
trim trim vector 

Superscripts 
†  pseudoinverse 

- a priori Kalman filter estimate 

+ a posteriori Kalman filter estimate 

Diacritical Marks 
ˆ estimated value 
~ residual between estimated and sensed measure-

ment vector 
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Figure 1.—Self-tuning engine model architecture including an 

aircraft engine, an engine model, and a tracking filter to tune 
the model. 

 
1.0 Introduction 

An emerging technology in the field of aircraft engine con-
trols and health management is the inclusion of real-time on-
board self-tuning models for the in-flight estimation of engine 
performance variations (Luppold, Roman, Gallops, & Kerr, 
1989). Self-tuning engine models are comprised of an engine 
model and an associated tracking filter as shown in Figure 1. 
Here, the Aircraft Engine block also includes an on-board 
engine control computer (not shown). Real-time sensor and 
actuator information available within this control computer is 
used as inputs to the engine model. The engine model reflects 
engine aero-thermodynamic performance at both steady-state 
and transient conditions. Analytical modeling approaches, such 
as piecewise linear models and nonlinear component level 
models, are commonly applied. Recently, Volponi (2008) also 
demonstrated the merits of a hybrid modeling approach 
combining analytical (physics-based) and empirical (neural 
network) elements. The tracking filter, typically based on 
Kalman filter estimation concepts, is designed to automatically 
adjust tuning parameters within the engine model to enable the 
model to match the observed performance of the physical 
engine. The discrepancy between the physical engine parame-
ters and the model variables is referred to as model mismatch. 
The tuning parameter adjustment is necessary to enable the 
model to account for the gas turbine engine performance 
variations caused by deterioration, wear, and fouling that 
turbomachinery will incur over time with usage. 

One of the earliest investigations to consider the use of self-
tuning engine model technology was under the NASA and 
Department of Defense led Performance-Seeking Control 
(PSC) program of the 1980s and 1990s (Shaw, Foxgrover, 
Berg, Swan, Adibhatla, & Skira, 1986), (Nobbs, Jacobs, & 
Donahue, 1992). The PSC program demonstrated multiple 
performance benefits achievable through in-flight propulsion 
control optimization including reduced fuel-burn, increased 

thrust, and increased component life (Gilyard & Orme, 1993). 
Central to the PSC design is the inclusion of a self-tuning 
engine model that provides the control system with real-time 
estimates of unmeasured engine performance parameters. 
Follow-on research efforts have continued to mature and 
advance aircraft engine model-based control technology 
(Dwyer, 1990), (Klaus & Kreiner, 2001), (Brunell, Bitmead, 
& Connolly, 2002). 

In addition to control applications, self-tuning engine model 
technology also holds benefits for propulsion system health 
management. This includes estimating, trending, and forecasting 
the level of performance deterioration within the major rotating 
modules of the engine, and diagnosing faults that impact engine 
gas path performance (Gallops, Gass, & Kennedy, 1992), 
(Bushman & Gallops, 1992), (Armstrong & Simon, 2011). It is 
expected that the application of on-board self-tuning engine 
model technology within the aircraft engine industry will 
continue to increase. A future vision put forth by Behbahani, 
Adibhatla, and Rauche (2009) is to develop an integrated on-
board self-tuning model-based engine controller architecture 
with control, diagnostic, and prognostic functionalities.  

This paper is intended to serve as a guide for the develop-
ment and implementation of self-tuning engine models for 
turbomachinery diagnostics, prognostics, and health manage-
ment. It will cover the required information, design considera-
tions, and design steps necessary to construct and implement 
such models. The focus of this work is specifically on 
piecewise linear self-tuning engine models with a Kalman 
filter as the tracking filter.  

The remainder of this paper guides the reader through the 
design and implementation details of a self-tuning engine 
model. First, the overall design is discussed briefly to 
introduce the various requirements and components of such a 
model. Next, the generation of linear state space engine 
models and the design and setup of the Kalman filter is 
explained. Then, the implementation is explicated to aid the 
reader in constructing an efficient adaptation of this design. 
This is followed by the presentation of example results from 
the application of the technique to a turbofan engine simula-
tion. Finally, a discussion of some design choices and model 
advantages is presented. 

2.0 Model Components 
The self-tuning engine model outlined in this paper is 

composed of a number of modular components. Two major 
components comprise this design: a piecewise linear state-
space engine model and an associated piecewise linear steady-
state Kalman filter.  

The input signals available to a self-tuning engine model are 
restricted to the following signals, which are also provided to 
the engine controller: engine actuator commands and sensor 
measurements from the engine. Additional inputs may consist 
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of airframe sensed measurements, such as free stream 
conditions, that affect gas-path analyses.  

The outputs of the self-tuning engine model will normally 
consist of three components: sensor estimates, tuning parame-
ters, and unmeasured parameter estimates. In this architecture, 
the sensor estimates should be nearly identical to the actual 
sensed measurements since the model is “tuned” to match 
these measurements. Tuning parameters generated by the 
model are available as outputs. The parameters selected and 
applied as model tuning parameters depend on design 
decisions, but they often act as proxies for engine performance 
parameters, as is discussed later. Finally, the self-tuning 
engine model can produce estimates of unmeasured engine 
parameters. Since the engine model is physics-based, the 
estimates of unmeasured parameters are expected to approach 
the actual values. The estimates often include thrust, stall 
margins, and gas-path pressures and temperatures where 
physical measurement is impractical.  

A piecewise linear state-space model forms the basis for 
modeling theoretical engine dynamics. This model is com-
prised of state space matrices and associated trim points, both 
of which are interpolated based on operating point. The 
piecewise linear model is created from a nonlinear aerother-
mal model, but offers some advantages over the more complex 
physics-based simulation. A piecewise linear model is usually 
less computationally intensive than its nonlinear equivalent, 
and the simpler structure allows for straightforward design of 
tuning solutions, a Kalman filter in this case.  

Accompanying the piecewise linear model in this approach 
is a piecewise steady-state Kalman filter. This implementation 
uses gain matrices that are pre-computed and held constant as 
opposed to updating the gain matrices online while processing 
the input data. Similar to the state-space matrices, the Kalman 
gain matrices are also interpolated based on operating point. 
The Kalman filter produces tuning parameters that drive the 
difference between the actual sensor measurements and their 
respective estimates to zero. 

When employing piecewise solutions, design considerations 
related to interpolation mechanisms, parameter scaling, 
degrees of freedom, and processing time are important. For 
accuracy reasons, it is often advantageous to consider 
interpolation based on multiple dimensions, as will be 
described. Efficient algorithms should be employed to exploit 
multidimensional data alignment and shared scheduling. 
Additionally, correction techniques applied internally within 
the model, as discussed later, require some supporting code 
infrastructure. 

3.0 Model Data Computation 
Constructing this self-tuning model requires translating a 

nonlinear aerothermal model to an equivalent piecewise linear 
model and piecewise linear Kalman filter. The initial step is to 

linearize the nonlinear model at multiple operating points to 
generate a piecewise linear state-space model and an associat-
ed set of trim points. Once linearization is complete, the 
Kalman gain matrices are computed. The resultant trim points, 
state-space system matrices, and Kalman gains can then be 
used in the self-tuning engine model implementation. 

3.1 Linearization 
The nonlinear model of an aircraft engine can be represent-

ed by the following equations 

 
( )

( )

, ,
( , , )

, ,z

x f x u h
y g x u h
z g x u h

=

=

=



 (1) 

where x and u represent the vectors of engine state variables 
and control command inputs, respectively. The vector h 
represents health parameters, such as efficiency or flow 
capacity, reflective of performance deterioration within the 
major modules of the engine. For given input values, the 
nonlinear functions f, g, and gz generate the vectors of state 
derivatives x , sensed engine outputs y, and unmeasured 
engine outputs z, respectively. By linearizing the engine model 
at a given operating point, the following state-space equations 
are obtained: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

trim trim

trim trim trim

trim trim trim

ref

x u h

ref

y x u h

ref

z x u h

x A x x B u u L h h

x A x B u L h

y y C x x D u u M h h

y C x D u M h

z z F x x G u u N h h

∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

= − + − + −

= ∆ + ∆ + ∆

− = − + − + −

∆ = ∆ + ∆ + ∆

− = − + − + −

∆



 







 





 



z F x G u N h= ∆ + ∆ + ∆

 (2) 

Here, A, B, C, D, F, G, L, M, and N are the state-space 
matrices reflecting system dynamics. The trim vectors, 
denoted by the subscript “trim,” reflect the values of the state 
variables, commands, and measured and unmeasured outputs 
when the model is at steady-state (i.e., x  = 0) at the given 
operating point. Collectively, the trim vectors define what is 
referred to as a “trim point.” The vector href represents a 
reference health condition specified by the system designer. In 
Equation (2), parameter deviations relative to trim or reference 
conditions are denoted by the delta symbol (∆).  

The initial step in creating this self-tuning engine model is 
the computation of linear state-space models from the  
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Figure 2.—Example of three-dimensional piecewise linear 
model operating point scheduling. 

 
nonlinear model at multiple operating points. These operating 
points serve as the interpolation scheduling parameters in the 
piecewise linear model. Figure 2 shows a notional three-
dimensional example of operating point specification using 
altitude, Mach number, and power setting as the scheduling 
parameters. The number of operating points and spacing 
between operating points, which does not have to be uniform, 
are design decisions left to the end user. In general, a denser 
grid of operating points will allow the piecewise linear model 
to more closely approximate the nonlinear model. However, 
that will increase memory storage requirements required for 
implementation. While the operating points generally reside 
within a standard flight envelope, it may be advantageous to 
select some operating points beyond the standard envelope 
(assuming the nonlinear engine model is operable and valid at 
these points). This expanded operating envelope functionality 
is necessary to enable the piecewise linear model to account 
for scenarios where the actual aircraft engine operates beyond 
normal expected operating conditions.  

As described above, the piecewise linear model will use two 
related datasets: the trim points for the piecewise linear model 
and the state-space system matrices that model engine 
dynamics. Scheduling of the model and the generation of these 
datasets are discussed below. 

3.1.1 Selection of Operating Points and Scheduling 
The authors suggest selecting engine power level and flight 

conditions as scheduling parameters to enhance simulation 
accuracy. The rotational speed of the engine, specifically the 
fan speed for a two-spool turbofan, is considered a suitable 
proxy for power level. Alternatively, engine command 
parameters, such as power lever angle, may be used. However, 

since these variables do not necessarily reflect actual engine 
conditions, their usage may introduce inaccuracies during 
interpolation of trim points.  

When scheduling on flight condition, Mach number and 
pressure altitude are suggested. While neither value is directly 
measurable, both can be easily computed from free stream and 
inlet pressure and temperature measurements. The use of 
Mach number and altitude will hide the nonlinearities that may 
be present in pressure and temperature changes over the flight 
envelope, allowing for more uniform steps in scheduling 
parameters. 

The number of dimensions chosen for scheduling is a 
tradeoff between computational complexity and accuracy. The 
added accuracy that higher dimensional scheduling provides 
comes with both data storage and computational requirement 
penalties; significantly more mathematical operations are 
required as interpolation dimensions increase. As is discussed 
later, parameter correction may be used to minimize altitude 
effects. One may choose, therefore, to eliminate altitude as a 
scheduling parameter. However, parameter correction is 
imperfect, and there may be a resultant loss in accuracy.  

Because two discrete data sets are generated (i.e., trim 
points and state-space system matrices) the interpolation 
scheduling may be separated if desired to decrease data 
storage requirements. Trim points require nearly an order of 
magnitude less storage space per operating point compared to 
state-space matrices. Furthermore, the dynamics of the system 
are not expected to change drastically; scheduling of the state-
space matrices may not require the same grid density as the 
steady-state trim points. It may be advantageous to generate a 
denser or higher dimensional data set of trim points, while 
keeping the dynamics data set sparser or of a lower scheduling 
dimension (Brotherton, Volponi, Luppold, & Simon, 2003). 

3.1.2 Trim Points Calculation 
Generation of trim point data can be achieved using a 

steady-state engine model, as the trim points represent only 
the engine inputs and outputs without dynamics. After 
choosing operating conditions at which to compute trim 
points, the data can be generated in a hierarchical manner. For 
example, to generate the trim points in the three recommended 
dimensions discussed above, one would implement the 
algorithm below: 

for each X in selected altitudes: 

 for each Y in selected Mach numbers: 
  for each Z in selected power levels: 

   Compute engine inputs, sensed outputs, and unmeas-
ured outputs 

   Append trim point data sets 

The trim points generally should be computed around the 
traditional flight envelope of the engine. Many models should 



NASA/TM—2012-217806 5 

be capable of computing conditions beyond the typical 
operating limits of the engine. Having data in regions beyond 
the expected operating envelope will help to protect against 
unforeseen flight conditions. Furthermore, the algorithm 
described will inherently generate unrealistic conditions. If, 
for example, the Mach numbers of interest vary from 0 to 0.8 
and the altitude varies from sea level to a high cruise point, the 
algorithm will attempt to compute a condition of 0.8 Mach at 
sea level, which is likely an unrealistic condition. If generating 
the trim points from a physics-based model, this condition can 
most likely be computed with reasonable accuracy as altitude 
and Mach number translate into free stream and engine inlet 
conditions. 

In situations where the algorithm cannot compute the de-
sired steady-state condition, the operating point should be 
logged as a failure. After attempting to compute all conditions 
using the outlined algorithm, the failed conditions can be 
interpolated from those that were successfully calculated. It is 
suggested that the interpolation of failed conditions be 
performed linearly from nearest successful computations 
along the power level axis. Extrapolation can be performed 
when a failed steady-state condition is not bounded by 
successful calculations. Extrapolated parameters, however, 
should not be relied on heavily for accuracy.  

If the self-tuning model is to be applied to a variety of 
actual engines, it may be advantageous to carefully choose an 
engine performance level at which to compute the trim points. 
A fleet of engines will exhibit a statistical distribution of 
degradation of the rotating modules, which is manifested in 
changes to each module’s efficiency and flow capacity (Sallee, 
1978). The self-tuning engine model would benefit from being 
designed at a mean or median degradation condition with 
regards to the specific fleet to minimize the possible difference 
in performance variations across all engines.  

3.1.3 Dynamics Calculation 
Each of the matrices previously presented in Equation (2) 

must be calculated by perturbing their respective driving 
parameters via the nonlinear model. In this self-tuning 
implementation, the dynamics are captured by perturbing a 
given parameter within a modified version of the steady-state 
model that balances at a point described with non-zero state 
derivative conditions. When the perturbation is applied, the 
modified steady-state solver will attempt to calculate a 
balanced engine state, where the state variables are held 
constant, and the state derivatives are permitted to assume 
non-zero values. This condition is the instantaneous dynamic 
response of the engine after a perturbation is applied. The 
difference between the perturbed and unperturbed engine 
model outputs and state derivatives represent the dynamic 
behavior of the system for each given perturbation. 

As stated earlier, it may be advantageous to compute the 
state-space matrices at different operating conditions than the 

trim points to address storage space concerns. If we again 
assume that the recommended three dimensions are used for 
scheduling state-space matrix interpolation, the algorithm will 
be: 
 

for each X in selected altitudes: 

 for each Y in selected Mach numbers: 
  for each Z in selected power levels: 

   Compute state-space matrices 

   Append matrix data sets 

The procedure for computing the matrices via perturbation 
of the inputs flows as follows: 

 
Compute steady-state xtrim, ytrim, ztrim, and utrim for current 

operating point 

for each state in x: 
 Compute x, y, z for (xi+δxi), where δxi is the perturbation 

size for the ith state, as xp, yp, zp using “unbalanced” 
steady-state model 

 Compute state derivatives from the “unbalanced” state 

 Set column i of A to be p

i

x
xδ



 

 Set column i of C and F to be ( )trimp

i

y y
x

−
δ ,

( )trimp

i

z z
x

−
δ , respectively 

for each input in u: 
 Compute x, y, z for (ui+δui), where δui is the perturbation 

size for the ith actuator, as xp, yp, zp using “unbalanced” 
steady-state model 

 Compute state derivatives from the “unbalanced” state 

 Set column i of B to be p

i

x
uδ



 

 Set column i of D and G to be ( )trimp

i

y y
u

−
δ ,

( )trimp

i

z z
u

−
δ ,respectively 

for each health parameter in h: 
 Compute x, y, z for (hi+δhi), where δhi is the perturbation 

size for the ith health parameter, as xp, yp, zp using “un-
balanced” steady-state model 

 Compute state derivatives from the “unbalanced” state 

 Set column i of L to be p

i

x
hδ


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 Set column i of M and N to be ( )trimp

i

y y
h

−
δ ,

( )trimp

i

z z
h

−
δ , respectively 

The health parameters are set nominally to the desired 
design point that describes a mean or median engine deteriora-
tion level. Note that the procedure above generates state-space 
systems in continuous form. Conversion to discrete-time state-
space equivalents can be performed using an appropriate 
technique such as zero-order hold after generating the 
continuous time matrices. 

The scale of the applied perturbations depends on the varia-
bles to be perturbed. The authors suggest using perturbations 
at least an order of magnitude less than a particular variable’s 
steady-state value. Some trial and error experimentation is 
necessary with each parameter to determine an acceptable 
perturbation scale.  

The algorithm outlined suggests that the small changes are 
performed in a single direction. However, improved accuracy 
might be gained by applying perturbations in two directions 
and computing an average effect from these two perturbations. 
Moreover, some perturbations in a given direction may not be 
possible if, for example, they exceed the capabilities of a 
given engine actuator. The implementer should take care to 
consider these special cases when performing linearization. 

Similar to the trim point calculation procedure, one may 
encounter problematic operating conditions due to the 
algorithm’s simplicity with respect to cycling through desired 
points. However, unlike the solution for failed convergence of 
trim points during calculations, interpolation and extrapolation 
is not recommended when dealing with matrices that cannot 
be reliably computed. Extrapolation can quickly lead to 
unrealistic dynamic behavior if great care is not taken, and the 
system dynamics are not expected to vary drastically across 
neighboring operating points. Instead, it is suggested that a 
nearby (in terms of scheduling parameters) successfully 
computed state-space matrix set should be used for the given 
failed calculation point.  

3.2 Kalman Filter Design 
The piecewise linear Kalman filter is the core of this self-

tuning engine model. For each state-space system of the 
piecewise linear engine model, a corresponding Kalman gain 
matrix must also be computed. In this implementation, steady-
state Kalman filtering is applied. This means that the Kalman 
gain matrix corresponding to each state-space system is 
invariant—it is pre-computed off-line, which helps to reduce 
computational requirements at runtime that would accompany 
the online calculation of the Kalman gain.  

The system must be observable with respect to the number 
of available sensed engine measurements to construct this 

steady-state Kalman filter. The goal of tuning is to eliminate 
model mismatch due to the unknown performance characteris-
tics of the engine. It is assumed that the model itself is 
theoretically correct, but the actual engine may exhibit 
behavior that differs from the theoretical model due to 
performance degradation, manufacturing variations, or other 
unknown variables. The health parameters, which theoretically 
quantify these performance differences, can be selected as 
engine tuning parameters. Additionally, since these parameters 
remain relatively constant in the short-term, they are usually 
measured over the course of a single flight. 

The observability issue may prove problematic when deal-
ing with aircraft gas turbine engines. Often times the number 
of sensors available for use with the self-tuning engine model 
is less than the number of health parameters present in the 
model. To overcome this underdetermined estimation 
problem, two techniques are suggested to transform the state-
space matrices appropriately. If the health parameters are 
shifted to become states in our model in Equation (2), the 
system becomes: 

 [ ]

[ ]

0 0
x A L x

B u
h h

x
y C M D u

h

x
z F N G u

h

∆     
= + ∆     ∆     

∆ 
∆ = + ∆ ∆ 

∆ 
∆ = + ∆ ∆ 





 (3) 

Since engine performance deterioration evolves slowly in 
time, the health parameter states in Equation (3) are modeled 
without dynamics. Once the health parameters are augmented 
with the state variables, they can be estimated by applying a 
Kalman filter as long as the system is observable. However, a 
necessary condition for observability given the Equation (3) 
formulation is that there are at least as many measurements as 
health parameters (España, 1994). To construct a reduced-
order state space system of appropriate dimension to enable 
Kalman filter formulation, consider a transformation matrix, 
V*, that maps the health parameter vector, h, to a tuning vector 
of lower dimension, q, such that: 

 *q V h=  (4) 

An approximation for h based on q can be calculated using the 
pseudoinverse of V*: 

 *†h V q=  (5) 

Then, substituting Equation (5) into Equation (3) produces the 
following reduced-order state space system: 
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



 (6) 

The choice of the transformation matrix is a design decision to 
be made prior to constructing the Kalman gains. To allow for 
piecewise interpolation of the Kalman gain, the value of the 
transformation matrix must remain constant regardless of 
operating condition so that the definition of the tuning vector 
does not change based on operating point (Simon, Armstrong, 
& Garg, 2011).  

The first technique for dimensional reduction of the health 
parameters is to select a subset of health parameters to use as 
tuning parameters, effectively assuming the excluded parame-
ters remain constant. In this scenario, the elements of the 
transformation matrix will be comprised of ones and zeros 
appropriately selected to map the selected subset of health 
parameters properly. Defining this subset of parameters is a 
design decision. Based on a theoretical error analysis, the 
optimal subset can be algorithmically selected (Simon, 
Armstrong, & Garg, 2011). While this technique preserves the 
definition of the selected health parameters, the excluded 
health parameters cannot be estimated and “smearing” effects 
may cause inaccuracies in the estimation of the selected subset 
of parameters (Simon, Armstrong, & Garg, 2011). 

A second technique, referred to as “optimal tuner selection,” 
can be employed to produce a transformation matrix that is a 
linear combination of all health parameters (Simon & Garg, 
2010). This method involves optimizing the transformation 
matrix and the resultant definition of the tuning vector to 
minimize a desired estimation error. The error to be mini-
mized is normally either the theoretical estimation error in a 
selection of unmeasured outputs (z), health parameters (h), or 
a combination of both. The selection of which errors to 
minimize is tailored to the intended usage of the self-tuning 
engine model. Because the value of the transformation matrix 
must not change with operating condition, a global optimiza-
tion algorithm should be employed across the expected flight 
envelope (Simon, Armstrong, & Garg, 2011). 

Once the dimensions of the tuning vector are reduced (if 
necessary) to make the estimation problem observable and the 
process and measurement noise covariance matrices are 
specified, the Kalman gain matrices are constructed at every 
operating point where a state-space system exists (Simon, 
Armstrong, & Garg, 2011). The general algorithm proceeds as 
follows, again, assuming three-dimensional interpolation: 

 
 
 
 

for each X in selected altitudes: 

 for each Y in selected Mach numbers: 

  for each Z in selected power levels: 

   Transform or reduce the state-space system per 
Equation (6) 

   Calculate the associated Kalman gain 

   Append transformed state-space and Kalman gain 
matrix data sets 

Because of the mathematics inherent in computing the Kalman 
gain, most notably the algebraic Riccati equation, the gain 
matrix may not be calculable at some operating points 
(Zarchan & Musoff, 2005). In these cases, it is suggested that 
the entire state-space system be disposed of and replaced with 
the nearest (in terms of scheduling points) state-space system 
where a Kalman gain can be reliably computed. The failure to 
construct the Kalman gain may imply some mathematical 
stability issues with the state-space system used as a basis for 
the computation. 

3.3 Data Storage 
The algorithms presented in the previous section do not 

address data storage. The issue of storing the data generated is 
somewhat architecture and platform dependent, but some 
general guidelines are suggested to improve efficiency when 
using the resultant data.  

For efficient interpolation, the authors found that it was 
beneficial to align the data in memory such that any given 
single vector or matrix in a data set containing multiple 
vectors or matrices exist in a single, congruent memory 
location. Placing each data set in a continuous memory block 
allowed for fast pointer arithmetic during interpolation. 
Access to vectors or matrices in the data set “in place” via 
pointer arithmetic avoided unnecessary penalties resulting 
from copying data to temporary storage during interpolation 
procedures. 

The suggested memory layout of data described above 
should be considered when designing long-term storage of the 
data sets. If the data is initially generated in the proper format 
and saved to a permanent storage medium, the process of 
loading the data at runtime should result in an advantageous 
memory layout automatically. One suggestion is to store high-
dimensional (3+ dimensions) data as concatenated two-
dimensional arrays with scheduling as shown in Figure 3 for 
the three dimensional case. The advantage of this layout will 
become apparent when the interpolation implementation is 
discussed. 
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Figure 3.—Suggested hierarchical data storage. 

 

 
Figure 4.—Self-tuning engine model overview. 

 

 
Figure 5.—Block diagram of Kalman filter. 

4.0 Model Implementation 
The implementation details surrounding the self-tuning 

engine model are application-specific. This section outlines an 
implementation that emphasizes efficiency and accuracy.  
The resultant design is appropriate for online, real-time 
applications and ground-based data analyses. The discussion 
will focus on a discrete-time implementation. 

The overall self-tuning engine model design is illustrated in 
the block diagram in Figure 4. The self-tuning engine model 

requires sensed engine measurements (y) and actuator inputs 
(u). The model produces sensor estimates ( ŷ ), unmeasured 
engine parameter estimates ( ẑ ), and tuning parameters ( q̂ ). 
The sensor estimates should match the sensed measurements. 
The tuning parameters will be transformable back into estimates 
of engine performance parameters (Simon & Garg, 2010). 

The individual components of this self-tuning engine model 
are explained below. The details of the implementation are 
independent of computing language and hardware platform. 

4.1 Parameter Correction 
For aircraft engine applications, the use of corrected param-

eters within the self-tuning model is encouraged to improve 
accuracy and to reduce the number of operating points 
included in the piecewise linear design. Parameter correction 
is used to minimize the effects of atmospheric variations due 
to temperature and pressure (Volponi, 1998). The inlet total 
pressure and temperature sensors are employed to normalize 
parameters with respect to standard day sea level static 
conditions. In a gas turbine engine, it is likely that the only 
actuator input requiring correction will be a fuel flow com-
mand. The sensor measurements must also be corrected prior 
to use. The tuning parameters, which are considered to be 
proxies for the health parameters and are assumed to be 
independent of altitude and Mach number, will not require 
correction. The correction of trim values and system matrices 
is performed during linearization. Within the block shown in 
Figure 4, all values remain in corrected form, including inputs, 
to improve accuracy. 

4.2 Kalman Filter Implementation 
The filter in this self-tuning engine model is a steady-state 

Kalman filter implementation. The Kalman gain, state-space 
matrices, and trim vectors are delivered to this module via the 
interpolation routines, as will be discussed. This implementa-
tion uses a discrete-time form of the Kalman filter. A block-
diagram in Figure 5 outlines the structure of this Kalman filter. 
Here, k represents the discrete time Equation (2) index and the 
matrices and vectors have been augmented per Simon and 
Garg (2010) to include tuning parameters in the state vector, 
Δx, accompanied by proper state-space matrix modifications. 
Here, the “+” and “–” superscripts denote Kalman filter a 
posteriori and a priori estimates, respectively, ky−∆  is the 
residual between the sensed and estimated measurement 
vector, and z–1 is the unit sample delay. 

The implementation of a piecewise linear Kalman filter does 
pose unique implementation requirements. The Kalman filter, 
which is a recursive estimator, relies on state estimates calculat-
ed at the previous time step. However, on each time step in the 
piecewise linear implementation, the trim vectors, state-space 
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matrices, and Kalman gain matrix are interpolated, and all are 
likely to shift from the previous time point. Therefore, the a 
posteriori state estimate calculated the previous time step will 
reflect a deviation relative to the state trim vector applied during 
the previous time step. Prior to use on the current time step, the 
a posteriori state estimate must be updated to reflect the change 
in the trim values, as shown below: 

 1 1 1( )k k k kx x x x− − −′∆ = ∆ + −  (7) 

In the above equation, the expression inside the parenthesis 
reflects the change in trim values from one time step to the 
next. Applying this adjustment ensures that deviations from 
trim are relative to the trim point applied at time step k, as 
opposed to the trim point previously applied at time step k-1. 
For additional details on the formulation of the Kalman filter, 
readers are referred to Simon & Garg, 2010. 

4.3 Interpolation Technique 
Self-tuning engine model computational efficiency is highly 

dependent on the interpolation technique employed within the 
model. Therefore, to lessen overall model computational 
requirements the interpolation procedure should employ rapid 
and efficient techniques. The earlier section, focusing on the 
storage of the trim vectors, state-space matrices, and Kalman 
gain matrix data sets, discussed the proper layout of data in 
memory for efficient interpolation. Once this data is stored in 
memory, efficient interpolation methods can be used across 
the multiple dimensions. 

When working in multiple dimensions, linear interpolation 
requires an expansion. Consider the two simple interpolation 
cases in Figure 6. The point, p, at which to interpolate can be 
projected onto each of the interpolation axes, as the figure 
shows, and the point is bounded by either four or eight schedule 
points for the two- and three-dimensional cases, respectively. 
For each axis (i.e., dimension), weights are computed that 
represent the normalized distances from each bounding point on 
that axis. For a single axis, assuming d is the distance between 
two schedule operating points and d' is the distance between the 
projection of p onto the axis and the schedule point that 
precedes p, two weights can be calculated as: 

 
( )0

1

1 /
/

w d d
w d d

′= −

′=
 (8) 

The weight w0 represents the contribution of the schedule 
point v0 that precedes the projection of p, while the weight w1 
is the contribution of the schedule point v1 that follows the 
projection of p. The weight pairs are computed for each axis. 
This procedure will yield two pairs of weights for the two-
dimensional interpolation case and three weighting pairs for 
the three-dimensional case. The interpolated value for the two-
dimensional case (bi-linear interpolation) is then defined as: 

 
Figure 6.—(a) Two- and (b) three-dimensional interpolation. 

 

 ,0 ,0 0,0 ,1 ,0 1,0

,0 ,1 0,1 ,1 ,1 1,1

p x y x y

x y x y

x w w v w w v

w w v w w v

= + +

+
 (9) 

Likewise, the interpolated value for three dimensions (tri-
linear interpolation) would be: 

 

,0 ,0 ,0 0,0,0 ,1 ,0 ,0 1,0,0

,0 ,1 ,0 0,1,0 ,1 ,1 ,0 1,1,0

,0 ,0 ,1 0,0,1 ,1 ,0 ,1 1,0,1

,0 ,1 ,1 0,1,1 ,1 ,1 ,1 1,1,1

p x y z x y z

x y z x y z

x y z x y z

x y z x y z

x w w w v w w w v

w w w v w w w v

w w w v w w w v

w w w v w w w v

= + +

+ +

+ +

+

 (10) 

The calculations described above require determining the 
bounding points along each axis from the schedules. A simple 
search for the desired index is usually sufficient, but some 
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efficiency gains can be realized by using a bracketed, binary 
search with memory of the last successful search between 
requests. A binary search technique can rapidly search through 
a sorted array, such as our scheduling axes, with a worst case 
O(log n) *  performance (Knuth, 1997). An additional im-
provement can be gained by storing the index of the lower 
bounding point for each axis at each time step. Because the 
change in operating point on each time step is likely to be 
relatively small, the previously used index on each axis can be 
rapidly checked to see if it is still applicable rather than 
performing a binary search on every time step. The perfor-
mance on the majority of time steps would remain at O(1), and 
only the applied weights would require recalculation. 

Another way to improve efficiency is to limit the number of 
schedule searches and subsequent weight calculations based 
on the sharing of scheduling axes. The trim point vectors 
would all share one set of scheduling axes, while the state-
space matrices and Kalman gains would use a less dense set. 
Therefore, only two passes of weight calculations would be 
necessary, one for trim vectors and another for matrices. The 
weights could then be shared between trim point vector 
interpolations when applying the data set for each parameter to 
either Equation (9) or (10). Similarly, the matrix weights could 
be shared for all the state-space matrix data sets and the 
Kalman gain data set. This approach decreased the number of 
schedule searches by a factor of five for this three-dimensional 
model design. 

As explained earlier, the memory layout of the data can lead 
to dramatic improvements in performance. Matrix interpola-
tion may seem costly, and this implementation is suggesting a 
minimum of five matrix interpolations per time step, with each 
involving a considerable number of products to be computed. 
To minimize the impact of the large number of products 
necessary, one method may be to exploit “single instruction, 
multiple data,” or SIMD, instructions that are conveniently 
available on many modern central processing units, including 
modern embedded processors (ARM, 2010-2011), (Intel 
Corporation, 1997-2012), (International Business Machines 
Corporation, 2006). Rather than focus on processor-specific 
capabilities, the use of the Basic Linear Algebra Subprograms, 
or BLAS, library is suggested (Lawson, Hanson, Kincaid, & 
Krogh, 1979). Some modern interpreted languages will use 
these procedures internally, and modern optimizing compilers 
can often detect and use these procedures in a manner 
transparent to the designer. Examining Equations (9) and (10), 
one may notice that the BLAS routines “*AXPY,” which 
multiplies a vector by a scalar (our weights) and adds the 
product to another vector, can be applied multiple times to 
calculate the desired interpolated value (BLAS, 2011). Using 
such routines eliminates the element-by-element multiplica-

                                                           
*Shown in Big O notation indicating that worst case computational 
time grows proportional to log n, where n is the number of grid points 
on the scheduling axis. 

tion that might be used naively, allowing the SIMD capabili-
ties of the processor to be used. 

The continuous memory locations, which had been suggested 
earlier, allow for further efficiency improvement. If each data 
set is held in a single memory block, each matrix or vector can 
be accessed “in-place” rather than copying or extracting the 
matrix or vector elements to an appropriately sized array prior 
to weighting each individual point. In a lower level language, 
pointer arithmetic can be exploited to specify the location in 
memory of an individual matrix or vector within a data set. By 
employing these efficiency gains, the computational costs of 
performing multidimensional interpolation of matrices and 
vectors are minimized without sacrificing accuracy. 

5.0 Example Results 
For evaluation purposes, this self-tuning engine model is 

compared against the nonlinear engine model upon which it is 
based. To illustrate the capabilities of the suggested design, an 
appropriate self-tuning engine model has been derived from the 
Commercial Modular Aero-Propulsion System Simulation 40k, 
or C-MAPSS40k, a nonlinear aerothermal model that simulates 
a 40,000 lbf-class turbofan engine (May, Csank, Lavelle, Litt, & 
Guo, 2010). The self-tuning engine model was designed to 
reflect an engine at 50 percent of useful life remaining. The 
piecewise linear state-space model and Kalman filter have been 
designed as discrete-time models using the same time step size 
as the nonlinear model serving as the comparison basis. 

First, the standalone piecewise linear model (without tun-
ing) is compared with the nonlinear model to determine the 
accuracy of the linearization and effectiveness of the interpo-
lation algorithms. Figure 7 shows the thrust estimate for the 
piecewise linear model as compared to the nonlinear C-
MAPSS40k model running at the mean degradation design 
point for a rapid power increase followed by a subsequent 
decrease to the original power level. The altitude and Mach 
number conditions tested lie between schedule points, 
meaning the interpolation algorithm is being exercised in this 
example. The percent error graph, which examines the point-
by-point difference in thrust between the piecewise linear 
model versus the nonlinear model, shows a noticeable increase 
in the residuals during transients.  

The self-tuning model provides much of its advantage for 
engines that operate away from the model degradation design 
point. Under the same transient situation with tuning enabled, 
the self-tuning model should be able to maintain accuracy 
when applied to engines that are not represented by the mean 
performance level. Figure 8 illustrates the accuracy of a self-
tuning engine model when estimating the unmeasured 
combustor exit temperature for an ideal (new) engine and an 
end-of-life engine. The combustor exit temperature has been 
chosen for comparison because it experiences significant shift 
as engine performance degrades. In this example, the  
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Figure 7.—Thrust calculations using nonlinear and piecewise linear models at 

25,000 ft and 0.55 Mach. 
 

 
Figure 8.—Unmeasurable combustor exit temperature estimates for an off-

design engine. 
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nonlinear engine model serves as the “truth” model and its 
sensed outputs and actuator commands are provided as inputs 
to the self-tuning engine model. The figure shows the outputs 
of the nonlinear engine model (red), the self-tuning engine 
model (blue), and the piecewise linear model without tuning 
(green). Here, the estimate of combustor exit temperature 
produced by the self-tuning engine model exhibits good 
matching with the nonlinear model at these two extreme 
performance ranges. Conversely, the piecewise linear model, 
which does not have self-tuning functionality, is unable to 
match the nonlinear model as well. 

The self-tuning engine model is considerably simpler than 
the full nonlinear model. While C-MAPSS40k is capable of 
running faster than real-time on modern consumer-grade 
computing hardware, the self-tuning engine model exhibits 
better computational performance due to its efficient interpola-
tion algorithm and the inherent simplicity of its linear design. 
Compared to the nonlinear model, the self-tuning engine 
model runs approximately an order of magnitude faster than 
the nonlinear model on the same computer. 

6.0 Discussion 
The main advantage of the self-tuning engine model is its 

ability to eliminate the mismatch between the theoretical model 
and the actual engine. Because of this feature, on-board 
implementations of such models may be desirable for a variety 
of reasons, including control system integration, on-board 
model-based engine diagnostics, and simple informational 
purposes. However, this model loses much of its utility if it is 
unable to accurately estimate parameters during transient 
operation.  

The accuracy during transients is related to a number of 
design choices made during the generation of the self-tuning 
model's data. The schedule density of the piecewise linear 
model must always be considered during the design phase. 
Comparison of the piecewise linear model itself against its 
nonlinear basis model during simple transients represents a 
“best case” accuracy that can be achieved by the subsequent 
self-tuning engine model. Often times, adjustments to the 
perturbations during linearization must be made to better 
improve dynamic accuracy. Additionally, some highly 
nonlinear parameters, such as stall margins, may not lend 
themselves to linearization inherently; these parameters appear 
to result in large mismatches even when great care is taken to 
improve accuracy. 

Transient behavior of the tuning parameters within the 
Kalman filter is normally adjusted via modification of the 
process noise. Scaling of the noise has been shown to 
accelerate or decelerate the response of tuning parameters to 
engine transients (Simon, Armstrong, & Garg, 2011). 
Furthermore, ongoing research suggests that numerical factors 
related to the globally optimal tuner selection strategy may 

produce tuner transformation matrices that have undesirable 
transient properties. The current optimization algorithm does 
not consider the transient behavior of resultant Kalman filters, 
only the steady-state errors. Depending on the models 
involved, this issue may or may not be encountered during 
implementation of a self-tuning engine model. 

The advantage of this self-tuning engine model is the rela-
tive simplicity of its design, among other benefits. The 
structure of the Kalman filter, although this model uses a 
piecewise version, lends itself to well-known verification and 
validation, or V&V, procedures (Schumann & Liu, 2007). For 
online implementations or control system integration, the 
ability to perform V&V on this self-tuning engine model using 
accepted processes is advantageous when comparing against 
alternatives such as a full nonlinear, physics-based online 
model.  

7.0 Conclusion 
A piecewise linear Kalman filter has been proposed as a 

self-tuning engine model solution. The well-understood 
Kalman filter algorithm combined with an efficient implemen-
tation make this piecewise solution an attractive candidate for 
resolving differences between theoretical, physics-based 
models and actual engine hardware.  

The two outputs of the self-tuning engine model, tuning 
parameters and unmeasured parameter estimates, can be 
exploited for a variety of purposes. Estimates of these 
parameters, which could be employed in either ground-based 
or on-board solutions, could be used for performance trending 
and assisting in current engine health management programs. 
Such trending information is also useful for engine diagnostic 
algorithms by allowing these conceptual algorithms to discern 
between normal engine degradation and possible faults. The 
estimated parameters, while useful for informational purposes 
alone, introduce the prospect of advanced parameter synthesis 
and control algorithms, including controlling directly on 
thrust. Possible efficiency gains may be realized through the 
accurate estimation of engine-specific operational limits, 
providing the opportunity to relax generally conservative stall 
margin, temperature, and pressure limits.  
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