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As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA 

Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale 

models was conducted at Aberdeen Proving Ground in Maryland. The models carried an 

inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL 

Entry Atmospheric Data System (MEADS) that provided data types similar to those from 

the MSL entry. Multiple sources of redundant data were available, including tracking radar 

and on-board magnetometers. These experimental data enabled the testing and validation of 

the various tools and methodologies that will be used for MSL trajectory reconstruction. The 

aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated 

using minimum variance with a priori to combine the pressure data and pre-flight 

computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms 

were also estimated for each pressure transducer as a measure of the errors introduced by 

CFD and transducer calibration. Parameter uncertainties were estimated using a “consider 

parameters” approach. 

I. Introduction 

Mars Science Laboratory (MSL) was a NASA Flagship mission that arrived at Mars in August 2012. The MSL 

entry vehicle, the largest and most advanced vehicle ever sent to Mars, carried a variety of entry-phase sensors in the 

form of the MSL Entry, Descent and Landing Instrumentation (MEDLI) suite.
1
 As a subset of MEDLI, the MSL 

heat shield had seven flush atmospheric data ports connected to pressure transducers for measuring pressure during 

the EDL sequence. Together, these pressure transducers formed the Mars Entry Atmospheric Data System 

(MEADS).
2
  

Trajectory reconstructions of Earth-based vehicles using flush air data systems (FADS) similar in function to 

MEADS have been successfully conducted.
3,4,5

 Free-flight aeroballistic experiments utilizing scale models of the 

Crew Exploration Vehicle (CEV) were previously conducted at Aberdeen Proving Ground (APG) in Maryland from 

2006 to 2009, as a joint effort between NASA Langley Research Center (LaRC) and the US Army Research 

Laboratory (ARL).
6
 The success of these experiments has led to further experimentation using scale models of the 

MSL entry vehicle, which is the subject of the present paper. 

II. Experiment Design 

Aeroballistic experimental firings of the MSL scale models were conducted by the ARL Flight Sciences Branch 

at the APG Transonic Experimental Facility (TEF) in June 2012. Computer-Aided Design/Manufacturing 

(CAD/CAM), model fabrication, and telemetry instrumentation was performed by the ARL Guidance Technology 

Branch. The models were encased in sabots and fired from a gun with a 7-inch barrel diameter, at initial velocities of 
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up to Mach 4.0. The gun shown in Figure 1 had been part of the High Altitude Research Project (HARP), a program 

started in the 1960s to characterize atmosphere conditions at high altitudes.
7
  

On-site assets included tracking radar, fixed-head radar, and high-speed digital tracking (or flight follower) 

cameras operated by Aberdeen Test Center (ATC) personnel. The radar systems were used to obtain a “truth” 

trajectory in the form of inertial position and velocity. Cameras were used to visually verify vehicle behavior near 

the muzzle exit.  

 

Figure 1. Aeroballistic experiment setup at Aberdeen Proving Ground, MD. 

Table 1 lists relevant information regarding the aeroballistic experiments for the three MSL-PTM flights. Note 

that one model was axisymmetric and the remaining two were lifting bodies (i.e. they were manufactured with offset 

centers of gravity).  

Table 1. Experiment information for MSL-PTM flights. 

 MSL5PTM6 MSL8PTM9 MSL7PTM5 

Name MSL-PTM-01, Flight 01 MSL-PTM-02, Flight 02 MSL-PTM-03, Flight 03 

Date fired 13 June 2012 18 June 2012 18 June 2012 

Configuration Axisymmetric Lifting Lifting 

In-flight mass (kg) 7.257 7.348 7.348 

Initial Mach number ~3.76 ~3.81 ~3.66 

A. Pressure Transducer Module 

The MSL pressure transducer modules (MSL-PTM, Figure 2) were scale models of MSL constructed primarily 

of stainless steel. Tungsten ballasts were embedded in the vehicles to reproduce center of mass offsets, shown in the 

CAD drawing in Figure 3. Results from a model manufactured with no center of mass offset (MSL-PTM-01) are the 

primary subject of the present paper.  

All models were fitted with ARL’s multifunctional instrumentation and data acquisition system (MIDAS), 

shown at right in Figure 2 with an IMU containing two three-axis accelerometers, two three-axis rate gyros, and two 

three-axis magnetometers.
8
 Seven pressure ports and transducers were arranged on the heat shield in the MEADS 

configuration, shown in Figure 4. Because there were a total of ten available instrumentation channels, three 

additional pressure ports (8, 9 and 10) were placed on the heat shield to provide further redundant data and 

potentially improve solutions. 
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Figure 2. Mars Science Laboratory Pressure Transducer Module (MSL-PTM, left) and sensor/telemetry 

package (right). United States quarter shown for scale. 

 

Figure 3. MSL-PTM cross-section. 

Analysis of previous aeroballistic experiments
9
 showed that the accelerometers and rate gyroscopes in the CEV-

PTM IMU were of insufficient quality to reconstruct a valid inertial navigation trajectory. Specifically, a 

combination of biases and scale factors on the accelerations and rates that satisfied the expected trajectory could not 

be found, due primarily to the high sensitivity of the solutions to various error sources. However, attitude rates from 

the IMU were validated using rates derived from the magnetometers, and Mach number was validated using radar 

data. Based on the results of the CEV-PTM experiments, the MSL-PTM IMU sensor compliment was changed to 

carry redundant accelerometers and rate gyros. Furthermore, the MSL flight IMUs are of significantly higher quality 

than the IMUs aboard the PTM.  
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Figure 4. Dimensionless MEADS port locations on MSL heat shield. Locations normalized by model 

diameter. 

B. Pressure Calibration 

The pressure transducers were calibrated at LaRC in April 2012. Each PTM was placed inside a vessel that was 

brought to one of nine designated calibration pressure points, at which point the pressure (observed as 12-bit words) 

was recorded for ten seconds. The recording was then stopped, the vessel was brought to a different calibration 

pressure point, and the process repeated. A Design of Experiments (DOE) approach was used in which the pressure 

calibration points were set randomly.  

A linear pressure model was used for pre-flight calibration: 

 mod 0 1P kc kc P    (1) 

where 0c  is the bias in bits, 1c  is the scale factor, k is conversion from bits to psi, P  is the pressure observed by the 

transducer in bits, and modP  is the model pressure in psi. Calibration scale factors were all uniformly close to 0.15, 

and biases ranged from 110 to 130 psi. This significant bias was due to the transducers returning non-zero values at 

zero pressure.  

Maximum calibration pressure was 150 psi, due to limitations of the calibration vessel hardware. Though this 

was significantly lower than the ~250 psi (1.75 million Pa) that would later observed by some of the transducers, 

non-linear behavior was not expected as the transducers are rated to 500 psi by the manufacturer. Analysis 

comparisons between the model and CFD-based pressure on CEV flights, however, showed non-linear behavior in 

the pressure residuals, indicating that the pressure transducers were in fact exhibiting non-linear behavior in the high 

pressure regimes.9 Furthermore, the pressure transducers could not be re-calibrated post-flight since the PTM was 

not recovered. For these reasons both linear and non-linear pressure model terms were estimated post-flight.   

C. Radar Calibration 

The radar equipment at APG was calibrated prior to experiment execution, in March and April 2012. A 120 mm 

artillery gun was used to fire small scale model MSL slugs, saving the use of instrumented models. An example of 

these scale models, and their sabots, is shown in Figure 5.  

Prior to firing, the radar attitude locked in an orientation that pointed its main lobe (the region of strongest 

possible signal return) to an area through which the vehicle was expected to fly. Ideally, the vehicle traveled through 

this area, the radar unlocked, and began tracking. The goal of the radar calibration was to determine the time delay, 

from muzzle exit, to unlock the tracking radar, as well as an elevation that was low enough to capture the slug close 
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to muzzle exit, but high enough to prevent the radar from locking onto one of the falling sabot petals (seen pre-

launch at left in Figure 5 and post-launch at right in Figure 12). 

 

Figure 5. 120 mm radar calibration sabot and blank calibration slug. Slug is at right with heat shield facing 

up. 

Radar calibration began with tracking rapid-prototyped lifting cylindrical slugs 120 mm in diameter designed to 

roughly mimic the trajectory of the MSL-PTM. Once these were successfully tracked, lifting MSL slugs were used. 

After several shots and radar adjustments, the radar was able to successfully track the MSL slugs, and the radar 

settings from these calibrations were used on subsequent 7-inch instrumented flights. 

III. Trajectory Reconstruction 

A. Coordinate Frames 

Three coordinate frames were used in this analysis: the inertial frame, body frame, and wind frame. A flat, non-

rotating Earth was assumed. In the present paper, when vector frames must be explicitly identified, the exponent n 

will denote the inertial frame and b will denote the body frame. 

The inertial frame (also referred to as the range coordinate frame or Earth-fixed frame) has the origin at the 

muzzle exit. The X axis is aligned with the direction of the gun. The XZ plane is tangent to the flat Earth and the XY 

plane is perpendicular to the flat Earth (i.e., aligned with the direction of gravity). 

 

Figure 6. Inertial (range) coordinate system. 

The body frame was chosen to coincide with the MSL aerodynamic frame, as shown in Figure 7, which has the 

origin at the center of gravity.  
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Figure 7. Mars Science Laboratory aerodynamic (xac, yac, zac) coordinate system with aerodynamic force 

coefficients (CA, CN, CY), angle of attack  , sideslip angle  , and wind-relative velocity vector V∞. 

Reconstruction of the MSL-PTM trajectory was performed using an inertial navigation approach, integrating the 

observed accelerations and angular rates in the appropriate reference frame. Observations were made in the IMU 

reference frame, and were transformed to the body frame using a transformation matrix: 

 Cb bi ia a   (2) 

where 
i

a  is the observation vector as sensed by the IMU, Cbi
 is the direction cosine matrix that transforms from the 

IMU frame i to the body frame b, and 
b

a  is the observation vector in the body frame.  

The estimated aerodynamic parameters consisted of Mach number M, angle of attack  , and sideslip angle  . 

The latter two are often referred to as wind angles. The wind angles describe the difference between the body and 

wind axes, which both have origins at the vehicle center of gravity. The wind x-axis points along the velocity vector 

 
T

u v wV  (V  in Figure 7). The wind angles can be written in terms of the components of the body frame 

velocity vector: 

 tan         
w

u
         (3) 

 sin         
2 2

v

V

 
       (4) 

where 
2 2 2V u v w   V  and 0u  . The velocities in the body frame, likewise, can be written in terms of the 

flight angles: 

 

cos cos

sin

cos sin

u V

v V

w V

 



 







  (5) 

Mach number is derived from the total velocity: 

 M V c   (6) 

where c is the local speed of sound. 
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B. Inertial Navigation Solution 

Inertial navigation is a deterministic trajectory reconstruction method that uses data from the inertial 

measurement unit (also called the inertial navigation system or the inertial reference unit) to determine the vehicle 

position and velocity in an inertial frame.
10

 For this type of reconstruction, the required data types are body frame 

accelerations 
T

  x y za a a   a  and angular rotation rates 
T

  x y z      .  

The inertial navigation process requires that center of mass body accelerations be integrated in the state 

equations, rather than the sensed accelerations. A transformation was therefore made to account for accelerations 

due to angular motion of the vehicle by first computing the vector from the center of mass to the IMU: 

 CM IMU
b b

c  r r r   (7) 

The computed center of mass body accelerations are then 

  CM c c       a a r r     (8) 

where a  and   are the sensed body acceleration and angular rate vectors, respectively.  

The rate of change of the quaternion was integrated, given an initial attitude, to obtain the quaternion history 

using the differential equation 
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0
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0

q q

q q

q q

q q
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  

       
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
     
     
     

     

  (9) 

where the quaternion nomenclature is  

 0 1 2 3
ˆˆ ˆq q q i q j q k      (10) 

and 0q  denotes the scalar component of the quaternion and the magnitude (scalar norm) of q is 1. The quaternion 

history was converted to a direction cosine matrix history Cnb , which was in turn used to transform the 

accelerations a from the body frame b to the inertial frame n: 

 CMCn nb ba a   (11) 

The inertial acceleration was integrated once to get the inertial velocity, and integrated again to get the inertial 

position. The state dynamics were modeled using the following equations of motion in the inertial frame: 

 n n
x x

n n
y y

n n
z z

x u

y v

z w

u a g

v a g

w a g







 

 

 

  (12) 

where u, v, and w are the velocity vector components, xa , ya , and za  are the acceleration vector components, and 

xg , yg , and zg  are the gravity vector components. Since the projectile in this case traveled less than two 

kilometers, a simple gravity model was used,  
T

0 9.81 0  m/sn  g . 

The reconstructed trajectory from the inertial navigation solution is shown in Figure 8. There are clear 

deviations of the inertial navigation solution from the radar trajectory. Initial condition errors are prevalent since the 

initial attitude of the vehicle is poorly known. By the time the vehicle has exited the muzzle and sensor noise has 

decreased from the firing explosion to the point of reading usable data, the vehicle has changed its orientation by an 

unknown amount. High-speed video camera footage (see Figure 12) can help attitude reconstruction, but in practice 

even minor errors in initial conditions prevent an accurate reconstruction.
9
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Figure 8. Inertial navigation solution compared to radar trajectory, MSL-PTM-01. 

IV. Parameter Estimation 

In general, entry vehicle aerodynamic parameters can be recovered from FADS pressure data. Methods using 

weighted least squares have been demonstrated,
4,11

 but in the present paper the focus will be on minimum variance 

with a priori, a rigorous, statistical extension of the least squares estimator that does not assume diagonal 

weighting.
12

 With non-linear problems, it is advantageous to use a differential correction approach that 

incrementally updates the solution by using prior estimates   to efficiently compute the new estimate. The 

minimum variance estimator, when combined with a priori and differential correction, is 

     
1

T 1 1 T 1 1ˆ ˆA A Ak k


   
          x y x   (13) 

where A is the sensitivity matrix,   is the covariance matrix associated with the a priori state estimates  , y  is 

the vector of the differences between observed and computed data, and 1ˆ ˆ ˆk k k  x x x  provides the state 

estimation update. Note the limiting cases: (1) if the a priori knowledge is poor, then 1 0
   and the solution 

reduces to the weighted least squares estimate, and (2) if the measurement knowledge is poor, then 1 0
   and the 

solution reduces to ˆ k x  . The covariance of the final estimate is  

    
1

T 1 1
x ˆV A A


 
      x x   (14) 

Minimum variance with a priori and differential correction has been demonstrated as an effective method for 

obtaining both state estimates and meaningful statistics from FADS.
9
 

A. Flush Air Data System Solution 

The FADS-based solution was obtained by converging on a set of aerodynamic parameters Mach number, angle 

of attack, and angle of sideslip that minimized the residuals between observed and CFD model pressures in a 

sequential manner. This can be thought of as attempting to fit a point in - -M    space to the ten observed pressures 

at any given time. The aerodynamic parameters, being functions of pressure, changed at every time step and were 

defined as local parameters. Pressure transducer biases, scale factors, and quadratic and cubic terms applied to the 

entire dataset and were defined as global parameters. 
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There were two loops in the estimation process: within the outer loop was the inner loop where local parameters 

were estimated at each data point. After this inner loop processed every data point across time, the outer loop batch-

estimated the global parameters. This process, illustrated in a flowchart in Figure 9, was repeated until convergence. 

Interpolated pressure values from the pre-flight CFD aerodynamic database were compared to the observed FADS 

pressure values shown in Figure 10. 

 

Figure 9. FADS- and CFD-based estimation process. 

 

Figure 10. Observed FADS pressures, MSL-PTM-01. 

Biases, scale factors, and higher-order terms for each pressure transducer were batch estimated after 

convergence of the local parameters using this method.
9
 The pressure model is 
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where CFDP  is the pressure recovered from the CFD database, 0c  is the bias, 1c  is the scale factor, 2c  is the 

quadratic term, and 3c  is the cubic term. The a priori uncertainty for each pressure transducer was 3000 Pa and was 

assumed to be constant throughout the flight.  

A priori estimates and uncertainties used in the estimation process are listed in Table 2. The uncertainties were 

chosen to be small enough so that the minimum variance algorithm did not diverge, but large enough so that a local 

minimum difference between observed and CFD pressures could be found in the - -M    space.  

Table 2. A priori estimates and uncertainties for MSL-PTM-01. 

Parameter Initial estimate Uncertainty 

Mach number 3.76 0.01 

Angle of attack 0.0° 2.0° 

Angle of sideslip 0.0° 1.0° 

 

Figure 11 shows the estimated flight parameters for MSL-PTM flight 01. The first solution (black line) was 

estimated without data from ports 1 and 5. These two channels were lost during launch and telemetered unusable 

data. Note that these ports are along the vertical axis (see Figure 4) and contributed primarily to the estimate of angle 

of attack.  

The second solution (red line) excluded data from ports 1 and 5 and ports 8-10. Recall that ports 1-7 were the 

MEADS configuration, and ports 8-10 were added specifically for these aeroballistic experiments. It can be seen 

that this angle of attack solution is biased compared to the first solution, which includes one more vertical port (port 

10). There is more confidence in the solution with the additional pressure ports; having ports 1 and 5 would have 

improved the result even further. Higher uncertainty estimates were obtained when other vertical ports were 

excluded, which will be discussed in the next section. 

 

Figure 11. FADS-derived aerodynamic parameters, MSL-PTM-01. Both solutions exclude ports 1 and 5. 

The behavior of the wind angles in Figure 11 generally matched theory in that an axisymmetric rigid body with 

zero trim will tend to oscillate about zero angle of attack and sideslip angle. This behavior was also supported by the 
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oscillation. A frame of this video is shown in Figure 12. (The CEV models, by way of comparison, were designed 

with CG offsets to fly at a predicted trim angle of approximately 18°, and therefore oscillated about that angle.
9
) 

 

Figure 12. MSL-PTM-01 (left) just after muzzle exit. Sabot fragments at right. Frame taken from high-speed 

flight follower video. 

Table 3 lists estimated biases, scale factors, and higher order terms for the PTM port configuration (all ports 

except 1 and 5). Note that the maximum observed pressure was approximately 1.75 million Pa (compare to the full 

scale pressure of 3.45 million Pa, or 500 psi). 

The transducer bias estimates listed in the table are at or below the transducer 1σ uncertainty of 3000 Pa, and 

the scale factors are uniformly below 1%, indicating that the pre-flight transducer calibrations were accurate. The 

quadratic terms produce a ΔP of up to 35000 Pa on port 6, which is about 2.0% of the maximum observed pressure. 

The cubic terms, similarly, produce a ΔP of up to 55000 Pa on Port 2, which is about 3.2% of the maximum 

observed pressure. The quadratic and cubic terms nominally produce ΔPs that are below 2% of the maximum 

observed pressure, which are not insignificant. Recall that the pressure transducers were calibrated only up to 60% 

of the maximum observed pressure due to calibration hardware limitations, and that potential changes in transducer 

behavior could not be measured after firing. Thus, any residual calibration errors are absorbed by the higher-order 

terms.  

Table 3. Pressure transducer model coefficients, cubic model, MSL-PTM-01, PTM port configuration. The 

last two columns are the contributions of the quadratic and cubic terms as a percentage of maximum 

observed pressure of 1.75 million Pa. 

Port Bias (Pa) S.F. Quadratic Cubic 

2 1685 1.0039 1.69% 3.17% 

3 -3037 0.9910 1.41% 2.90% 

4 -2816 0.9937 0.50% 1.09% 

6 -1599 0.9987 2.03% 1.32% 

7 858 0.9965 1.29% 1.36% 

8 3070 1.0046 0.38% 0.49% 

9 1877 1.0058 0.73% 2.06% 

10 1296 1.0055 1.40% 1.99% 

B. Uncertainty Quantification 

Aerodynamic parameter uncertainties were estimated and characterized by using a “consider parameters” 

approach that is a variation of the minimum variance method.
9
 The noise-only covariance from Eq. (14), however, 

only relates the accuracy of the local parameter estimates with the accuracy of the observations. Put another way, it 

is a measure of how well the - -M    solution fits the data, and does not take into account the accuracy of the 

global parameter estimates. By separately considering the effects of these additional estimates on the solution by 

considering them as random biases, the “consider parameters” approach provides more accurate uncertainties: 
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    
1 1

T 1 T 1 T 1 T 1
x,consider x zA A A B B A A A

 
   
              (16) 

where x  is the covariance from Eq. (18),  B is the sensitivity matrix of the global parameters (biases, scale factors, 

etc.), and z  is the associated covariance. Figure 13 shows 1σ uncertainties of the three estimated aerodynamic 

parameters. From the Figure, it can be seen that the uncertainties for the case with fewer ports used in the estimation 

(labeled “MEADS configuration”) are higher than those for the case with three additional ports, as expected. Again 

recall that in both cases, data from ports 1 and 5 were excluded, and that any potential biases in the CFD database 

were absorbed by the estimated pressure transducer biases, scale factors, and higher order terms listed in Table 3. 

 

Figure 13. Aerodynamic parameter 1σ uncertainties, MSL-PTM-01. 

V. Solution Validation 

Validation of the solution (inertial position, velocity, and aerodynamic parameters) was achieved by utilizing 

redundant data. For the MSL flight vehicle, this was done by comparing to landing site location from radiometry, 

altitude from radar, etc. For aeroballistic experiments, such validation was achieved in part from radar tracking data, 

as will be discussed in the present section.  

A. Mach Number Validation 

Mach number can be derived directly from the radar velocity from Eq. (6) and a vertical temperature profile 

from the meteorological data provided by weather balloons. It can also be derived using an iterative process from the 

Rayleigh-Pitot equation for the supersonic regime: 

 
 

 
1

21 1

2

2 12

11t

MP
R

P M



  



 




    
     

      

  (17) 

The ratio R computed from the RHS of this equation was compared to the value computed by the LHS ratio 

tP P , where the total pressure tP  was assumed to be the maximum pressure observed by the pressure ports at any 
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given time. The difference was then minimized in an iterative least squares sense to obtain the Mach number 

estimate at each observation time:  

 

1

i
i i

i

R
M R

M


 

   
 

  (18) 

where i iR M   is the sensitivity of R with respect to M. Relative atmospheric humidity was taken into account 

when computing the specific heat ratio   using a polynomial model.
13

  

Figure 14 shows the residuals between Mach number derived from radar velocity and Mach number from 

FADS and Rayleigh-Pitot. Biases are around 0.025, which are significantly larger than the 1σ uncertainties from 

Figure 13. Potential error sources include measurement errors, CFD errors, errors in total pressure computation 

(recall that the total pressure is assumed to be the maximum pressure measured by any transducer at any given time, 

which may not be the true total pressure), and errors in the radar. Furthermore, a change in ambient pressure of 2000 

Pa (less than the transducer uncertainty of 3000 Pa), can produce a difference in the Rayleigh-Pitot Mach number 

estimate of up to 0.025. In-barrel pressure readings just before firing varied between 1000 and 5000 Pa from 

ambient. The net change in P  across the first 0.35 seconds of flight, by contrast, was approximately 700 Pa. 

 

Figure 14. Mach number residuals, MSL-PTM-01 

B. Wind Angle Validation  

Since body frame velocities were not directly observable in these experiments, it was necessary to transform the 

radar inertial velocities to the body frame for an independent estimate of   and   from Eq. (5). To do this, two 

vectors described in two frames were needed to create a direction cosine matrix (DCM), which can be computed 

using the triad method. 

To compute a  DCM from arbitrary vectors x and y in the body frame b to the inertial frame n, it is necessary to 

form a third reference frame z, called the triad frame. To construct this frame, its first axis is defined as  
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where ˆ b
y  and ˆ n

y  are the same unit vectors described in the body and inertial frames, respectively. The second axis 

is obtained by including the similarly-normalized vector x: 
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The final axis of the triad frame is the cross product of its first two axes: 
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Rotation matrices are formed between the body frame b, inertial frame n, and the triad frame z: 

 
1 2 3

1 2 3
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zn n n n
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 
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z z z
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  (22) 

where zbC  is the DCM that transforms a vector from the body frame to the triad frame, and znC  is the DCM that 

transforms a vector from the inertial frame to the triad frame. The DCM that transforms a vector from the body 

frame to the inertial frame is therefore 

 
T

nb zn zbC C C 
 

  (23) 

For the present analysis, the vectors used to compute these DCMs were acceleration measured by 

accelerometers and radar, and magnetic field direction and intensity measured by magnetometers. The magnetic 

field in the inertial frame was assumed to be constant,  
T

0.1837 0.4771 0.0969n   B  gauss.  

Once the history of DCMs that rotated a vector from the inertial frame to the body frame was obtained using 

these data, the (inertial) radar velocity vector was transformed to body frame b. From these radar-derived body 

velocities, the wind angles totally independent of the FADS solution were obtained from Eq. (5) and are shown in in 

Figure 15, with the FADS-based solutions shown for comparison.  
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Figure 15. Wind angles, MSL-PTM-01. FADS solutions are repeated from Figure 11. 

The expected trim angles for this non-lifting, axisymmetric flight were 0° (the CFD database is symmetric at 

zero angle of attack and angle of sideslip). However, none of the estimated wind angles in Figure 15 trim precisely 

about zero. The biases in angle of attack may be attributed to accelerometer and/or magnetometer errors (since the 

radar-based solution uses these data), biases in the pressure data used to compute the FADS solution, and 

imperfections in the CG location of the PTM.  

VI. Lifting Flights 

A. Flight Overview and Discussion 

In addition to the non-lifting model MSL-PTM-01, two addition vehicles (MSL-PTM-02 and -03) were flown 

with offset CGs designed to mimic the MSL flight vehicle. Aside from these CG offsets, the vehicles carried 

identical instrumentation suites as the non-lifting model.  

Figure 16 shows two sets of images taken from the high-speed tracking camera. The top set shows MSL-PTM-

02 as it exits the muzzle at right, then flies from right to left. Sabot fragments can be seen at the extreme right, and a 

bow shock can be seen in the second frame. The darkened area on the heat shield is the charred portion of the 

vehicle that was exposed to the in-barrel gases; the rest of the vehicle was encased in the sabot. A similar set of 

images is shown at the bottom of Figure 16 for MSL-PTM-03. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-10

-5

0

5

10


 (

d
e
g
)

 

 
FADS PTM configuration

FADS MEADS configuration

radar

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-4

-2

0

2

4

6


 (

d
e
g
)

time (sec)



 

16 

American Institute of Aeronautics and Astronautics 

 

 

Figure 16. MSL-PTM-02 (top) and MSL-PTM-03 (bottom) imagery from high-speed flight follower camera. 

In both sets of images, the vehicle is moving from right to left, with muzzle exit at extreme right. 

MSL-PTM-02 exited the muzzle at a high roll angle due to sabot/barrel interactions that caused a spin before 

muzzle exit. From high-speed camera imagery in Figure 16, it can be seen that the vehicle pitch plane (plane xz in 

Figure 7) may be as much as 50° off the vertical plane (plane XY in Figure 6). In addition, high-amplitude 

oscillations in the vehicle pitch plane are evident as the vehicle moves away from the gun; in fact, the vehicle heat 

shield faces the camera nearly head-on in the third frame from the right. At the time, it was believed that the sabot 

was “grabbing” the outer edge of the heat shield as it peeled away. This phenomenon was not observed in the 

smaller-scale 120 mm radar calibration firings, but may have been present to a lesser extent and was not detected 

because those models lacked any on-board instrumentation. 

The sabot for the subsequent MSL-PTM-03 was modified to address this issue by removing sabot material on 

two petals to reduce contact area ahead of the model’s maximum diameter. The limited number of sabots and 

models at the 7-inch scale, however, prevented testing or qualification of the modifications. Figure 17 shows this 

modification, as well as the portion of the heat shield that was exposed and later charred at the bottom right of 

Figure 16.  

 

Figure 17. MSL-PTM lifting body encased in sabot. Sabot modification evident in reduced mass on upper 

half. Small black dots on vertical axis of heat shield (metallic portion) are FADS pressure ports. 
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The extreme oscillation rates and accelerations on the lifting flights caused most of the IMU sensors to saturate 

over segments of oscillation cycles. These saturations prevented the computation of an inertial navigation solution. 

Figure 18 shows the body pitch rates measured by the IMU for MSL-PTM-02 and -03; MSL-PTM-01 is shown for 

comparison. The sensor saturation occurred at approximately 2100 degrees per second. 

 

Figure 18. Body pitch rates measured by IMU. 

A FADS-based solution using CFD was unable to be estimated because of the high pressure rates of change 

caused by these oscillations, and wind angles that exceeded the CFD database space. Figure 19 shows pressures 

measured by the transducers on MSL-PTM-02; compare to the pressures in Figure 10. Despite these issues, an 

attempt was made to use the validation techniques described in this paper to recover the aerodynamic parameters. 

 

Figure 19. Observed FADS pressures, MSL-PTM-02. 
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B. Parameter Recovery 

Mach number was computed using the Rayleigh-Pitot technique in Eqs. (17-8) and is shown in Figure 20. Note 

that the segments of the Mach history that do not follow the smooth radar curve likely correspond to regions where 

the stagnation pressure was not located near any pressure transducers. Excluding these segments, which are shown 

by the blue lines at the bottom of Figure 20, the differences between radar and the Rayleigh-Pitot solutions are 

generally even smaller than those for MSL-PTM-01 in Figure 14.  

Figure 21 shows the wind angles recovered from the triad method, using accelerations and magnetic field 

vectors in the body and inertial frames to obtain a direction cosine matrix history. The MSL-PTM-02 solution is of 

particular interest because it shows that the large initial oscillations continued to grow in amplitude as the vehicle 

slowed, until it reached an unstable point near 90° at which point the vehicle flipped over.  

The presence of an instability caused by high oscillation rates is reinforced by the high-speed flight follower 

video, which showed the vehicle pitching significantly immediately after muzzle exit, as well as exiting with a high 

roll angle (see Figure 16). This type of behavior was also seen in the CEV aeroballistic experiments, where the flight 

follower video showed a CEV PTM that had been launched with a non-zero sideslip angle very nearly tumble 

almost immediately after muzzle exit.
9
 MSL-PTM-03 also experienced high pitching rates similar to MSL-PTM-02 

as shown in Figure 18, but did not tumble in first 1 second of flight, which was likely due to the fact that it was 

loaded in the gun with a non-zero roll angle to counteract the in-barrel rotation seen in MSL-PTM-02.  

 

Figure 20. Mach number comparisons, lifting flights. 
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Figure 21. Wind angle history, MSL-PTM-02 and -03, from radar an, accelerometers, and magnetometers. 

Portions of flights that saturated IMU sensors are not shown. 

VII. Summary and Conclusions 

Aeroballistic experiments were conducted using scale models of Mars Science Laboratory, with the goal of 

providing data types comparable to those of the MSL flight vehicle to the MSL trajectory reconstruction team. 

These models carried sensor compliments similar to those aboard the MSL flight vehicle, including an IMU and 

FADS. Redundant trajectory data were provided by on-board magnetometers and on-site tracking radar.  

An inertial navigation trajectory was obtained using accelerometers and rate gyros, but was inaccurate due 

primarily to poorly-known initial conditions. The aerodynamic parameters Mach number, angle of attack, and 

sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight 

CFD aerodynamics data. Both linear and non-linear pressure model terms were also estimated for each pressure 

transducer as a measure of the errors introduced by differences in transducer behavior between calibration and flight. 

Parameter uncertainties were estimated using a “consider parameters” approach, which provided a more realistic 

measure of the uncertainties than those associated with noise.  

The FADS-based aerodynamic parameter estimates were validated independently of pressure and CFD data 

using IMU sensors and inertial position and velocity from radar data. This solution validation analysis showed that 

the differences between FADS- and radar-based aerodynamic parameter solutions exceed the 1σ uncertainty 

estimates. Potential error sources include transducer biases, imperfections in the hardware, and modeling errors. The 

loss of two pressure ports along the vertical axis on MSL-PTM-01, which are primarily used to determine angle of 

attack, also contributed to differences that exceeded the 1σ uncertainties by biasing the solutions. 

For the lifting flights where FADS estimation methods were unable to be applied, validation techniques were 

still able to provide reasonable estimates of the aerodynamic parameters. Thus, even in a close to “worst-case” 

testing scenario where IMU and pressure data behavior render inertial navigation and FADS solutions impossible, 

redundant data sources from radar and magnetometers can still provide useful aerodynamic parameter estimates. 

The vehicle/sabot interactions in the lifting flights that caused unexpectedly high oscillation rates did not appear 

in the 120 mm scale model radar calibration firings and may have been exacerbated by larger scales. The limited 

number of 7-inch models and accompanying sabots heavily restricted the qualification of mechanical solutions. In 

the case of MSL-PTM-02, the unstable flight was caused by high roll angle at muzzle exit coupled with abnormally 
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high pitch rate amplitudes due to unexpected sabot/barrel and sabot/vehicle interactions, which indicate that sabot 

issues may cause experiment repeatability problems.  

Future free-flight aeroballistic experiments would benefit from more extensive sabot qualification tests that 

simulate actual test conditions, e.g. similar scales and CG offsets. More economical alternatives may include using 

models instrumented only with accelerometers and magnetometers and tracking them with radar, and utilizing the 

validation techniques described in the present paper to recover aerodynamic parameters and qualify the sabot design 

and in-barrel behavior. Calibrating the pressure transducers over the entire pressure range that is expected to be 

observed would also aid in FADS solution accuracy, as would re-calibrating the transducers post-flight. The latter 

option would require the recovery of the model, which in the past has been prohibitive due to cost. 

The results of the aeroballistic experiments show that useful pre-flight data can be acquired from 

aerodynamically scaled instrumented models in free flight. Combined with the “truth” trajectories provided by 

tracking radar and other redundant data sources, these data may be used to validate the tools and methodologies 

designed for trajectory reconstruction. 
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