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Introduction: Regolith from C (and related) asteroid 
bodies are a focus of the current missions Dawn at 
Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as 
large as Ceres is expected to be covered by a mature 
regolith, and as Hayabusa demonstrated, flat and there-
fore engineeringly-safe ponded deposits will probably 
be the sampling sites for both Hayabusa 2 and OSIRIS 
REx.  Here we examine what we have learned about 
the mineralogy of fine-grained asteroid regolith from 
recent meteorite studies and the examination of the 
samples harvested from asteroid Itokawa by Hayabusa. 
Asteroid Ponds: From imaging of Itokawa from 
Hayabusa and Eros from the NEAR Mission we know 
that even sub-km sized asteroids have fine-grained 
(cm-sized or small grain size) ponds [1], and as the 
Hayabusa Mission illustrated, the relative safety of 
these ponds make them probable sampling targets of 
all foreseeable missions.  Since the processes that form 
ponds include electrostatic grain levitation [2], it is 
likely that ponds provide a global sampling of litholo-
gies on an asteroid (to a certain degree, see below), and 
also include a representative sampling of xenolithic 
objects.  However, seismic shaking causes the ponds to 
differentiate vertically, such that smaller and denser 
grains settle to the pond bottoms, and larger and lower 
density grains remain near the surface, which introduc-
es a bias in spectroscopic and XRD analyses of pond 
surfaces from spacecraft, and in collected samples 
from the tops of ponds. There is some insight into the 
mineralogy and composition of the Eros ponds’ surfac-
es from NEAR spacecraft spectroscopy and XRF 
[1,3,4,5,6,7].  Compared to the bulk asteroid, ponds are 
distinctly bluer (high 550/760 nm ratio).  This blueness 
is consistent with loss of metal from the pond surfaces 
compared to bulk Eros regolith, as seismic shaking 
causes the heavy metal grains to percolate downwards.  
The samples returned from Itokawa (an LL chondrite 
object) by the Hayabusa spacecraft revealed the same 
phenomenon – metal was much less abundant in the 
returned samples than in the LL chondrites [8].  Simi-
larly, we have interpreted clasts in Vigarano and Al-
lende to be indurated pond deposit fragments, where 
metal is absent from top layers, and concentrated in 
bottom layers [9].   
Pond Deposit Clasts in Meteorites: We have studied 
the pond deposit clasts present in Vigarano sections 
AMNH 2227-6 (previously described by Tomeoka and 
Kojima [10]) and BMNH 1911 and a new Allende 

section.  As revealed by SEM, microprobe and TEM, 
the clasts consist nearly entirely of 5μm- to submicron-
sized grains of olivine: Fa22-57, with a pronounced 
peak at Fa50.  This is also the distribution of matrix 
olivine compositions in host meteorite matrix, and 
since most CVs have distinctive matrix olivine distri-
butions [11&12] this observation suggests that these 
particular clasts are indigenous to the Vigarano and 
Allende host asteroid, making them genomict clasts.  
TEM imaging reveals that the majority of the clast 
olivine grains have irregular faces, and rounded edges 
and corners.  Even the lath-shaped olivines which, in 
most CV chondrites have fairly euhedral crystal faces 
and sharp corners [11&12], are substantially rounded.  
This sort of rounding is similar to that observed in 
space-weathered Itokawa grains [8&13]. The most 
distinctive feature of these genomic clasts are numer-
ous, closely-spaced, frequently cross-bedded, arcuate 
bands, previously noted by [10] and [14].  We define 
each layer as a “bed”, each of which contains within it 
a “band” with a high concentration of iron-rich olivine.  
The entire clast consists of a porous aggregate of (pre-
dominantly) olivine grains.  Within the bands, the 
pores are almost entirely filled with very fine-grained, 
iron-rich olivine, and other minor fine-grained miner-
als.  One side of each iron-rich band is a transitional 
boundary, and the opposite side is very abrupt.  Within 
each clast the same side of every band is transitional, 
and the same (opposite) sides are always very sharp. 
The bands exhibit cross-bedding, which reveals the 
original orientation of the layers in the parent C aster-
oid. The relatively fine-grained bands are located at the 
bottom of each bed.  Element maps reveal a gradual 
increase in metal population downwards towards the 
band, which then increases dramatically within the 
band, and finally sharply drops at the lower boundary 
(bottom) of the band.  Sulfides are absent from the 
clasts.  Sulfides were also depleted in the Eros pond 
surfaces [1,3,4,5,6,7]; it has been proposed that this 
depletion is due to preferential volatilization of sulfide 
minerals during micrometeorite impacts.  In addition, 
Eros’ surface Fe/Si ratio is apparently sub-chondritic, 
probably due to downward percolation of iron-rich 
olivine (which have higher relative densities than Mg-
rich olivine) and Fe-Ni metal grains by seismic shak-
ing, as observed in the CV chondrite genomic clasts. 
Admixture of Foreign Materials: It is a curious fact 
that although C chondrite and related clasts are rather 
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