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Abstract. Military strategists face a difficult task when engaged in a battle against an adversarial force. They have to predict both
what tactics their opponent will employ and the outcomes of any resultant conflicts in order to make the best decision about their
actions. Game theory has been the dominant technique used by analysts to investigate the possible actions that an enemy will
employ. Traditional game theory can be augmented by use of Lanchester equations, a set of differential equations used to
determine the ocutcome of a conflict. This paper demonstrates a novel combination of game theory and Lanchester equations using
Colonel Blotto games. Colonel Blotto games, which are one of the oldest applications of game theory to the military domain, look at
the allocation of troops and resources when fighting across multiple areas of operation. This paper demonstrates that employing

Lanchester equations within a game overcomes some of practical problems faced when applying game theory.

1.0 INTRODUCTION

Military strategists face a difficult task when
engaged in battle against an unknown
adversarial force. They must allocate their
resources in the most efficient manner
possible so as to maximize their chance of
defeating their opponent, while being
mindful of their finite supply of soldiers,
weapons, ammunition, etc. This task is not
straightforward, nor trivial. To assist in this
effort, military strategists typically employ
computational approaches to help them
evaluate potential battle outcomes and
positively influence the overall outcome of a
particular engagement. Mathematical
models provide the theoretical foundation
for these computational approaches. These
models, while they can be effective, fall into
two camps: 1) those that have a basis in
Cold War Era tactics which focus on large
scale conflicts with massive weaponry, or 2)
hewer, agent-based models which are
computationally expensive and, often,
unable to be validated [1]. This paper
introduces two of these mathematical
models for battle prediction, namely:
Lanchester equations and game theoretic
models. The theoretical foundations of
game theory and then Lanchester models
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are discussed. Then, a comprehensive
example is provided which showcases the
authors’ novel approach for combing these
techniques used together within the Colonel
Blotto problem framework.

2.0 GAME THEORY

Game theory is the study of decision
problems involving more than one intelligent
agent, or player, and it is used to model how
these sophisticated agents interact. The
term ‘game theory’ comes from the
application of ‘games of strategy’ to
economic problems by John Von Neumann
and Oskar Morgenstern in their seminal
book Theory of Games and Economic
Behavior [2]. Game theory is concerned
with determining the best way to play a
game for any given set of rules. Defining
what is meant by best is a non-trivial
undertaking because any strategy used by a
player must take into account the other
player’s strategy as well. Game theory is
unconcerned about what are good
strategies for playing the game unless that
good strategy happens to be the best
strategy; this distinguishes game theory
from everyday gaming.



Game theory was started when, in the
nineteenth century, Antoine Cournot
proposed an idea that economists should
look at situations where there are only a few
competitors [3]. Economists had, until that
point, only looked at markets without
competition, called "Crusoe on his island”,
or markets when there was infinite
competition, called "Multeity of atoms” [4].
The work by Cournot was virtually ignored
until John Von Neumann and Oskar
Morgenstern wrote their ground-breaking
book during the Second World War [2]. This
book became the bedrock of modern Game
Theory. Seven years later, John Nash
developed his Nash Equilibrium concept [3]
which allowed Game Theory to become the
useful technique within the modern day
modeling community.

Classic applications in the defense realm
range from looking at international power
struggles in Mesquita and Lalman’s War
and Reason [6] to whether a victor should
be magnanimous after the conflict in Bram's
Theory of Moves [7]. Game theory has also
been applied to the nuclear arms control
negotiations that occurred between the
United States of America (USA) and Union
of Soviet Socialist Republics (USSR) during
the Cold War [8].

2.1 Game Representation

Game theory attempts to mathematically
capture behavior in strategic situations, or
games, in which an individual's success in
making choices depends on the choices of
others. There are two standard forms with
which game theory attempts to display the
overall game under consideration; they are:
normal and extensive. Normal-form games
use a payoff matrix, for example see Figure
1. Extensive-form games use a game tree,
for example see Figure 2.
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Figure 2: Extensive-form of a game

The rows of a payoff matrix represent the
possible actions available to the blue player
(BLUE) and the columns represent the
possible actions available to the red player
(RED). The two values in the cells of the
matrix represent that reward or payoff that
the players receive. The first number is the
payoff to BLUE and the second number is
the payoff to RED.

2.2 Nash Equilibrium

The main solution method for game theory
is the Nash Equilibrium. It is concerned with
the stability of the strategies chosen by the
players. A player’s strategy is how they
choose their action for a game. If a player
chooses to go with a single action then this
is called a pure strategy. If a player chooses
to randomly select an action from several
different actions then this is called a mixed
strategy. When mixed strategies are used
by any of the players, we consider the
player's payoff to be the expected payoff.



Given a particular set of strategies for the
players it is a Nash Equilibrium if the
following statement is true for all players:
Each player does not benefit from changing
their current strategy, given the current
strategy of the other players. This does not
mean that the players get the maximum
payoff available to them within the game but
that they gain the highest payoff available
under the constraint of the other players’
strategies. Some games have multiple Nash
Equilibrium solutions.

2.3 Colonel Blotto

One of the oldest applications of game
theory to the military domain are Colonel
Blotto games. Colonel Blotto games look at
the allocation of troops and resources when
fighting across multiple areas of operation.
The game is based around the simplest
assumption that having more troops means
that you are more likely to ‘win” or control a
particular area of operation. The actions that
are available for the players are how they
allocate their troops to the various areas of
operations.

The original paper on Colonel Blotto games
was written by Emile Borel, known for his
contributions to measure theory, which acts
as the foundation for all modern probability
theory [9]. Though originally written in 1921,
it was translated from French in the 1950's,
which was the same time that game theory
was becoming popular in the English
speaking world due to Von Neumann and
Morgenstern's work. It is no consequence
that game theory's popularity coincided with
the start of the Cold War.

2.4 Criticisms of Game Theory
There are several problems with the
application of game theory and a brief
summary is given here:

+ Payoff determination: It can be difficult to
determine what the payoffs for a game
should be for each player's actions. It might
seem that in some cases the payoffs are
obvious, i.e. if the game is about winning
money, then the money won or lost should
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be the payoff; however, this has been
shown in examples like the Ultimatum game
not to be the case [15]. As game theory's
usefulness is about giving insight, and it is
not an exact predictive solution, then the
use of approximate payoffs is not a “show-
stopper” for its application. In many games
the outcome remains the same even with
slight changes to the payoff. Given this
limitation, the authors see utility in utilizing a
Lanchester equation-based approach to
determining more sophisticated payoffs.

* Determining the Nash Equilibrium: Games
can be very easy to construct but can be
difficult to solve. This problem can be seen
in the game of chess. Chess is a relatively
simple game that has been around for
centuries, yet no solution to the game has
been found, even though a solution has
been shown to exist.

« Mixed strategies: When the solution to a
game is a mixed strategy this implies that
players should randomly choose between
different actions. This might make some
sense if the game is repeatedly played, but
for one-off games this becomes
problematic. Imagine that the mixed
strategy says ‘play action ‘A’ 99% of the
time and action ‘B’ 1% of the time'. What
would you do in this situation? It can be
hard to explain this need to randomize to
the player. It is also important that your
opponent knows that you are going
randomly choose your strategy, but how is
this done? Should you phone your opponent
and tell them you are rolling a die?

+ Rational: Game theory assumes that the
players are perfectly rational and infinitely
intelligent. This assumption might be fine
when highly skilled game players are heing
modeled with game theory, but is not
necessatrily the case for everyday people in
their everyday lives.

3.0 LANCHESTER EQUATIONS
Lanchester analyzed World War | aircraft
engagements and developed a theory to
explain why concentration of military effort



in these entanglements was advantageous
[10]. This theory was encapsulated as laws,
which are low-resolution aggregated models
for determining a battle outcome between
two opposing forces. For the purposes of
this discussion, the two forces considered
are denoted as the blue force (the force the
analyst is planning for, aiding, etc.) and the
red force (the force the analyst is trying to
defeat). This model results in a system of
differential equations as follows:

dBldt = f(R.B...) 1)
dRIdt = H(R,B...) )

Where B denotes the blue force and R, the
red force. This system of differential
equations can be solved by substituting
unique functions into Eqgs. (1) and (2),
depending on whether or not the analyst is
determining the outcome of an ancient or
modern conflict, resulting in Lanchester's
Linear and Square Laws, respectively. The
linear law was a formulation for ancient
warfare, in which one-on-one combat was
the only mechanism of engagement.
Recognizing the limitation of his linear law
to only describe one-on-one combat,
Lanchester formulated his square law,
which could be utilized to describe many-
on-many combat.

3.1 Stochastic Lanchester Systems
The original formulation of Lanchester’s
models did not include stochastic behavior.
That is, all parameters in the model are
taken to be deterministic. This is a limiting
assumption of the Lanchester models and
does not represent reality, as uncertainty
abounds, especially in combat situations. To
that end, several extensions which amend
Lanchester's model to include stochastic
behavior have been developed.

Brown [11] developed an approximation to
estimating the probability that B blue force
members would neutralize R red force
members (denoted as Pg g).

P _ B (_1)B—jjB+R
R =1 (8- )R+

(3)
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Where j is a variable indice, and all other
variables are as before. Equation 3
assumes that each force is depleted by one
individual per round. That is, two blue and
two red members can be reduced to two
blue and one red member or one blue and
two red members and not to one blue and
one red members (in one battle step). This
equation can be used to determine battle
outcome probabilities to utilize as outcomes
within a game theoretic construct.

3.2 Criticisms of Lanchester
Equations
Critics of Lanchester models point out
several deficiencies in the original
formulation of Lanchester’s laws that the
authors would be remiss to not mention.
Taylor succinctly summarizes them in [12].
Two criticisms were: “Tactical decision
processes not considered” and “Battlefield
intelligence not considered”. Both these
criticisms are addressed by coupling
Lanchester equations with a game theoretic
approach.

Several extensions to the original
formulation help to alleviate many of the
objections raised. For example, as
discussed, the extension proposed by
Hester and Tolk [13] allowed for a number
of discrete “mini-battles”, providing for the
discretization of a battle landscape into
smaller conflicts.

Despite these shortcomings, the authors
believe that the novelty and usefulness of
Lanchester models lie in part in their
simplicity. The authors do not believe that a
simpler, more efficient means of analyzing
combat is available to today’s modeler.
Thus, many have adapted Lanchester's
original equations to account for modern
warfare scenarios and the authors believe
this is a both a valid and useful approach to
simple analytical combat modeling,
especially when employed in conjunction
with the game theoretic environment
discussed in the following section.



4.0 MODEL

As mentioned previously, one major
drawback in game theory is in the naive
generation of payoffs for games. In an effort
to resolve this issue, the authors propose
utilizing the battle prediction of Eq. 3
{derived from Lanchester’s stochastic
square model) to develop the payoffs of the
game. A Colonel Blotto game is used as an
example and the results are shown in Table
1.

Table 1: Battle OQutcome Prediction as
Payoffs in a Simple Game

# of RED soldiers

0 1 2 3 4

# of BLUE soldiers
N w [\ ]

Table 1 represents the normal-form of a
game. This game is where the players have
to allocate up to four soldiers to
attack/defend a single guard post. The
payoffs for this game are the players'
chance of winning the guard post, as
calculated using Eq. 3. Unsurprisingly, the
Nash Equilibrium of this game is when both
players allocate the maximum number of
soldiers to the guard post.

Now let us consider the case when there
are two guard posts to be attacked /
defended. The blue player will allocate
soldiers to the front guard post and the
remainder will guard the rear post. Similarly,
the red player will allocate soldiers to attack
the front guard post and the remainder will
attack the rear. Once force distributions are
chosen via the Lanchester-assisted game
theoretic model, an overall battle success
probability can be calculated. Results for the
analysis of this associated four person
battle, and associated force division are
shown in Table 2. In this case, the feasible
sceharios for this battle are shown (with
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redundant scenarios eliminated), with the
probability of the blue team winning in both
a series and parallel (payoffs given in grey
brackets) scenario also provided. Only one
player's payoff needs to be presented in the
table as the game is sum-zero (meaning
that any red gain represents a blue loss).
The actions represent the number of
soldiers allocated to the front guard post
with the remaining being allocated to the
rear guard post.

Table 2: Battle Outcome Prediction as
Payoffs in a Colonel Blotto Game.

# of RED soldiers at front post

0 1 2 3 4
ol 05 0.74 0919 | 0992
w
£
g2 . 1 0.75 0.813 0.96 1
T v 1
= 0
o o
., 1 0.871 0.75 0.871 1
w c 2
o
- =
m 1 0.96 0.83 0.75 1
5 ® 3
* 0992 | 0go19 0.74 0.5

The Nash Equilibrium solution to this game
is not obvious, unlike the single guard post
version. The Gambit software package [14]
was used to find the Nash Equilibrium of
these games. In the game where only one
guard post had to be defended by BLUE, a
mixed strategy was found. Their percentage
selections of the five actions for the blue
player were: (27%, 15%, 16%, 15%, 27%)
and for the red player (5%, 36%, 17%, 38%,
5%). This results in an expected payoff for
the blue player of 0.86. To gain some
understanding to what this payoff means, if
the blue player had chosen just to randomly
allocate all their soldiers to either of the
guard posts, then his or her payoff would
have been 0.75.

The mixed strategy for the game when
BLUE must win both guard posts results in
a payoff of 0.14. Again this game was
solved by Gambit and the strategies are (O,
50%, 9%, 41%, 0) for the blue player and
(45%, 0, 1%, 54%, 0O) for the red player. The
reason for these strategy allocations is not



immediately obvious and further
investigation would be required.

5.0 CONCLUSION

The authors believe this novel approach is
useful when compared with the traditional
Colonel Blotto approach, whereby payoffs
are not analytically derived. This approach
affords the battle planner the ability to
understand battle results probabilistically,
and it can be extended to more complicated
battle scenarios (e.g. more combatants,
more than two battles).

Military strategists are able to use
Lanchester equations and game theory as
tools to enable their decision making when
planning for a battle against adversarial
forces. Using Lanchester equations
provides insights into the possible outcomes
from a particular conflict, especially the
expected attrition levels. Game theory gives
insights to what strategies might be
employed by an adversarial force and what
is the best response to these strategies. A
key strength of both of the analytical
techniques is their simplicity, which helps
any decision-maker gain clear insights into
the problem being investigated by
presenting the solution in a concise manner.

There is a temptation by modelers to
increase the complexity of their models and
simulations due to cheaply available
computing power. As we saw in the
example combining Lanchester equations
and game theory given in the previous
section, extra complexity within the model
produces extra complexity within its
solutions. This extra complexity of the
solution is too often ignored by only
presenting the simple statistics of the results
to the decision-makers. The authors would
argue that unless the richness of results
from a complex model is going to be
explored for further utility, then the modeler
should utilize simple models to ensure they
remain fully aware of what the results imply
and gain the insight from that knowledge.
Complexity can bring another problem
during the modeling stage, as it is easy to
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construct games that cannot currently be
solved — like chess.

As with all modeling methodologies, it is
important to remember why you are using a
particular technique. Both Lanchester
models and game theory represent useful
methodologies that can be imbedded into a
larger simulation to solve the particular
problems that they are designed for, i.e.,
attrition determination and strategy choice.
It is in this embedded usage that the
authors envision the true utility of this novel
approach.
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