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Abstract

This users manual provides in-depth information concerning installation and
execution of Laura, version 5. Laura is a structured, multi-block, compu-
tational aerothermodynamic simulation code. Version 5 represents a major
refactoring of the original Fortran 77 Laura code toward a modular structure
afforded by Fortran 95. The refactoring improved usability and maintain-
ability by eliminating the requirement for problem-dependent re-compilations,
providing more intuitive distribution of functionality, and simplifying inter-
faces required for multi-physics coupling. As a result, Laura now shares
gas-physics modules, MPI modules, and other low-level modules with the
Fun3D unstructured-grid code. In addition to internal refactoring, several
new features and capabilities have been added, e.g., a GNU-standard instal-
lation process, parallel load balancing, automatic trajectory point sequencing,
free-energy minimization, and coupled ablation and flowfield radiation.
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1 Introduction

The users manual consists of seven sections. Section 2 gives an overview of
new features, capabilities, and bug fixes. System requirements and installation
are covered in Section 3, followed by code execution instructions in Section 4.
Section 5 presents input files, their formats, and detailed information on their
contents while Section 6 covers output files. Ancillary utilities are explained in
Section 7, and the last section, Section 8, presents illustrative example cases.
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2 New in This Version

Laura v5.5 offers several new enhancements and bug fixes since the previous
released version, v5.4 [1]:

• Major Enhancements

– Addition of ’adiabatic catalytic’ surface temperature BC—
see Section 5.4.12 on page 32 for more info.

– Additional Constant Catalysis

– Roughness height measurement

• Minor Enhancements

– y+ output in the laura surface.q file for 1- and 2-eqn turbulent
models.

– Option to change the maximum temperature limit.

– Option to change the maximum percentage change in the solution
updates.

– Separating diffusion component of heat flux from the total surface
heat flux for multi-species gas.

– Option to make the velocity boundary condition second order re-
gardless of the nordbc value.

– Option to activate the temperature contribution to the jacobian.

– Option to limit species vibrational-electronic heat capacity for more
stability in some two-temperature cases.

– Option to write the adapted grid with negative cell volume.

• Bug Fixes

– Correcting the aerodynamic forces and moments calculation

– Correcting the B.L. edge detection routine for cases with negative
total enthalpy

– Fixing NaN occuring problem caused by undifined molecular weight
in the viscous routine for the single-species turbulent cases

6



3 Installation

Laura requires a Fortran 95 compiler, and if parallel processing is desired,
a Message Passing Interface (MPI) implementation.1 Some optional utilities
require Ruby.2 The installation and subsequent execution of Laura assumes a
Unix-like operating system or compatibility layer.3 After the code is unpacked
from the Laura release tarball,

% tar zxf laura-5.4-Z.tar.gz (unpack gzipped tarball)

% cd laura-5.4-Z

where Z is a revision track number. Laura is installed via GNU build sys-
tem,4 which entails executing a sequence of four commands: configure, make,
make check,5 and make install.6

3.1 Sequential installation

To configure, compile, test, and install a sequential version of Laura for use
with a single processor, first make a subdirectory of laura-5.4-Z to store the
configuration. For example,

% mkdir g95-seq

% cd g95-seq

if using the g95 Fortran compiler;7 and then proceed with the typical GNU
build sequence,

% ../configure FC=g95 --prefix=$PWD

% make

% make check

% make install

Note that configure’s --prefix option specifies the root directory for in-
stalling build artifacts—the default is /usr/local. In this example, it is set
to the current working directory, g95-seq so executables will be installed
in g95-seq/bin and data files will be copied to g95-seq/share/laura and
g95-seq/share/physics modules directories.

To use Laura and associated utilities, set your search path to include
$PWD/bin, e.g.,

setenv PATH ${PWD}/bin:$PATH (for csh)

export PATH=${PWD}/bin:$PATH (for sh)

1For example, OpenMPI or MPICH.
2See ruby-lang.org.
3For non-Unix-like systems, compatibility layers are available from mingw.org (minimal)

and cygwin.com (maximal).
4See gnu.org/software/autoconf/.
5The make check command is optional. It will attempt to run small test cases.
6The make install command may require administrator privileges depending on your

installation location.
7g95.org
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3.2 MPI Installation

An MPI-enabled installation (to allow multiple processors) is similar to the
sequential installation except the configuration command has the --with-mpi
option instead of the FC Fortran compiler variable, e.g.,

% ../configure --prefix=$PWD \

--with-mpi=/usr/local/pkgs/ompi_1.2.8-intel_11.0-028

Another difference is that an MPI-enable configuration will produce an exe-
cutable named laura mpi instead of laura.

In either case, config.log contains a record of the configuration com-
mand used, and configure’s --help option details all available configuration
options.

8



4 Execution

The following steps outline a typical simulation cycle.8

Step 1. To start Laura, a Plot3D structured grid file is needed — see
Section 5.2 on page 11 for more info. You may externally generate a
grid using grid generation packages, such as Gridgen™, GridPro, and
so forth, or use Laura’s interactive self start utility to generate a
single-block structured grid for simple families of 2D, axisymmetric
and 3D blunt bodies—see Section 7.11 on page 66.

Step 1a. Using self start. To use self start to generate a single-
block grid, simply execute this interactive utility, e.g.,

% self_start

and answer all the questions. After a successful execution,
this utility will have generated the following files:

laura_bound_data

laura.g laura_namelist_data self_start.log

Examine the grid, laura.g, and proceed to Step 2.

Step 1b. External Grid Generation. Generate a single- or multi-
block structured grid with the following rules:

i. Right-handed grid coordinates

ii. Longitudinal axis of the body aligned with the x-axis,
oriented nose-to-tail

and write the grid coordinates into a Plot3D file, laura.g.
Run the interactive bounds utility (see Section 7.2 on page 64)
and answer all the questions regarding the grid block topol-
ogy:

% bounds

This utility will automatically generate laura bound data,
the connectivity file.

Step 2. If you did not use self start, create a laura namelist data file
or copy the sample file from the [install prefix]/share/laura

directory, where [install prefix] is the installation prefix spec-
ified when Laura was installed. Edit this file for your case—see
Section 5.4 on page 14 for more detail.

8See Section 8 on page 68 for complete worked examples and Appendix A on page 79 for
how to restart cases run with versions of Laura prior to version 5.
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Step 3. Create a tdata file (see Section 5.5 on page 37) to define the gas
model condition for your specific simulation.9

Step 4. Run Laura,

% laura

or

% mpirun -np [#] laura_mpi

where # is the number of available processors. By the end of this
step, the following files will have been generated:

laura_conv.out laura.g.fvbnd

laura_new.g laura_new.rst

laura_surface.q laura.q

laura_surface.nam laura.nam

Examine these files before proceeding to the next step.10

Step 5. Change irest flag in the laura namelist data (see Section 5.4 on
page 14) from 0 to 1, and copy the new generated grid and solution
files to laura.g and laura.rst files; i.e.,

% cp laura_new.g laura.g

% cp laura_new.rst laura.rst

Step 6. Repeat the previous two steps until iterative convergence.

9A sample tdata is available in the [install prefix]/share/physics modules instal-
lation directory. The other datafiles that reside in this directory, e.g., kinetics data,
species thermo data, species transp data, and species transp data 0, may also be
copied and tailored to suit a different thermodynamic model, curve-fit data, or thermo-
chemical reactions are needed. See Section 5.5 on page 37 for more detail.

10See Section 6 on page 58 for complete description of laura output files.
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5 Input Files

Nominally, Laura requires five input files as shown in the upper section of
Table 1. Depending on the simulation requirements, however, other files may
also be necessary and are shown in the second section of Table 1. All files are
plain ASCII text unless otherwise noted.

Table 1: Laura input files.

Filename Content

Required Files:
laura.g* Plot3D grid
laura bound data Grid block face boundary conditions
laura namelist data Simulation configuration
tdata Gas model

Simulation Dependent Files:
assign tasks Sweep and relaxation directions
hara namelist data Radiation mechanisms
jdata Jet chamber conditions
kinetic data Specie reactants and products
laura.rst† Flowfield solution for restart
laura.trn Transition location and length
laura trajectory data Trajectory points
laura vis data Viscous term treatment
species thermo data Specie thermodynamics
species transp data Collision cross-sections
species transp data0 High-order collision cross-sections
surface property data Thermochemical surface properties

* Fortran unformatted binary, 3-D whole, multiblock Plot3D.
† Fortran unformatted binary.

The following subsections describe all input files in detail, beginning with
the nominally required files and then proceeding alphabetically as shown in
the table.

5.1 Required Files

5.2 laura.g

This file is a multi-block, 3D-whole Plot3D file in Fortran unformatted binary
format with double-precision reals. For convenience, here is a sample of the
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Figure 1: Default Laura coordinate system orientation.

Fortran 95 code that Laura uses to read this file:

open ( 25, file='laura.g', form='unformatted' )

read(25) nblocks

...allocate i,j,kblk(nb) and grid memory...

read(25) (iblk(nb),jblk(nb),kblk(nb),nb=1,nblocks)

do nb = 1, nblocks

ix1 = iblk(nb) ; jx1 = jblk(nb) ; kx1 = kblk(nb)

...allocate grid(nb)%x,y,z memory...

read(25) (((grid(nb)%x(i,j,k),i=1,ix1),j=1,jx1),k=1,kx1), &

(((grid(nb)%y(i,j,k),i=1,ix1),j=1,jx1),k=1,kx1), &

(((grid(nb)%z(i,j,k),i=1,ix1),j=1,jx1),k=1,kx1)

end do

A file of this format, but named laura new.g,11 is generated by Laura at the
end of a successful run. This file is required and must have a right-handed
coordinate system. Figure 1 shows the default laura coordinate orientation.
Laura does not require a specific coordinate or grid orientation but the angle-
of-attack definition is predefined — see Section 5.4.3 on page 20 for more info.

5.3 laura bound data

Grid block face boundary types are defined in laura bound data where each
line corresponds to a grid block and contains six integers, one for each of the

11When running a trajectory sequence, the file will be named laura ####.g where ####

is the trajectory point index.
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six faces: imin, imax, jmin, jmax, kmin, and kmax. Each integer specifies either
a physical boundary condition or block-to-block interfaces. An illustrative
example is analyzed toward the end of this section.

This file is required and is generated automatically for grids created by
Laura’s self start utility—see Section 7.11 on page 66. This file can also be
created by using Laura’s interactive utility, bounds, by answering questions
for each block.

Valid face types are as follows:

-9,...,0: Solid surface boundary. Up to ten different solid surface boundaries
may be specified. Thermochemical properties of solid surfaces that are
different than type 0, which are specified in laura namelist data, are
defined in surface property data file—see Section 5.18 on page 55.

1: Outflow boundary (extrapolation).

2: Symmetry boundary across y = constant.

3: Farfield/Freestream boundary.

4: Symmetry boundary across x = constant or z = constant.

5: Reflection boundary across j = 1 symmetry (valid for axi-symmetric
and/or 2D grids).

6: Venting boundary. (See Section 5.4.18 on page 37 for more details.)

7: Reflection boundary across i face singularity with periodic j boundary.

8: Characteristic (also known as subsonic) boundary condition.

>1000000: This seven digit boundary number defines block-to-block face connectiv-
ity. The first digit is always 1. The next three digits identifies the block
number that is shared with the current block. The 5th digit defines which
i, j, or k face of the neighboring block is shared where 1 corresponds to
imin, 2 corresponds to imax, and so forth. The last two digits identify the
relation of the remaining two indices: The 6th digit can be either 1, 2,
3, or 4 where values of 1 or 3 mean the first index of the host face is in
the same direction as the first or second index of the neighboring face,
respectively, and values of 2 or 4 mean the adjoining indices are in the
opposite direction. The last digit can be either a 1 or 2 and indicates
whether the second indices of the host and neighboring faces are in the
same direction or they are in the opposite direction, respectively.

For example, consider a block with the following laura bound data bound-
ary condition numbers:
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1006421 1002111 2 1005121 0 3

The first integer, 1006421, shows that imin of this block is shared with jmax
(fifth digit) of block 6 (the first three digits after 1). The first and second
indices of the host face are j and k, respectively. Because the j index is
connected to i, the first and second indices of the neighboring face are i and
k, respectively, The 2 in the 6th digit shows that the j index of the host face
is in opposite direction of the i index of the neighboring face. The last digit,
1, indicates that k indices of the host and and neighboring faces are along the
same direction. This configuration is illustrated in Figure 2.

i

j

k

k

ij

Host Neighbor

Figure 2: Illustration used for block connectivity example.

The second and fourth boundary-type integers can be explained similarly.
The third boundary-type integer (corresponding to the jmin face) specifies a
y-constant symmetry plane; the fifth boundary-type integer (corresponding to
the kmin face) specifies is a solid-wall boundary condition; and the last digit
(corresponding to the kmax face) specifies a freestream boundary.

5.4 laura namelist data

Simulation configuration is specified through laura namelist data and is re-
quired. This file is read as a Fortran 95 namelist and has the form,

&laura_namelist

velocity_ref = 5000.0 ! Free stream velocity, m/s

density_ref = 0.023 ! reference density, kg/s

tref = 250.0 ! Free stream temperature, K

alpha = 25.0 ! Angle-of-attack in xz plane, degrees

[ variable = value ! Optional comment ]

/

where variable and their possible values are described in the following sec-
tions, which are grouped according to farfield/freestream and aerodynamic
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coefficient reference quantities; thermochemical nonequilibrium flags; molec-
ular transport flags; turbulent transport models flags; numerical parameters;
grid adaptation, alignment, and doubling parameters; radiation and ablation
flags; grid-file description; venting boundary condition flags; and solid sur-
face boundary condition flags. Note that for all but the parameters shown
in the above example, reasonable defaults have been chosen and only those
parameters that differ from the defaults need to be specified.

Detailed description of parameters and/or flags with their units and default
values is presented under each of the above categories. The order of these
parameters is arbitrary but is given here alphabetically for better readability.

5.4.1 Ablation Flags

ablation option

An integer that specifies whether the pyrolysis ablation rate and wall
temperature are computed in addition to the char ablation rate. This
option only effects cases with bprime flag equal to 0 or 1.

Options are:

0: The pyrolysis ablation rate and wall temperature are computed, in
addition to the char ablation rate, assuming steady-state ablation.

1: The pyrolysis ablation rate and wall temperature are held constant
(they are set to the values present in ablation from laura.m) while
the char ablation rate is computed.

ablation verbose

A logical flag to print out developer focused info on convergence of ab-
lation. Default: .true.

blowing model 0

Character indicator for ablation model specification. Default: ‘none’

Options are:

‘FIAT’

This ‘FIAT’12 option computes the blowing rate and surface tem-
perature as a function of heating rate, pressure, and ablator ele-
mental mass fractions. The user must specify the elemental mass
fractions for char and pyrolysis gas or default of 100% carbon will
be employed.

12FIAT is a stand alone software and is needed if blowing model 0=‘FIAT’. Request for
access to FIAT can be made to NASA Ames Research Center.
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‘none’

No ablation-flowfield coupling.

‘specified’

This option specifies a blowing or suction rate as a function of pres-
sure (see mdot pressure 0). The user must specify the elemental
mass fractions for pyrolysis gas or default of 100% carbon will be
employed. Any specification for elemental mass fraction of char is
ignored in this option.

‘equil char quasi steady’

This option solves the equilibrium surface ablation problem. The
energy balance, elemental mass balance, and char equilibrium con-
straint are solved to obtain the char ablation rate, wall temperature,
and elemental composition at the surface. Along with the pressure
from the normal momentum equation, these values define the equi-
librium species composition at the wall. The user must specify the
surface temperature type to be surface energy balance — see
Section 5.4.12 on page 29 for more info.

Presently, this model does not include an in-depth material response
computation, which would provide the pyrolysis ablation rate and
conductive heat flux into the solid material. These two values are
required for solving the previously mentioned surface equations. To
approximate these values, the steady-state ablation assumption is
made, which specifies that the pyrolysis ablation rate is propor-
tional to the char ablation rate and the in-depth conduction is pro-
portional to the enthalpy at the surface.

In the present framework of steady-state ablation, the ablation
material is completely defined by CHONSi frac pyrolysis 0 (thus
CHONSi frac char 0 is ignored in this option). These are defined
below. Note that the computed ablation rate is the sum of the py-
rolysis and char components. (See Sections 8.3 on page 74 and 8.4
on page 75 for recommended procedure for an unspecified ablation
computation.)

‘quasi steady’

This option specifies a quasi-steady ablation rate as a function of
local pressure, heating rate, and temperature. The sublimation
temperature and heat of ablation are specified by the user for a
given ablator as a function of pressure. (See t sublimation 0 and
h ablation 0.) If the surface temperature is less than the sub-
limation temperature a zero blowing rate is defined. Otherwise
the blowing rate is given by ṁ = q/∆Habl with appropriate non-
dimensionalization employed before use. The user must specify the
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elemental mass fractions for pyrolysis gas or default of 100% car-
bon will be employed. Any specification for elemental mass frac-
tion of char is ignored in this option. The user must specify the
surface temperature type to be surface energy balance — see
Section 5.4.12 on page 29 for more info.

bprime flag

An integer defining if the b-prime approach is applied. Applicable only
for blowing model 0 = ‘equil char quasi steady’. See Section 5.4.1
on the preceding page for more details of its application. Default: 1

Options are:

0: Do not use bprime approach, and instead use a rigorous diffusion
model. This option is consistent with the “Fully-Coupled” approach
defined in Ref. [2].

1: Use b-prime approach. This option is consistent with the “Partially-
Coupled” approach defined in Ref. [2].

2: Hold the ablation rate and wall temperature constant from the
restart file, while applying the rigorous diffusion model (thus, the
surface energy balance and char equilibrium constraint are not sat-
isfied). This option is sometimes useful when transitioning from
a bprime flag = 1 computation to a bprime flag = 0 computa-
tion.

char density 0

Density of the char, kg/m3. Default: 256.29536, which is for the heritage
AVCOAT.

CHONSi frac char 0

This rank 1 vector of extent 5 sets elemental mass fraction of C, H, O,
N, and Si species from char. Elemental mass fractions must be in this
order and the sum of elemental mass fractions must equal 1.0 . Default:
CHONSi frac char 0 = 1.0, 0.0, 0.0, 0.0, 0.0

CHONSi frac pyrolysis 0

This rank 1 vector of extent 5 sets the elemental mass fractions of pyrol-
ysis gas species, which are C, H, O, N, and Si. Elemental mass fractions
must be in this order and the sum of elemental mass fractions must be 1.
Default is Graphite:
CHONSi frac pyrolysis 0 = 1.0, 0.0, 0.0, 0.0, 0.0

compute mdot initial

An integer defining if the ablation rates are computed before the first
flowfield iteration.
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Options are:

0: Applies the ablation rates and wall temperatures present in the
ablation from laura.m file.

1: Computes the ablation rates and wall temperatures before the first
flowfield iteration.

freq mdot

For bprime flag = 1, it is an integer defining frequency of updating
ablation rates and wall temperature. Default = 5000

freq wall

For bprime flag = 1, it is an integer defining frequency of update to
ablation wall boundary conditions. For bprime flag = 0, it is an inte-
ger defining frequency of update to the surface energy balance solution,
which defines the wall temperature, while nexch defines the frequency of
update to the remaining surface equations — see Section 5.4.9 on page 25
for more info on nexch. Default: 50

h ablation 0

A rank 1 vector of extent 3 used to compute the heat of ablation in
MJ/kg for quasi steady blowing option as

h_ablation_0(1) + (h_ablation_0(2)) log pw
+ (h_ablation_0(3))(log pw)2

(1)

where pw is the local pressure,in atmospheres. Example ∆Habl = 28.0−
1.375 log pw + 27.2(log pw)2. Default: 0.0

mdot pressure 0

A rank 1 vector of extent 2 is used to set the blowing or suction distri-
bution defined as

mdot_pressure_0(1) + (mdot_pressure_0(2))
p

ρ∞V 2
∞

(2)

where p is the local pressure, ρ∞ is the reference density, and V∞ is the
reference velocity. Positive value produces blowing distribution, while
negative value produces suction distribution. Default: 0.0

t sublimation 0

A rank 1 vector of extent 3 used to compute the sublimation temperature
in degrees Kelvin for quasi steady blowing option as

t_sublimation_0(1) + (t_sublimation_0(2)) log pw
+ (t_sublimation_0(3))(log pw)2

(3)
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where pw is the local pressure,in atmospheres. Example Tsub = 3797.0 +
342.0 log pw + 30.0(log pw)2. Default: 0.0

uncoupled ablation flag

An integer defining if an uncoupled ablation analysis is applied. The
uncoupled ablation option is included to provide a baseline solution for
the coupled ablation analysis. Default: 0

Options are:

0: Do not apply an uncoupled ablation analysis. It means that the
coupled ablation analysis discussed in Section 8.3 on page 74 is
applied.

1: Apply an uncoupled ablation analysis to a converged non-ablating
flowfield. The procedure for applying the uncoupled ablation anal-
ysis is discussed in Section 8.4 on page 75.

virgin density 0

Density of virgin material, kg/m3. Default: 544.627742, which is for the
heritage AVCOAT.

5.4.2 Aerodynamic Coefficient Reference Quantities

bref

Yaw moment coefficient reference length, grid-units. Default: 1.0

cref

Pitching moment coefficient reference length, grid-units. Default: 1.0

sref

Reference area for aerodynamic coefficients, grid-units. Default: 1.0

xmc

x-coordinate of moment center, grid-units. Default: 0.0

ymc

y-coordinate of moment center, grid-units. Default: 0.0

zmc

z-coordinate of moment center, grid-units. Default: 0.0
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5.4.3 Farfield/Freestream Reference Quantities

alpha

Angle-of-attack in xz plane, degrees, such that

u = cos(α)cos(yaw); v = −sin(yaw);w = sin(α)cos(yaw) (4)

where u, v, and w are velocities in x-, y-, and z-coordinate, respectively.
Default: 0.0

buoyancy

Logical flag indicating if buoyancy terms are engaged. Default: .false.

closed chamber

Logical flag indicating a closed test chamber is being simulated. In this
case, there is no external velocity. Boundaries are all solid surfaces.
Flow is driven by buoyancy associated with heating some portion of a
surface. The reference velocity in this case is reset to the square root
of the product of grid conversion factor with the magnitude of the
gravitational vector. Default: false

density ref

Free stream density, kg/m3. Default: 0.001

gravity x, gravity y, gravity z

Components of gravity vector in mks units required if buoyancy is en-
gaged. Default:0.0, 0.0, -9.79908

rpm

Spin rate, RPM. This is applicable only to axisymmetric cases.
Default: 0.0

tref

Free stream temperature, K. Default: 200.0

velocity ref

Free stream velocity, m/s. Default: 5000.0

yaw

Sideslip angle in xy plane, degrees. Default: 0.0
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5.4.4 Grid Adaptation, Alignment, and Doubling Parameters

beta grd

This parameter controls grid points normal to the body (k-grid points)
are controlled by the following grid stretching function:

k∗i = 1− β
β−1
β+1

kmax−ki
kmax − 1

β−1
β+1

kmax−ki
kmax + 1

(5)

where k∗i are new grid points. The beta_grd parameter defines the β
coefficient in equation 5. No stretching will be performed if β < 1.
Recommended value is 1.15, if used. Default: 0.0

ep0 grd

Grid clustering around the shock is designed using the following function:

k∗∗i = ε0k∗i
2
(1− k∗i )(k∗i + fsh) + k∗i (6)

where ki refers to normalized value and k∗i is defined by equation 5.
ep0 grd assigns the ε0 coefficient in equation 6. Maximum recommended
value is 25/4, if used. Default: 0.0

kmax final

The target number of grid cells in the k-direction. Triggered by the
global L2 error norm set by kmax error, cells along the k direction are
increased by a factor of kmax factor until reaching kmax final. Any
value less than the number of k grid cells in laura.g file will be ignored,
i.e., no coarsening. This option requires all blocks to be active. Default:
0

kmax error

When the global L2 error norm reaches this value, the number of grid
cells in the k direction increases by a factor of kmax factor until the
maximum allowable grid cells, kmax final, is reached. This option re-
quires all blocks to be active. Default: 0.01

fctrjmp

This parameter is used to detect bow shocks. Bow shock is first detected
when the sensing parameter defined by jumpflag exceeds by this value,
while searching from inflow boundary. Default: 1.05

frac line implicit

This positive parameter, which must be less than or equal 1, sets a frac-
tion of the line-implicit direction that is either assigned in the namelist
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(see Section 5.4.9 on page 25) and/or in the optional assign tasks file
(see Section 5.7 on page 39). This parameter, which supersedes the given
assignments in assign tasks, will be applied to all the active blocks.
This parameter is recommended where there might be an instability is-
sue such as across strong shocks. Default: 0.7

fsh

Fraction of arc length distance between body and inflow boundary where
bow shock is captured. Default: 0.8

fstr

This parameter approximately defines fraction of k-cells in boundary
layer region. Default: 0.75

jumpflag

An integer flag to select the sensing parameter to be used in detecting
position of captured shock for grid adaption. Default: 2

Options are:

0: Redistributes grid points in k-direction for the target cell Reynolds
number defined by re cell parameter, without changing the do-
main boundary.

1: Selects pressure as the sensing parameter.

2: Selects density as the sensing parameter.

3: Selects temperature as the sensing parameter.

4: Scales the grid distance in the k-direction up by the value defined
by fctrjmp parameter.

maxmoves

An integer number to assign maximum number of times that grid adap-
tion is performed. The value of zero, however, can be used for unlimited
number of times. Default: 0

max distance

This real number defines maximum distance from the body surface that
grid outer boundary can be moved away by any one of the flags. This is
often useful especially when adapting shock into wake, where the adapt-
ing grid may become skewed due to presence of sharp gradients. This
value defines the maximum length of the wake. Default: 1.0E+6

movegrd

An integer number for number of cycles between each grid alignment. A
zero value disables any grid alignment. Default: 0
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re cell

This value defines the target cell Reynolds number at the wall after a
grid movement. Note : If the grid is moving radically Default: 0.1 Note:
Use a higher value for re cell for the first grid alignment, if the grid
movement causes radical changes in the grid.

The cell Reynolds number is defined as

Recell = ρc∆n/µ (7)

Here ρ is the flow density, c is the sound speed, ∆n is the cell height,
and µ is the flow viscosity.

write negvol

A logical flag to allow the adapted grid with nagative cell volume to be
written out to the laura new.g. Default: .false.

5.4.5 Grid File Description

dimensionality

A string flag to select the dimensions of the problem. Default: ‘3D’.
Available options are:

‘axisymmetric’

This option selects axisymmetric flow solution. This requires a
domain with single-cell width in the j-direction.

‘2D’

This selects two-dimensional problem, which requires a domain with
single-cell width in the j-direction.

‘3D’

This option solves three-dimensional problems.

grid conversion factor

This parameter scales the grid to meter. One grid unit equals grid conversion factor

meters. Default: 1

single precision grid

Logical flag: .true. if grid points in the laura.g file are stored as single
precision values, otherwise double precision is assumed. Default: .false.
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5.4.6 Grid Limiter

g limiter

A real number, normally < 1× 10−3, that limits the cell size of grid cells
off the wall for a better quality grid after adaptation. Negative or zero
value turns the use of grid limiter off. Default: 0.

5.4.7 Initialization

init vel fctr

A real number between 0 and 1 to reduce the initial velocities u, v, w
within the domain to avoid creating a vacuum for wake flow problems,
which may lead to an invalid solutions. The initial near zero velocity has
also shown to ease up the formation of bow shock. Default: 0.01

5.4.8 Molecular Transport Flags

ambipolar

A logical flag to engage ambipolar diffusion of ions. Default: .true.

ivisc

An integer flag to engage viscous terms (inviscid=0/viscous=2). Default:
2

mass driven diff

A logical flag to engage binary diffusion driven by mass fraction gradient.
Default: .false.

multi component diff

A logical flag to engage multi-component diffusion by Stefan-Maxwell
equation sub-iterations. Default: .false.

mole driven diff

A logical flag to engage binary diffusion driven by mole fraction gradient.
Default: .true.

navier stokes

A logical flag to select equation set for Thin-Layer Navier Stokes or Full
Navier Stokes. The navier stokes = .false. may be used to select
Thin-Layer Navier Stokes. Default: .false.

pressure diffusion

A logical flag to engage pressure diffusion term on Stefan-Maxwell ap-
proximation. Default: .false.
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schmidt number

A constant Schmidt number may be specified to calculate diffusivities.
If the value is negative, diffusivities are computed directly from collision
cross sections. Default: -1.0

prandtl number

A constant Prandtl number may be specified to calculate conductivi-
ties. If the value is negative, conductivities are computed directly from
collision cross sections. Default: -1.0

5.4.9 Numerical Parameters

augment shock dissipation

Augment dissipation across shock to make cell Re number approach 2
where pressure ratio is greater than 3. Default: .true.

cfl1

Initial value of CFL number. Default: 5.0

cfl2

Final value of CFL number. Default: 5.0

density floor

Lower limit on species density. Default: 1.e-30

epsa

Eigenvalue limiting factor. Default: 0.3

frac update

Maximum percentage change in solution update. Default: 0.1 (10%)

hrs

The maximum total CPU time for simulation, hours. Default: 10

iramp

Number of cycles to ramp from cfl1 to cfl2. Default: 200

irest

An integer flag to start the simulation either using freestream values
(irest = 0), or using the existing solution from laura.rst file (irest = 1).
Default 0

jupdate

Number of cycles between jacobian updates. Default: 10
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max temperature floor

Maximum allowable temperature in the flowfield. The gas temperature
will be reset to this value if it goes beyond the floor limit. Default: 50000

ncyc

Number of global iterations. Default: 1000

nexch

Number of cycles between exchange of data between processors and up-
dating boundary conditions. Default: 2

nitfo

Number of cycles using 1st-order spatial accuracy. Default: 0

nordbc

Boundary condition calculation using 1st-order (nordbc = 1) or 2nd-
order (nordbc = 2) accuracy. Default: 1

ntran

Number of cycles between transport properties update. Default: 1

pressure damping

Factor on pressure update leaving update to other primitive variables
unchanged. Only active if closed chamber is .true.. Default: 0.5

relax direction

An integer flag indicating the relaxation direction to be either 1, 2, or
3, corresponding to i, j, or k. The value 0 is used for point implicit
assignment. This assignment will be applied to all the grid blocks unless
specified otherwise in the optional assign tasks file.

Default: 0 if point implicit = .true., otherwise 3

rf inv

Inviscid relaxation factor. Default: 3.0

rf vis

Viscous relaxation factor. Default: 1.0

rf chem

Chemical source term reduction factor sometimes useful to ”ease in”
simulations very close to equilibrium. This factor, which must be greater
than 1.0 when it is used, changes the answers and must ultimately equal
1.0 in the final simulation. Default: 1.0
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rmstol

A real number to stop the iterations after L2 norm residual reaches this
value. Default: 1.0E-10

sweep direction

An integer flag indicating the sweep direction to be either 1, 2, or 3,
corresponding to i, j, or k. This assignment will be applied to all the
grid blocks unless specified otherwise in the optional assign tasks file.

Default: 3 if point implicit = .true., otherwise 1

unlimited

A logical flag to turn off minmod limiting. Limiting is required for sta-
bility in flows with strong shocks. May not be needed in other situations.
Default: .false.

5.4.10 Output Parameters

blayer io freq

Number of cycle between save of laura blayer.dat file – see Section 6
on page 58. Negative value makes the write-out frequency to be the same
as iterwrt. Default: -1

isurf freq

Number of cycles between saves of laura surface dtXXXX.q files, where
XXXX will be replaced with an integer number, starting from 1. Time
accurate simulation is required to engage this command. Default: -1

it start

An integer flag to be used as an starting point for numbering laura surface dtXXXX.q
file. This flag is only applicable with time accurate flag itime. Default:
1

iterwrt

Number of cycles between saves of all output files – see Section 6 on
page 58. Default: 200

roughness

A positive real value for roughness height in meter for which flow prop-
erties to be interpolated and printed to laura blayer.dat file. Extra
varaibles will not be prionted into the file if zero or negative roughness
is specified. Default : 0.

tecplot aero

A logical flag to output all the arodynamic data in a tecplot readable
file, laura aero.dat. Default: .false.
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write extra q variables

A logical flag to output all the computed variables such as laminar
and turbulent viscosity, thermal conductivity, species diffusivity, spe-
cific heat, enthalpy, species pressure Jacobians, turbulent into laura.q
file. Default: .false.

write number density

A logical flag to output species number density in 1/cm3 instead of their
mass fractions. Default: .false.

5.4.11 Radiation Flags

radiation

A logical flag to enable coupling between radiation equation(s) and flow
equations. See Section 8.2 on page 73 for coupled radiation procedure.
Default: .false.

radiation input only

A logical flag to enable creation of input file hara out.m to compute
radiation outside of Laura when radiation is .false. Default: .false.

maxrad

An integer number to assign maximum number of calls to radiation in-
terface. The value of zero can be used for unlimited number of times.
Default: 0

nrad

Number of iterations between calls to Hara. Default: 3000

iinc rad, jinc rad

Increment between i and j lines, respectively at which radiation profile
is computed. Interim lines are interpolated. Default: 3

frac rad new

Relaxation factor on radiation. ∇(qrad) = frac rad new∇(qrad)
n + (1−

frac rad new)∇(qrad)
n−1. Default: 1.0

absorptivity

Fraction of incident radiative energy absorbed by the wall. Affects sur-
face energy balance and computation of radiative equilibrium wall tem-
perature. Default: 1.0

tw rad flag

An integer flag to engage Tauber-Wakefield approximation for radiation
cooling on surface-energy balance (on=1/off=0). Default: 0
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5.4.12 Solid Surface Boundary Condition Flags

catalysis model 0

A character identifier for selecting catalysis model for surface type 0 (see
Section 5.3 on page 12). This flag is good only for multi-species reacting
gases and will be ignored for single-specie gas models. The catalysis
model name must be surrounded by quotation marks, e.g., ‘ ’. Default:
‘super-catalytic’

Available catalysis models are:

‘CCAT-ACC’

This option uses the following surface catalytic coefficients [3] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

γO =

{
13.5e−8350/T

∗
w T ∗w ≤ 1359.0 K

5.0× 10−8e18023/T
∗
w T ∗w > 1359.0 K

(8)

γN =

{
4.0e−7625/T

∗
w T ∗w ≤ 1475.0 K

6.2× 10−6e12100/T
∗
w T ∗w > 1475.0 K

(9)

where T ∗w is calculated as

T ∗w =

{
min( max(1255.0, Tw), 1659.0) for γO
min( max(1255.0, Tw), 1900.0) for γN

(10)

‘CSiC’

This option uses the following surface catalytic coefficients [3] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

γO = 6.415× 10−4e3498.4/T
∗
w (11)

γN = 3.993× 10−4e4402/T
∗
w (12)

where T ∗w is given as

T ∗w = min( max(1100.0, Tw), 1920.0) (13)

‘CSiC-SNECMA’

This option uses the following surface catalytic coefficients [3] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

γO = γN = 9.593× 10−5e7002.9/T
∗
w (14)

where T ∗w is given as

T ∗w = min( max(1350.0, Tw), 1920.0) (15)
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‘equilibrium-catalytic’

This option sets species concentrations to equilibrium values at wall
pressure and temperature based on elemental mass fractions in the
cell above the solid surface boundary.

‘fully-catalytic’

This option assumes that all the atomic and ionized oxygen, nitro-
gen, carbon, and so forth catalyzes to molecular oxygen, nitrogen,
carbon, and so on, respectively; i.e.,

γO = γN = γC = ... = 1 (16)

‘non-catalytic’

This option assumes that no atomic or ionized oxygen, nitrogen,
carbon, and so forth catalyzes to molecular oxygen, nitrogen, car-
bon, and so on, respectively; i.e.,

γO = γN = γC = ... = 0 (17)

‘RCC-LVP’

This option uses the following surface catalytic coefficients [3] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

γO =

{
7.5e−8283/T

∗
w T ∗w ≤ 1499.0 K

2.5× 10−7e17533/T
∗
w T ∗w > 1499.0 K

(18)

γN =

{
6.0× 10−2e−2605/T

∗
w T ∗w ≤ 1529.0 K

1.5× 10−5e10080/T
∗
w T ∗w > 1529.0 K

(19)

where T ∗w is calculated as

T ∗w =

{
min( max(1255.0, Tw), 1799.0) for γO
min( max(1255.0, Tw), 1954.0) for γN

(20)

‘Scott-RCG’

This option uses the following surface catalytic coefficients [4] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

γO = 16.0e−10271/Tw 1400 ≤ Tw ≤ 1650 (21)

γN = 7.14× 10−2e−2219.0/Tw 1090 ≤ Tw ≤ 1670 (22)

The same equations will be used even if the wall temperature, Tw,
is out of the specified range, in which case a warning will be issued
to the stdout.
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‘Stewart-RCG’

This option uses the following surface catalytic coefficients [3] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

γO =


5.0× 10−3e−400/Tw Tw ≤ 502
1.6× 10−4e1326/Tw 502 < Tw ≤ 978
5.2e−8835/Tw 978 < Tw ≤ 1617
39× 10−9e21410/Tw 1617 < Tw

(23)

γN =


5.0× 10−4 Tw ≤ 465
2.0× 10−5e1500/Tw 465 < Tw ≤ 905
10.0e−10360/Tw 905 < Tw ≤ 1575
6.2× 10−6e12100/Tw 1575 < Tw

(24)

‘super-catalytic’

This option sets the species mass fractions to free stream values as
defined in tdata—see Section 5.5 on page 37.

‘Zoby-RCG’

This option uses the following surface catalytic coefficients [5] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

γO = 9.41× 10−3e−658.9/Tw 900 ≤ Tw ≤ 1500 (25)

γN = 7.14× 10−2e−2219.0/Tw 1090 ≤ Tw ≤ 1670 (26)

The same equations will be used even if the wall temperature, Tw,
is out of the specified range, in which case a warning will be issued
to the screen.

co2 catalysis model

A logical flag that engages the CO2 heterogeneous catalysis model pro-
posed by Mitcheltree and Gnoffo [?]. Model requires catalysis model 0

= ’fully catalytic’ and CO, CO2, and O to be present in the flow-
field. Default: .false.

emiss a 0, emiss b 0, emiss c 0, emiss d 0

Real number values to calculate emissivity, ε, for solid surface boundary
type (see Section 5.3 on page 12) from the following equation:

ε = εa + εbTw + εcT
2
w + εdT

3
w (27)

where Tw is the surface temperature. Values for εa, εb, εc, and εd are de-
fined by emiss a 0, emiss b 0, emiss c 0, and emiss d 0, respectively.
Default: emiss a 0=0.89, emiss b 0=0.0, emiss c 0=0.0, emiss d 0=0.0
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emiss min, emiss max

Real number values to bound the emissivity used in the Equation 27.
Note: This bound only applies to a non-constant emissivity function.
Default: 0.4 and 0.9 for emiss min and emiss max, respectively.

ept

Under-relaxation parameter for radiative equilibrium wall temperature:

T n+1
w = (1− ept)T nw + eptT n+1

w (28)

where n denotes iteration level, T n+1
w is the most recent value of wall

temperature, and T nw is the value of wall temperature from the previous
iteration as adjusted by previous application of this formula. Default:
0.01

equil surf temp floor 0

Minimum temperature of equilibrium catalytic surface for purpose of
determining equilibrium constants. Raising this value to 1000 may aide
convergence if transient solution includes low surface temperatures. If
the converged surface temperature is less than this value than surface
species mass fractions will be in error. Default: 100.

surface temperature type 0

Character identifier for surface temperature model selection. Default:
‘constant’

Options are:

‘adiabatic’

Surface temperature will be such that conduction heat transfer be-
tween the surface and the gas adjacent to the surface is zero.

‘adiabatic catalytic’

Surface temperature will be such that the sum of conduction and
diffusion heat transfer between the surface and the gas adjacent to
the surface is zero.

‘constant’

The surface temperature stays constant as given by twall bc value.

‘radiative equilibrium’

The surface temperature is calculated so that the heat flux to the
wall, qw, is in equilibrium with radiation heat flux:

qw = εσT 4
w (29)
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where σ is the Stefan-Boltzmann constant, and ε is the surface
emissivity defined by emiss a 0, emiss b 0, emiss c 0, emiss d 0

values.

‘surface energy balance’

This option is required for ablating surfaces to compute surface
temperature as a function of the surface energy balance and the
relevant surface chemistry kinetics.

surface group name 0

Character descriptor for surfaces with solid surface boundary types (see
Section 5.3 on page 12). Any character can be specified to group solid
surface boundaries. Default: ‘default surface 0’

t rad eq max

Maximum allowed radiative equilibrium wall temperature. It is some-
times convenient to limit this temperature in anticipation of coupling
ablation in subsequent runs. Default: 1.E+06

twall bc

Initial wall temperature for solid surface boundaries, K. (See Section 5.3
on page 12.) The wall temperature stays constant as specified by this pa-
rameter if surface temperature type 0 = ‘constant’. Default: 500.0

5.4.13 Surface Recession Flags

shape change

A logical flag engaging the geometry shape change due to ablation. De-
fault : .false. A trajectory file is required if shape change=.true. —
see Section 5.13 on page 50.

5.4.14 Thermochemical Nonequilibrium Flags

augment kinetics limiting

A logical flag engaging extra limiting on reaction rates by modifying
upper and lower temperature limits in forward and backward rates. Up-
per and lower limits on rate constants may be specified for individual
reactions in the file kinetic data. Default: .false.

chem flag

An integer flag to engage chemical source term for non-equilibrium flow
(on=1/off=0) for non-perfect gas cases. Default: 1
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force neutrality

A logical flag to overwrite result of electron continuity equation and force
the number of electrons to equal the number of positive charged ions.
Default: .true.

therm flag

An integer flag to engage thermal source term for non-equilibrium flow
(on=1/off=0) for non-perfect gas cases. Default: 1

cpiv min factor

The floor for vibrational-electronic heat capacity for species i is set to
cpiv min factor times the local value of the translational-rotational
heat capacity for species i. Raising the floor helps suppress severe
vibrational-electronic temperature undershoots that sometimes occur in
two-temperature model simulations ahead of a strong bow shock. Val-
ues as large as 0.01 appear to work without significant adverse affect on
aerothermodynamic environment. Default: 0.0001

5.4.15 Time Accurate Flags

itime

An integer flag to engage time accuracy: itime = 0 produces 0th-order
in time, itime = 1 produces 1st-order in time, itime = 2 produces 2nd-
order in time. This flag is superseded by value of time step. A positive
value for time step forces temporal accuracy of at least first-order. A
negative or unspecified value for time step forces itime=0. Default: 0

subiters

An integer number to specify number of iterations between each time
step for time-accurate simulations. Default: 10

time step

A positive real value to specify dimensional time step for time accurate
simulation. A negative or zero value supersedes itime value and disables
time accurate simulation. Default: -1

5.4.16 Trajectory Related Flags

trajectory data point

Pickup simulation from this line in the file laura trajectory data.

Default: 0 if laura trajectory data is not present.

Default: 1 if laura trajectory data is present.
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Note that the reference quantities are defined consistently across the
trajectory using the values supplied in namelist above. The reference
quantities are NOT reset according to the time varying free stream con-
ditions. Consequently, dimensionless values of density and velocity in
free stream will not generally equal 1. Dimensionless values of total en-
thalpy in free stream will not equal 0.5 which may impact post-processing
tools that are key on a specific number for total enthalpy to detect the
boundary-layer edge.

The algorithm is most efficient if the restart solution is converged (or
nearly converged so that line-implicit relaxation may be applied) at free
stream conditions equal to the reference quantities in laura namelist data.
If one wishes to pickup a computation for trajectory data point > 1
then it is best to start at the converged restart file for the previous
trajectory point. Restart files and post processing files for each tra-
jectory point have the trajectory point number included as part of the
root name. Thus if one wants to pickup at trajectory point 12 one
should copy laura 0011.rst to laura.rst and (if grid is being updated)
laura 0011.g to laura.g. This advice is offered because restart solutions
are converted according to the ratio of density and velocity between ad-
jacent trajectory points to bring interior initial conditions closer to the
new inflow boundary conditions.

5.4.17 Turbulent Transport Models

coupled tke

Logical flag indicating if turbulent kinetic energy is treated as part of
the total energy in the energy equation. Default:.true.

prandtl turb

Turbulent Prandtl number. Default: 0.9

prod to des limit

A parameter to limit production term for turbulent kinetic energy as a
factor of the destruction term. Default: 20.

schmidt turb

Turbulent Schmidt number. Default: 0.9

turb int inf

Farfield turbulent kinetic energy non-dimensionalized by square of the
reference velocity. If negative, use recommended far field boundary con-
ditions: (ρk)∞ = 0.01µ∞ and (ρω)∞ = 2. Default: -0.0001
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turb model type

An integer flag to select turbulence modeling. Default: 0

Options are:

-1: Baldwin-Lomax algebraic turbulence model. [6]

-2: Cebeci-Smith algebraic turbulence model. [6]

0: Laminar flow, i.e., no turbulence model.

1: Spalart Almaras one-equation turbulence model.

2: Menter two-equation turbulence model.

3: Menter-SST two-equation turbulence model.

4: Wilcox k-ω 1998 turbulence model.

6: Wilcox k-ω 2006 turbulence model.

turb comp model

Integer flag (1=on, 0=off) to engage compressibility correction for turb model type

= 2, 3, 4. Sometimes observed to cause spike in turbulent kinetic en-
ergy crossing bow shock. Expect small effect in boundary layer but large
effect in free mixing layer. Default: 0

turb vis ratio inf

Farfield ratio of turbulent to laminar viscosity. Default: 0.001

vorticity based

A logical flag to change the turbulent production term from strain based
to vorticity based:

P = µΩ2 − 2

3
ρkδij

∂ui
∂xj

(30)

Default: .false.

xtr

Global transition location along x-axis in grid units. Engaged only for al-
gebraic models. This value will be overridden by transition location

value in the laura.trn file should the file be available. Default: 0.0

transition length factor

Global transition length factor defined as transition length divided
by xtr. Engaged only for algebraic models. This value will be overrid-
den by transition length factor value in the laura.trn file should
the file be available. Setting transition length factor = 0 will cause
instantaneous transition at location xtr. Default: 0.0
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5.4.18 Venting Boundary Condition Flags

vacuum pressure coefficient

This parameter, which is in N/m2 sets the pressure coefficient behind
type 6 boundaries (see Section 5.3 on page 12), which forces flow out of
the domain. This coefficient is defined as

vacuum_pressure_coefficient =
p0 − p∞

2
. (31)

where p0 is back pressure where the gas is venting out, and p∞ is farfield
pressure. Default: 0.0

vacuum pressure factor

Factor on pressure across type 6 boundary to force flow out of domain.

vacuum_pressure_factor =
p0
p1
, (32)

where p1 is the pressure just before the gas vents out. Default: 0.01

5.5 tdata

The gas model is defined in this file. It contains a list of key words, sometimes
followed by numeric values, which identify components of the gas model. One
or more spaces must be present between keyword and values when appearing
on the same line. Spaces may appear to the left or right of any key word. The
first line of the file must not be blank, however.

The following subsections describe available gas model options.

5.5.1 Perfect Gas

The perfect-gas option is engaged with either of the following keywords:
perfect gas, PERFECT GAS, Perfect Gas, or Perfect gas.

If no further data is provided in this file, this single line tdata file will
assume the following parameter values in SI units:

gamma = 1.4

mol_wt = 28.8

suther1 = 0.1458205E-05

suther2 = 110.333333

prand = 0.72

Here, gamma is the gas specific heat ratio, mol wt is the gas molecular weight,
prand is the gas Prandtl number, and suther1 and suther2 are the first and
second Sutherland’s viscosity coefficients, s1 and s2, respectively, defined as

µ = s1
T 3/2

T + s2
(33)
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These values can be modified and explicitly defined in the tdata by the
keyword &species properties in the second line followed by the gas param-
eters and / at the last line of the file. For example,

perfect_gas

&species_properties

gamma = 1.4

mol_wt = 28.0

suther1 = 0.1E-05

suther2 = 110.3

prand = 0.7

/

5.5.2 Equilibrium Gas

To engage the Tannehill curve fits for thermodynamic and transport properties
of equilibrium air [7], the following keyword should be used in the first line of
the tdata file: equilibrium air t. No additional inputs or files are required
to engage the Tannehill option for equilibrium air.

To use a table look-up capability for equilibrium gases [8], the following
keyword should be placed in the tdata file, instead: equilibrium air r. Note
that this option still uses the Tannehill transport properties.

5.5.3 Mixture of Thermally Perfect Gases

If the gas is a mixture of thermally perfect gases and multi-species transport
solution is desired the species names followed by their mass fractions must be
provided in the tdata file. Thermal state of the gas may be defined as the
first entry by either of the following flags:

one

This flag assumes that all the species are thermally in equilibrium state.
That is translational temperature, T , and vibrational temperature, Tv
are equal. This is known as one-temperature, 1-T, model.

two

This flag assumes that energy distribution in the translational and rota-
tional modes of heavy particles (not electrons) are equilibrated at trans-
lational temperature, T , and all other energy modes (vibrational, elec-
tronic, electron translational) are equilibrated at vibrational tempera-
ture, Tv. This is known as two-temperature, 2-T, model.

FEM

This option, called Free-Energy Minimization, causes the species conti-
nuity equations to be replaced with elemental continuity equations and
equilibrium relations for remaining species.
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One temperature model is assumed if thermal state of the gas is not provided
in the first line of the tdata file. In this case, the first line must contain species
information. Note, the first line must not be blank.

Subsequent file entries include species names and their mass fractions at
freestream/farfield boundary. Only one specie per line is allowed. The species
mass fraction at the boundary is defined in the same line as the species name
separated by one or more spaces. If no value appears to the right of the species
name then that species is assumed not to be present at the boundary but may
be produced through chemical reactions elsewhere in the flowfield.

Example 1: 1-T, 5-species air model: In this example, only molecular
oxygen and nitrogen are present on freestream/farfield boundary, but atomic
nitrogen and oxygen and nitric oxide may be produced elsewhere in the flow
field due to chemical reactions.

one

N2 .767

N

O2 .233

O

NO

Example 2: 2-T, 11-species air model: In this example, the gas is as-
sumed to be a mixture of 11 thermally perfect gases. A solution to a thermal
non-equilibrium state of the gas is also desired (2-T model).

two

N2 .767

N

O2 .233

O

NO

O2+

O+

NO+

e-

5.6 Simulation Dependent Files

5.7 assign tasks

This file defines sweep and relaxation directions for only grid blocks that do
not fall under the default specificition in the namelist. Each line, has five
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integers13 that are separated by at least one space. These integers correspond
to nbk, mbk, mbr, lstrt, and lstop where

nbk

Block number.

mbk

Sweep direction. The assigned value can be either 1, 2, or 3, correspond-
ing to i-, j-, or k-direction, respectively.

mbr

The line relaxation direction. Note: must be different than the sweep
direction.

Options are:

0: Point-implicit, i.e., no line-relaxation

1: Line-implicit along i coordinate

2: Line-implicit along j coordinate

3: Line-implicit along k coordinate

lstrt

The starting grid index in the sweep direction. Typically 1 .

lstop

The ending grid index in the sweep direction. Typically 0, which is
shorthand for the maximum index.

Options are:

0: maximum index

-1: makes the block inactive

When starting a new simulation where the k-coordinate runs from the
vehicle surface to the freestream boundary, sweeping in the k-coordinate and
solving point-implicitly is recommended, i.e. mbk = 3 and mbr = 0. This
can be done simply by point implicit = .true. in the namelist file. After
the shock has stabilized, switch to streamwise sweeps and solve line-implicitly
along the k-coordinate, i.e. mbk = 1 and mbr = 3. The namelist variable
point implicit = .false. will do the same for all the blocks.

13The code will not read data beyond the fifth column.
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5.7.1 Example 1: Multiple Blocks per CPU or Vice-versa

Suppose the grid has 2 blocks, but the number of available processors is not
the same as the number of grid blocks. The user does not need to change any
of the input files and can simply specify the number of processors available,
e.g.,

% mpirun -np [#] laura_mpi

where # is the number of available processors. Laura automatically assigns
processors to blocks such that each processor receives approximately same
number of grid cells.

5.7.2 Example 2: Deactivating Grid Blocks

Suppose the grid has 50 blocks, but only blocks 20–25 need to be updated.
In this case, assign tasks would contain blocks 20–25 with -1 on the 5th
column.,

20 3 0 1 -1 1

21 3 0 1 -1 2

22 3 0 1 -1 3

23 3 0 1 -1 4

24 3 0 1 -1 5

25 3 0 1 -1 6

nbk mbk mbr lstrt lstop dummy

5.8 hara namelist data

This file controls the radiation models used by the Hara radiation mod-
ule [9,10]. It is optional for coupled radiation simulations. If it is not present,
then the code automatically chooses the radiative mechanisms associated with
species present in the flowfield (and have number densities greater than 1000
particles/cm2), and other options are set to the defaults listed in the following
section. For users not experienced in shock-layer radiation, it is recommended
that this hara namelist data file not be applied (meaning it is removed from
the working directory), therefore allowing the radiative mechanisms to be au-
tomatically chosen and the default model options applied.

5.8.1 Specifying radiation mechanisms for atomic species

The treatment of radiation resulting from atomic lines, atomic bound-free
and free-free photoionization (referred to here as atomic continuum), and neg-
ative ion continuum is available for atomic carbon, hydrogen, oxygen, and
nitrogen. These mechanisms are specified through the following binary flags
(on=1/off=0). If any of these flags are not present in hara namelist data,
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then that flag is set to true only if the number density of the associated atomic
specie is greater than 1000 particles/cm2 somewhere in the flowfield.

treat [?] lines

A binary flag to enable the treatment of atomic lines for specie [?],
where [?] can be c, h, n, and o, for atomic carbon, hydrogen, nitrogen
and oxygen, respectively.

treat [?] cont

A binary flag to enable the treatment of atomic bound-free and free-free
continuum for specie [?], where [?] can be c, h, n, and o, for atomic
carbon, hydrogen, nitrogen and oxygen, respectively.

treat [?] other

A binary flag to enable the treatment of the negative-ion continuum for
specie [?], where [?] can be c, h, n, and o, for atomic carbon, hydrogen,
nitrogen and oxygen, respectively.

5.8.2 Specifying radiation mechanisms for molecular species

The treatment of radiation resulting from numerous molecular band systems is
available through the following flags (0 = off, 1 = SRB, 2 = LBL). The smeared
rotational band (SRB) approach applies a simplified and efficient treatment of
each molecular band system, which is accurate for optically thin conditions.
The line-by-line (LBL) approach is a detailed but highly inefficient treatment of
each molecular band system. The LBL option is not recommended for coupled
radiation-flowfield computations, except for possibly the CO 4+ system, which
may be optically thick for Mars entry conditions. If any of these flags are
not present in hara namelist data, then that flag is set to the SRB option
only if the number density of the associated molecular specie is greater than
1000 particles/cm2 somewhere in the flowfield. Additional band systems are
listed in Appendix B on page 82. These additional band systems are generally
considered negligible relative to those listed in this section, and therefore for
computational efficiency, they are not engaged by default. Definitions of each
band system and the modeling data applied are discussed in Refs. [9, 11].

treat band c2 swan

A flag activating the C2 Swan band system.

treat band c2h

A flag activating the C2H band system.

treat band c3

A flag activating the C3 and Vacuum Ultra-Violet (VUV) band systems.
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treat band cn red

A flag activating the CN red band system.

treat band cn violet

A flag activating the CN violet band system.

treat band co4p

A flag activating the CO 4+ band system.

treat band co bx

A flag activating the CO B-X band system.

treat band co cx

A flag activating the CO C-X band system.

treat band co ex

A flag activating the CO E-X band system.

treat band co ir

A flag activating the CO X-X band system.

treat band h2 lyman

A flag activating the H2 Lyman band system.

treat band h2 werner

A flag activating the H2 Werner band system.

treat band n2fp

A flag activating the N2 1+ band system.

treat band n2sp

A flag activating the N2 2+ band system.

treat band n2pfn

A flag activating the N+
2 first-negative band system.

treat band n2 bh1

A flag activating the N2 Birge-Hopfield I band system.

treat band n2 bh2

A flag activating the N2 Birge-Hopfield II band system.

treat band no beta

A flag activating the NO beta band system.
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treat band no delta

A flag activating the NO delta band system.

treat band no epsilon

A flag activating the NO epsilon band system.

5.8.3 Atomic line models

There are various models available for atomic line radiation, one of which
must be chosen for each specie that engages atomic line radiation (as specified
using treat [?] lines). This choice of atomic line model is made using the
following flags. The listed defaults are applied if the individual flag is not
present in hara namelist data, or if hara namelist data is not present in
the working directory. All model types in this category must be surrounded
by a quotation marks, e.g. ‘ ’.

c atomic line model, h atomic line model

A character identifier for selecting the atomic line model for atomic car-
bon or hydrogen. Presently, the only available option is the model com-
piled in Ref. [11], which is referred to here as the Complete Line Model
(CLM). Default : ‘clm’

n atomic line model, o atomic line model

A character identifier for selecting the atomic line model for atomic ni-
trogen or oxygen. The available models are compiled and compared in
Ref. [9], which is referred to here as the Complete Line Model (CLM).
Default : ‘clm’ Available models are:

‘all multiplets’

This model treats all lines as grouped multiplets. This significantly
reduces the number of lines treated as well as the computational
expense. However, this grouped multiplet approximation will lead
to errors for non-optically-thin conditions.

‘clm’

This model, which stands for Complete Line Model, applies the
individual treatment of strong atomic lines while applying multiplet
averages for weak lines. This is the recommended model.

5.8.4 Electronic state population models

These flags specify the model applied for predicting the electronic state popu-
lations of atoms and molecules. The listed defaults are applied if the individual
flag is not present in hara namelist data, or if hara namelist data is not
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present in the working directory. All model types in this category must be
surrounded by a quotation marks, e.g. ‘ ’.

Atomic electronic states

The electronic state populations for atoms are required for computing atomic
line and photoionization emission and absorption. The compilation and com-
parison of the available models are presented in Ref. [10].

c electronic state, h electronic state

A character identifier for selecting the electronic state model for atomic
carbon and hydrogen. Available models are (Default : ‘boltzmann’):

‘boltzmann’

Applies Boltzmann population of electronic states.

‘Gally 1st order LTNE’

Applies the Gally first-order local thermodynamic nonequilibrium
method [12], which approximately accounts for the non-Boltzmann
population of atomic states.

n electronic state, o electronic state

A character identifier for selecting the electronic state model for atomic
nitrogen and oxygen. Available models are (Default : ‘CR’):

‘boltzmann’

Same as for c electronic state

‘Gally 1st order LTNE’

Same as for c electronic state

‘CR’

Applies the detailed Collisional Radiative (CR) model developed in
Ref. [10].

‘AARC’

Applies the Approximate Atomic Collisional Radiative (AARC)
model developed in Ref. [10]. This model is essentially a curve-fit
based approximation of the CR model, which allows for improved
computational efficiency with a slight loss in accuracy.

Molecular electronic states

The electronic state populations for molecules are required for computing
molecular band emission and absorption. The compilation and comparison
of the available models are presented in Refs. [10,13].
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molecular electronic state

A character identifier for selecting molecular electronic state for all molec-
ular band systems. Available models are (Default : ‘CR’):

‘boltzmann’

Applies Boltzmann population of electronic states.

‘CR’

Applies a detailed Collisional Radiative model considering both
heavy-particle and electron impact transitions. Some molecular
states are still assumed Boltzmann with this model because no data
is presently available for the CR model.

5.8.5 Other flags

use triangles

A logical flag specifying whether optically-thin atomic lines are modeled
as triangles to reduce computational time. This option has shown to
result in a negligible loss of accuracy while greatly reducing the compu-
tational time, [9] and is therefore recommended. Default : .true. Note:
This flag is automatically set to .true. when n or o atomic line model=

‘clm’ — see Section 5.8.3 on page 44.

use edge shift

A logical flag to engage the photoionization edge shift [9] for atomic
bound-free radiation. (on=1/off=0). Default : .true.

5.9 jdata

This file defines jets chamber conditions at faces of blocks with characteristic
boundary condition [14]. Jets species names and their mass fractions are also
specified in this file. There must be one entry for each jet. Each jet can have
a different chamber condition and species composition.

5.9.1 Multi-species Jet Composition

Consider a system with two jets; i.e., there are two characteristic boundary
condition entries in the laura bound data file. N2 and H2 are being fired from
one of the jets while pure H2 is being used for the other jet. Note: The sum
of the species mass fraction must equal 1.0 or the code stops with an error
message. In this example, the jdata file should look like the following:

&jet_properties 1

nozzle_grid_block = 9 2
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plenum_t0 = 401.7 3

plenum_p0 = 2434000. 4

jet_number_of_species = 2 5

/ 6

N2 0.8 7

H2 0.2 8

9

&jet_properties 10

nozzle_grid_block = 6 11

plenum_t0 = 105.7 12

plenum_p0 = 10250. 13

/ 14

H2 1.0 15

It should be noted here that the tdata must contain all the jet effluent
species. The default value for jet number of species is 1. Jet properties can
be placed in this file in a random order.

5.9.2 Perfect Gas Jet Composition

If perfect gas is specified in the first line of the tdata file, the code ignores
jet species composition even they are left in the jdata and assumes perfect
gas with the same molecular weight and Prandtl number as specified in the
tdata file.

&jet_properties 1

nozzle_grid_block = 19 2

plenum_t0 = 401.7 3

plenum_p0 = 2434000. 4

jet_number_of_species = 1 5

/ 6

N2 0.8 7

H2 0.2 8

9

&jet_properties 10

nozzle_grid_block = 36 11

plenum_t0 = 105.7 12

plenum_p0 = 10250. 13

/ 14

H2 1.0 15

16

... 17

... 18

... 19
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5.10 kinetic data

This file defines possible chemical reactions and is optional. By default,
kinetic data is read from [install-prefix]/share/physics modules, but
if present in the local run directory, Laura will read reactions from the local
file instead.14

Reactants and products can be any species defined in the species thermo data

file—see Section 5.15 on page 52. A sample entry looks like this,

O2 + M <=> 2O + M 1

2.000e+21 -1.50 5.936e+04 2

teff1 = 2 3

exp1 = 0.7 4

t_eff_min = 1000. 5

t_eff_max = 50000. 6

C = 5.0 7

O = 5.0 8

N = 5.0 9

H = 5.0 10

Si = 5.0 11

e- = 0. 12

The first line specifies the reaction while line 2 provides three coefficients of
an Arrhenius-like equation,

Kf = cfT
η
effe

−ε0/kTeff (34)

where cf is the pre-exponential factor, η is the power of temperature depen-
dence on the pre-exponential factor, ε0 is the Arrhenius activation energy, and
k is the Boltzmann constant. The arrowheads in line 1 signify the allowed
directionality of the reaction. The symbol => denotes forward reaction only
while <=> denotes forward and backward rates are computed. The coeffi-
cients in line 2 correspond to cf , η, and ε0/k, respectively. For reactions with
a generic collision partner, M, such as this one, these coefficients correspond
to Argon; and other collision partners and their efficiencies (multipliers of cf )
are specified on lines following line 5 and 6, which give the valid temperature
range for the reaction. The effective temperature, Teff , is defined according
to a given integer number in line 3; Default: 2

teff1,teff2

Flag defining formula to compute the effective temperature Teff for the
forward rate and backward rate, respectively. It is engaged for the case
of thermal nonequilibrium. Options for teff are:

14The precise installation location is given by Laura during startup. It can also
be found on Unix-like systems from the executable itself by issuing the command
strings laura | grep share.
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1: Teff = Ttr

2: Teff = T exp1tr T 1−exp1
v

3: Teff = Tv

where Ttr and Tv are translational and vibrational temperatures, respec-
tively. Default: 1

exp1

The exponent used to define the effective temperature when teff1 = 2
(forward rate) or teff2 = 2 (backward rate). See previous equations for
teff options. Default: 0.7

rf max

Upper limit on forward reaction rate in cgs units engaged only if augment kinetics limiting

is true. See output file kinetic diagnostics output for unlimited rates
as function of temperature. Default: 1.e+20

rf min

Lower limit on forward reaction rate in cgs units engaged only if augment kinetics limiting

is true. See output file kinetic diagnostics output for unlimited rates
as function of temperature. Default: 1.e-30

rb max

Upper limit on backward reaction rate in cgs units engaged only if
augment kinetics limiting is true. See output file kinetic diagnostics output

for unlimited rates as function of temperature. Default: 1.e+30

rb min

Lower limit on backward reaction rate in cgs units engaged only if
augment kinetics limiting is true. See output file kinetic diagnostics output

for unlimited rates as function of temperature. Default: 1.e-30

t eff min

The minimum temperature for Teff to compute reaction rates to circum-
vent stiff source terms. Default: 1000.

t eff max

The maximum temperature for Teff to compute reaction rates to cir-
cumvent stiff source terms. Default: 50000.

5.11 laura.rst

This Fortran-unformatted binary file has the flowfield solution for every grid
cell, boundary surface values, and grid cell derivatives for each block face.
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The number of variables in this file varies depending on number of conserva-
tion equations that Laura needs to solve as specified through the tdata and
laura namelist data files. A file of this format, but named laura new.rst,15

is generated by Laura at the end of a successful run. The laura.rst file is re-
quired only if restarting from a prior run, i.e., irest = 1 in laura namelist data

as described in Section 5.4.9 on page 25.

5.12 laura.trn

Turbulent transition location and transition length are specified in laura.trn.16

Global values may be set directly through laura namelist data file. One line
of data consisting of four integers followed by at least one space with the follow-
ing entries per specified blocks is required: block number, turbulent flag,
transition location, and transition length factor where

turbulent flag

One of -1, 0, or 1, which correspond to laminar, transition location in
block, or fully turbulent flow, respectively.

transition location

Specified as an x coordinate. This value used only if turbulent flag

is 0.

transition length factor

Defined as (transition length)/L, where L is the distance from the nose
to the transition location. Use 0 for instantaneous transition.

5.13 laura trajectory data

This file is used to sequentially simulate points along a trajectory. Each line of
the file defines a single trajectory point. The trajectory point data is entered
in free format with time, velocity, density, temperature, alpha, and yaw in
MKS units (6 entries per line). The simulation will start at trajectory point 1
by default unless another line number is specified in the laura namelist data

using the namelist variable trajectory data point — see Section 5.4.16 on
page 34.

The restart solution files and post processing files for each trajectory point
are saved with a four digit number added to the usual root name of these files
corresponding to the trajectory point number.

15When running a trajectory sequence, the file will be named laura ####.g where ####

is the trajectory point index.
16Laura transition files from versions prior to 5 can also be used.
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5.14 laura vis data

This file contains the data set that overrides the default viscous terms in the
i-, j-, and k-directions. There are four integers consisting of block number
and toggles for each viscous term per line in this file: blk num, ivis, jvis,
and kvis where ivis, jvis, and kvis are viscous terms in the i-, j-, and
k-directions, respectively. The viscous-term flag options are:

0: Viscous terms are not engaged in the respective direction; i.e. inviscid
flow.

1: Viscous terms and a reduced eigenvalue limiter are engaged in the respec-
tive direction. The reduced eigenvalue limiter is to prevent distortion of
computed heating.

2: Viscous terms are engaged but an unmodified eigenvalue limiter is re-
tained to maintain stability.

The following defaults will be applied if this file is not present in the working
directory:

If ivisc = 0 in laura namelist data (see Section 5.4 on page 14) then
inviscid flow is specified and ivis, jvis, and kvis are set to zero for all blocks
by default.

If ivisc = 2 and navier stokes = .false. in the laura namelist data
file then the default is a function of the wall boundary condition. If the wall
boundary on the imin or imax face of block n is a solid surface (see Section 5.3
on page 12) then ivis(n) = 2, otherwise ivis(n) = 0. In like manner, if the wall
boundary on the jmin or jmax face of block n is a solid surface then jvis(n) = 2,
otherwise jvis(n) = 0. The default specification for kvis(n) is set to 1 if kmin or
kmax of block n is a solid surface, otherwise kvis(n) = 0. This default recognizes
that the standard orientation is for the solid wall on the kmin surface and the reduced
eigenvalue limiter is required in this case.

If ivisc = 2 and navier stokes = .true. in laura namelist data then the
default is ivis = 2, jvis = 2, and kvis = 1 for all the blocks.

There may be circumstances where the user wishes to override these defaults. If
a block is away from the stagnation streamline crossing the shock into the boundary
layer then a more accurate heating on side walls (i and/or j) will be returned using
ivis and/or jvis set to 1 without sacrificing stability. In the case of cavities, a
block may sit over a cavity and not have any solid boundaries itself but has a well
defined boundary layer streaming into it from an adjacent block. In this case, even
though the block has no solid boundaries itself, it should engage viscous terms to
capture the entering shear layer.

Example: To override the default values and to reset viscous terms in block
number 3 to ivis = 1, jvis = 0, and kvis = 1, and in block number 5 to ivis =0,
jvis =1, and kvis =1 the laura vis data would look like:
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3 1 0 1

5 0 1 1

5.15 species thermo data

The species thermo data file is the master file for species thermodynamic data.17

Each species record consists of the species name, a species properties namelist -
&species properties, the number of thermodynamic property curve fit ranges,
and the curve fit coefficients for each range [15]. No blank line is allowed in this file.

Elements of the &species properties namelist are:

molecule

A logical flag to determine whether the species is molecule (composed of more
than one atom); If the species is molecule then molecule = .true., otherwise
molecule = .false.

ion

A logical flag to identify the charged particle. ion = .true. for charged par-
ticles except for neutrals and electrons. This flag initializes electron-neutral
energy exchange cross section and sum of the charges.

charge

An integer number to determine number of positive charges in particle. If
ion = .false. then charge = 0.

elec impct ion

This real number to set the energy for neutrals (i.e. ion=.false.) in electron
volts (eV) that is required to liberate an electron when the neutral impacts
with free electron.

mol wt

A real number to set the molecular weight of the particle. This parameter is
always required.

siga

An array of three real numbers, which correspond to curve fit coefficients for
electron-neutron energy exchange cross section defined as

σen = a+ bT + cT 2 (35)

where σen is the electron-neutron energy exchange collision cross section in
m2, a, b, and c are the curve fit coefficients, and T is the gas temperature
[16,17]. The format to define these coefficients is siga=a, b, c. For example,
siga=7.5e-20, 0, 0.

17The species thermo data file should only be changed by developers.
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disoc ener

A real number to set dissociation energy of molecule in electron volts (eV).

alantel

A real number to set Landau-Teller constant to compute vibrational relaxation
time for molecule. These are defined in Ref. [18]. This variable is required if
molecule=.true..

cprt0

A non-dimensional real number that defines translational-rotational heat ca-
pacity that is normalized by gas constant. This is equal to

cprt() =
f + 2

2
(36)

where f is the number of degrees of freedom in translation and rotation. The
defaults for atoms and diatomic molecules are 2.5 and 3.5, respectively.

Example: A portion of the species thermo data that provides thermodynamic
properties of carbon is shown below.

C 1

&species_properties 2

molecule = .false. 3

ion = .false. 4

charge = 0 5

elec_impct_ion = 11.264 6

siga = 7.5e-20, 5.5e-24, -1.e-28 7

mol_wt = 12.01070 8

/ 9

3 10

0.64950315E+03 -0.96490109E+00 0.25046755E+01 -0.12814480E-04 11

0.19801337E-07 -0.16061440E-10 0.53144834E-14 0.00000000E+00 12

0.85457631E+05 0.47479243E+01 200.000 1000.000 13

-0.12891365E+06 0.17195286E+03 0.26460444E+01 -0.33530690E-03 14

0.17420927E-06 -0.29028178E-10 0.16421824E-14 0.00000000E+00 15

0.84105978E+05 0.41300474E+01 1000.000 6000.000 16

0.44325280E+09 -0.28860184E+06 0.77371083E+02 -0.97152819E-02 17

0.66495953E-06 -0.22300788E-10 0.28993887E-15 0.00000000E+00 18

0.23552734E+07 -0.64051232E+03 6000.000 20000.000 19

The species name is defined in line 1. Between lines 2 and 9 species properties are
defined. These parameters and/or flags state that the carbon molecular weight is
12.0107, and the species is neither a molecule nor a charged particle, but it can
liberate an electron when its energy reaches 11.264 eV after it is impacted with a
free electron.

Line 10 shows that there are three thermodynamic property curve fits for tem-
perature ranges of 200 K < T < 1,000 K, 1,000 K < T < 6,000 K, and 6,000 K

53



< T < 20,000 K. Each data range consists of 12 real numbers with a restriction of
4 real numbers per line. The first 10 real numbers are the thermodynamic curve fit
coefficients, and the last two real numbers identify the temperature range for the
given curve fit coefficients. These coefficients are used to calculate the following
thermodynamic properties

cp(T )/R = a1T
−2 + a2T

−1 + a3 + a4T + a5T
2 + a6T

3 + a7T
4 (37)

h(T )/RT = −a1T−2 + a2T
−1ln T + a3 + a4

T

2
+ a5

T 2

3
+ a6

T 3

4
+ a7

T 4

5
+
a9
T

(38)

s(T )/R = −a1
T−2

2
− a2T−1 + a3ln T + a4T + a5

T 2

2
+ a6

T 3

3
+ a7

T 4

4
+ a10 (39)

where T is the gas temperature, R is the universal gas constant, cp, h and s are
the species specific heat, enthalpy and entropy, respectively, and ai are the provided
curve fit coefficients in species thermo data.

The following corrections will be applied if the gas temperature is out of the
given range for the given curve fit coefficients:

cp(T ) = cp(T
∗) (40)

h(T ) = h(T ∗) + (T − T ∗)cp(T ∗) (41)

s(T ) = s(T ∗) + ln
T

T ∗
cp(T

∗) (42)

where

T ∗ =

{
Tlower for T < Tlower
Tupper for T > Tupper

(43)

5.16 species transp data

This file18 contains log-linear curve fit coefficients for species collision cross section
that are defined based on temperature range of 2,000–4,000 K [19]. This temperature
range spans boundary-layer temperatures for typical hypersonic entry. The curve fit
for the given coefficients is poor, however, at temperatures below 1,000 K. A higher
order curve fit data is available in species transp data 0, which supersedes that
of species transp data—see Section 5.17 on the next page.

Ar Ar 1

-14.6017 -14.6502 -14.5501 -14.6028 ! trr132+kestin et al 2

Ar+ Ar+ 3

-11.48 -12.08 -11.50 -12.10 4

Ar N2 5

-14.5995 -14.6475 -14.5480 -14.5981 ! kestin et al 6

Ar CO 7

-14.5975 -14.6455 -14.5459 -14.5964 ! kestin et al 8

18The species transp data file should only be changed by developers.

54



5.17 species transp data 0

This file19 provides collision cross section coefficients for a higher order curve fit
data [20,21] than those are in the species transp data file—see Section 5.16. The
data in species transp data 0 supersedes the data in species transp data if the
file is placed in the working directory hosting the simulation.

O2 N 1 1 1 (c)

-1.1453028E-03 1.2654140E-02 -2.2435218E-01 7.7201588E+01

-1.0608832E-03 1.1782595E-02 -2.1246301E-01 8.4561598E+01

1.4943783E-04 -2.0389247E-03 1.8536165E-02 1.0476552E+00

NO N 1 1 1 (c)

-1.5770918E-03 1.9578381E-02 -2.7873624E-01 9.9547944E+01

-1.4719259E-03 1.8446968E-02 -2.6460411E-01 1.0911124E+02

2.1014557E-04 -3.0420763E-03 2.5736958E-02 1.0359598E+00

NO O 1 1 1 (c)

-1.0885815E-03 1.1883688E-02 -2.1844909E-01 7.5512560E+01

-1.0066279E-03 1.1029264E-02 -2.0671266E-01 8.2644384E+01

1.4145458E-04 -1.9249271E-03 1.7785767E-02 1.0482162E+00

END END 1 1 0

0. 0. 0. 0.

0. 0. 0. 0.

5.18 surface property data

This file is required if there are more than 1 solid surface boundary types (see
Section 5.3 on page 12) and the surface conditions of these solid surfaces differ from
those specified in laura namelist data (see Section 5.4 on page 14).

Surface boundary properties of each solid surfaces must be bounded by:

&surface_properties

/

The first instance of the parameters defines properties for surfaces of type -1 (note
that properties of type 0 are defined in laura namelist data), the second instance
defines properties for surfaces of type -2, and so on (see Section 5.3 on page 12 for
different solid surface types.)

The parameters that can be defined for each solid surface boundary are:

blowing model

See Section 5.4.1 on page 15 for more details and a complete list of options.
Default: ‘none’

19The species transp data 0 file should only be changed by developers.
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catalysis model

See Section 5.4.12 on page 29 for more details and a complete list of options.
Default: ‘super-catalytic’

char density

Density of the char, kg/m3. Default: 256.29536, which is for the heritage
AVCOAT.

CHONSi frac char

See Section 5.4.1 on page 15 for more details and a complete list of options.
Default: CHONSi frac char = 1.0, 0.0, 0.0, 0.0, 0.0

CHONSi frac pyrolysis

See Section 5.4.1 on page 15 for more details and a complete list of options.
Default: CHONSi frac pyrolysis = 1.0, 0.0, 0.0, 0.0, 0.0

emiss a, emiss b, emiss c, emiss d

Real numbers to assume emissivity constant coefficients for solid surface bound-
ary type (see Section 5.3 on page 12) surface emissivity, ε, which is calculated
as

ε = εa + εbTw + εcT
2
w + εdT

3
w (44)

where Tw is the surface temperature. Values for εa, εb, εc, and εd are defined
by emiss a, emiss b, emiss c, and emiss d, respectively. Default: emiss a=

0.89, emiss b=0, emiss c=0, and emiss d=0

equil surf temp floor

Minimum temperature of equilibrium catalytic surface for purpose of deter-
mining equilibrium constants. Raising this value to 1000 may aide convergence
if transient solution includes low surface temperatures. If the converged sur-
face temperature is less than this value than surface species mass fractions
will be in error. Default: 100.

h ablation

See Section 5.4.1 on page 15 for more details and a complete list of options.
Default: 0.0

mdot pressure

See Section 5.4.1 on page 15 for more details and a complete list of options.
Default: 0.0

surface group name

Character descriptor for surfaces with solid surface boundary types—see Sec-
tion 5.3 on page 12. Any character can be specified to group solid surface
boundaries. Default: ‘undefined surface’

surface temperature

Initial wall temperature in K for the solid surface boundary. This variable
is similar to twall bc in Section 5.4.12 on page 29. The wall temperature
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stays constant as specified by this parameter if surface temperature type

= ‘constant’. Default: value of twall bc.

surface temperature type

A character identifier for surface temperature model. See Section 5.4.12 on
page 29 for options and their descriptions. Default: ‘constant’

t ablation

See Section 5.4.1 on page 15 for more details and a complete list of options.
Default: 0.0

virgin density

Density of virgin material, kg/m3. Default: 544.627742, which is for the
heritage AVCOAT.
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6 Output Files

Laura generates the files listed in Table 2 regardless of inputs specified. A de-
scription of each output file is presented after a brief discussion of stdout output.

Table 2: Laura output files.

Filename Content Format

laura.aero Aerodynamic forces, moments, and coefficients ASCII
laura.g.fvbnd Boundary types in laura.g FieldView™
laura.nam Variables names in laura.q Tecplot™
laura.q Flowfield solution Plot3D
laura blayer.dat Wall and Boundary layer edge data Tecplot™
laura conv.out Time step, CPU time, and residuals ASCII
laura new.g Volume grid Plot3D
laura new.rst Flowfield solution for restart Binary
laura surface.g Surface grid Plot3D
laura surface.nam Variables names in laura surface.q Tecplot™
laura surface.q Surface solution Plot3D

In addition to files, Laura writes some information on the screen. After initial
configuration information such as grid block sizes, laura namelist data specifica-
tions, and tdata gas physics, the screen output is divided to five distinctive cate-
gories: block number, task number, L∞ including location and equation, and L2 of
mixture continuity, xyz-momenta, and energy equations.

The L2 norm is defined as

L2 =
N∑
i=1

(
|Ri|
ρi

)2

(45)

where N is the total number of grid cells times the number of conservation equations,
R is the residual, and ρ is the mixture density.

The location of the maximum L∞ residual is shown by four integer numbers after
the norm itself. The first three integer numbers correspond to i-, j-, and k-indices of
the corresponding block, and the last number is the equation number, n eqn. The
total number of equations, n eqn max, is defined as

n eqn max = n species + 3 + n energy (46)

where n species and n energy are number of species and energy equations, respec-
tively. The equation number corresponding to species is based on the species order
defined in tdata followed by the x-, y-, and z-momentum equation numbers. For
example, consider block 11 for the following sample screen output,
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Reading block sizes from laura.g

block = 10 task = 10 Linf: 0.63E+02 23 24 86 1 L2eq: 0.31E+00 0.11E-01 0.12E-01 0.12E-01 0.32E-01 0.27E-02

> block = 11 task = 11 Linf: 0.12E+04 21 2 86 14 L2eq: 0.42E+01 0.10E+01 0.17E+00 0.95E+00 0.88E+00 0.28E-01 <

block = 12 task = 12 Linf: 0.31E+03 11 7 87 5 L2eq: 0.20E+01 0.38E+00 0.22E+00 0.28E+00 0.35E+00 0.11E-01

block = 6 task = 6 Linf: 0.68E+02 6 24 87 1 L2eq: 0.39E+00 0.17E-01 0.80E-02 0.28E-01 0.37E-01 0.32E-02

block = 2 task = 2 Linf: 0.66E+02 3 24 87 1 L2eq: 0.49E+00 0.27E-01 0.88E-02 0.53E-01 0.53E-01 0.38E-02

block = 4 task = 4 Linf: 0.17E+03 24 1 87 14 L2eq: 0.89E+00 0.12E+00 0.47E-01 0.14E+00 0.12E+00 0.75E-02

block = 9 task = 9 Linf: 0.65E+02 21 24 86 1 L2eq: 0.43E+00 0.26E-01 0.36E-01 0.47E-01 0.48E-01 0.32E-02

block = 14 task = 14 Linf: 0.78E+02 2 24 86 1 L2eq: 0.66E+00 0.63E-01 0.27E-01 0.22E-01 0.67E-01 0.36E-02

block = 7 task = 7 Linf: 0.71E+03 14 2 87 14 L2eq: 0.27E+01 0.51E+00 0.11E+00 0.69E+00 0.55E+00 0.22E-01

block = 1 task = 1 Linf: 0.22E+03 24 4 87 14 L2eq: 0.11E+01 0.13E+00 0.29E-01 0.14E+00 0.13E+00 0.90E-02

block = 8 task = 8 Linf: 0.26E+03 6 1 87 14 L2eq: 0.10E+01 0.14E+00 0.97E-01 0.19E+00 0.16E+00 0.82E-02

block = 5 task = 5 Linf: 0.78E+02 1 24 87 1 L2eq: 0.47E+00 0.22E-01 0.23E-01 0.52E-01 0.50E-01 0.35E-02

block = 3 task = 3 Linf: 0.45E+03 24 16 87 14 L2eq: 0.21E+01 0.35E+00 0.80E-01 0.41E+00 0.34E+00 0.18E-01

block = 13 task = 13 Linf: 0.15E+03 17 2 87 5 L2eq: 0.98E+00 0.73E-01 0.63E-01 0.65E-01 0.88E-01 0.39E-02

step = 10 time = 57.20 sum(abs(task error)) = 0.28E+02 L2 norm = 0.17E-02

which is for 14-block, 11-species, two-temperature case. The maximum change is
shown to be from z-momentum equation n eqn=14 located on i=21, j=2, and k=86
of block 11.

See Section 7.7 on page 66 for a description of the laura stdout to tec utility,
which can convert this output into a Tecplot™-compatible format.

6.1 laura.aero

Aerodynamic forces, moments, and coefficients are written in this ASCII file. A
sample is shown here:

Grid Conversion Factor : 2.540000000E-02

Reference Area (grid unit squared) : 3.079080000E+04

Reference Length (grid unit) : 1.980000000E+02

x moment center (grid unit) : 1.863410000E+02

y moment center (grid unit) : 0.000000000E+00

z moment center (grid unit) : 0.000000000E+00

:Environment:

Gas Model : 5 species

Temperature K : 2.614000000E+02

Dyn. Pressure N/m2 : 2.458879535E+04

Density kg/m3 : 2.258800000E-03

Velocity m/s : 4.666000000E+03

Alpha deg : 8.000000000E+00

Mach : 1.436612450E+01

Reynolds 1/(grid unit) : 1.523656565E+04

:Aerodynamic Forces:

c_x : -1.523903478E+00

c_y : -2.217712948E-06

c_z : -3.092570736E-02

:Aerodynamic Moments:

Rolling Moment : -1.380940583E-07

Pitching Moment : 3.554896852E-03

Yawing Moment : -7.302211379E-06
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:Aerodynamic Coefficients:

Cd (Drag) : 1.513376980E+00

Cl (Lift) : 1.814616321E-01

L/D (Lift/Drag) : 1.199051092E-01

6.2 laura.g.fvbnd

FieldView™ boundary data file used to label boundary condition types contained in
laura.g file. Tecplot™ automatically detects this file when the laura.g is loaded.

6.3 laura.nam

Tecplot™ name file used to label variables contained in laura.q file.

6.4 laura.q

Plot3D function file for post-processing volume solution. Most of the variables
in this file are non-dimensionalized according to Table 3. The actual number of
variables in this file depends on the condition specified in the input files.

Table 3: laura.q variables

Variables Definition Normalized by

cN,N2,... Species mass fraction -
u, v, w Velocity components U∞
E Total energy per unit mass U2

∞
ej Energy mode j per unit mass U2

∞
T Translational temperature -
Tv Vibrational temperature -
ρ Density ρ∞
Mw Molecular weight -
p Pressure ρ∞U

2
∞

c Sonic velocity U∞
e Static energy per unit mass U2

∞
ev Vibrational energy per unit mass U2

∞
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6.5 laura blayer.dat

Boundary layer edge, and wall surface properties and shock stand off distance are
written in this ASCII and Tecplot™ readable file. Below is an example showing
the header of the file with their orders. Note that the species mass fraction will be
written in the exact same order as provided by user in tdata file—see Section 5.5 on
page 37. Also, the vibrational temperature will only be written if two temperature
is selected in tdata. Properties at a user specified roughness height will also be
written if roughness greater than zero is provided— see Section 5.4.10 on page 27.

In addition to these properties, angle-of-attack, Mach and Reynolds-number-
per-grid-unit will be provided in this file as auxiliary parameters.

TITLE ="BL EDGE PROPERTIES"

VARIABLES = "xw (m)"

"yw (m)"

"zw (m)"

"rhow (kg/m^3)"

"pw (Pa)"

"Tw (K)"

"Tvw (K)"

"Hw (J/kg)"

"muw (Pa.s)"

"c<sub>N2</sub>w"

"c<sub>O2</sub>w"

"c<sub>N</sub>w"

"c<sub>O</sub>w"

"c<sub>NO</sub>w"

"qw (W/m^2)"

"tauwx (Pa)"

"tauwy (Pa)"

"tauwz (Pa)"

"re-cell"

"rhoe(kg/m^3)"

"pe (Pa)"

"Te (K)"

"Tve (K)"

"He (J/kg)"

"ue (m/s)"

"ve (m/s)"

"we (m/s)"

"Me"

"mue (Pa.s)"

"c<sub>N2</sub>e"

"c<sub>O2</sub>e"

"c<sub>N</sub>e"

"c<sub>O</sub>e"
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"c<sub>NO</sub>e"

"delta (m)"

"deltastar (m)"

"theta (m)"

"Re-ue (1/m)"

"CH (kg/m^2.s)"

"Stand-off (m)"

DATASETAUXDATA Common.AngleOfAttack="-70.000"

DATASETAUXDATA Common.ReferenceMachNumber=" 7.130"

DATASETAUXDATA Common.ReynoldsNumber=" 4037. "

ZONE T="laura_blayer: Block 1"

..

..

6.6 laura conv.out

Time steps and residuals history are written in this file. Some of the flow conditions,
such as angle-of-attack, free stream conditions, Mach number, Reynolds-number-
per-grid-unit, etc. are also repeated at the beginning of the file. As shown in the
following sample, step number, clock time, sum of all the residuals in all active tasks,
and the overall L2 norm of the residuals are written in this file. The overall L2 norm
is defined as:20

L2 =

∑
i(|rhsi|/ρi)2

CFL2
(47)

where rhs is the residual and ρ is the density.

Step 0 time= 4.53

step = 10 time = 10.87 sum(abs(task error)) = 0.27E-03 L2 norm = 0.92E-12

step = 20 time = 17.13 sum(abs(task error)) = 0.26E-03 L2 norm = 0.88E-12

step = 30 time = 23.40 sum(abs(task error)) = 0.25E-03 L2 norm = 0.84E-12

step = 40 time = 29.65 sum(abs(task error)) = 0.25E-03 L2 norm = 0.81E-12

.

.

See Section 7.6 on page 65 for a description of the laura conv to tec utility, which
can convert this file into a Tecplot™-compatible format.

6.7 laura new.g

The Plot3D grid file includes any changes associated with grid adaptation or grid
doubling during the run. The name must be changed to laura.g if user wants to
restart with this new grid on the next run—see Section 5.2 on page 11 for more
information on the file format.

20The overall L2 norm definition is different than the L2 norm defined for each equation
by Equation 45.
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6.8 laura new.rst

The restart file contains volume and surface data required for restart from end of
current run. The name must be changed to laura.rst if user wants to restart from
this new solution file.

6.9 laura surface.g

Plot3D 3d whole multiblock surface grid file. See Section 5.2 on page 11 for more
information on the file format.

6.10 laura surface.nam

Tecplot™ name file used to label variables contained in laura surface.q file.

6.11 laura surface.q

Plot3D function file for post-processing surface solution. The number of variables
in this file depends on the conditions specified in the laura namelist data. Some
of the surface variables are presented in Table 4.

Table 4: laura surface.q variables.

Variables Definition Unit

T Surface temperature K
p Surface pressure N/m2

τx, τy, τz Wall shear stresses N/m2

qconv Convective heat flux W/cm2

qrad Radiative heat flux W/cm2

ε Surface emissivity -
mdot Blowing or Suction rate kg/m2-s
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7 Laura Utilities

Laura has several interactive utilities that automatically generate some of the re-
quired input files or otherwise aid running and post-processing Laura simulations.
These utilities are explained here:

7.1 avrg surf files

This interactive utility, which is applicable only to time accurate simulations, gen-
erates a plot3D file containing the mean of surface values for user specified pe-
riod of the simulation. It can also generate a histogram of surface values at any
specified point in a Tecplot readable format. This utility requires presence of
laura surface dtXXXX.q files generated at run time with the engagement of isurf freq

command in the namlist (see Section 5.4).

7.2 bounds

This interactive utility creates laura bound data that contains block connectivity
data. This utility reads the volume grid data from a Plot3D structured grid,
laura.g. See Section 5.2 on page 11 for more detail on the file format. Here is a
sample of an interactive session with bounds:

Enter precision of laura.g : 1 = single, 2 = double

2

Do you want all type 9 bounds to default to type 8?

Enter 1 for yes or 0 for no: (0)

0

.

.

BLOCK = 1 k = 1 BOUNDARY

Area = 0.26821087E+03

(Xcntr,Ycntr,Zcntr) = (-0.63020306E+02, 0.91387367E+02,-0.63128987E+03)

Enter ITYPE: (0)

0

.

.

The first question is about the precision of laura.g. Note that any grid file
created by Laura or one of its utilities is created in double-precision.

The second question is about type 8 and type 9 boundary data. These boundary
types are given for the block faces that are shared between two blocks. A type 9
requires an identical orientation of indices across the shared boundary (increasing
i to increasing i, increasing j to increasing j, and increasing k to increasing k). A
type 8 accommodates more general connectivity.
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7.3 coarsen

Use this utility to coarsen the grid, laura.g, and solution, laura.rst, files in i-, j-,
and/or k-directions. The new files, laura new.g, and laura new.rst, will be double
precision regardless of the input grid precision. This utility does not accept single
precision laura.rst.

7.4 convert bound data

The utility converts old (pre LAURA.5) STRTfiles/bound data.strt files to the
new laura bound data format. Usage: convert bound data bound data.strt.

7.5 convert laura

This interactive utility converts cases run with prior versions of LAURA.5—see
Appendix A on page 79. This utility generates laura.g, from old.rst, and a new
restart, laura new.rst.

The following file are either required or optional prior to the execution of this
utility:

old.2eq

This file, which may have a different root name, has two-equation turbulent
model information. This file is optional.

old.ep+

This file, which may have a different root name, has algebraic turbulent model
information. This file is optional.

old.qtw

This file, which may have a different root name, has surface temperature
information. This file is optional. If this file is provided, free stream density
and velocity are also needed. Laura uses this information to approximately
calculate the related parameters needed to be in laura new.rst.

old.rst

This file, which may have a different root name, is the old restart file that
contains volume and surface data. The utility will ask for the precision of the
data and the numbers of grid-blocks that are in this file. This file is required.

laura bound data

Use the convert bound data utility, or see Appendix A on page 79 to convert
this file from old format. This file is required.

7.6 laura conv to tec

This utility translates the Laura convergence history file, laura conv.out, de-
scribed in Section 6.6 on page 62 into a form usable by Tecplot™.
Usage: laura conv to tec [options].
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7.7 laura stdout to tec

To allow task-specific convergence history plotting, this utility translates the Laura
standard output stream described in Section 6 on page 58 into a convergence history
file for each task suitable for Tecplot™.
Usage: laura stdout to tec [options] [file].

7.8 make assign tasks

Given the number and blocks and processes, the make assign tasks utility will
generate a default assign tasks (point relaxation with k-sweeps).
Usage: make assign tasks n blocks n processes.

7.9 mirror rst grid

Use this interactive utility to mirror grid and or restart files. This utility reads
laura.g and laura.rst for the original grid and generates laura new.g and laura new.rst
files based on the user specified mirroring axis.

7.10 prolongate

Use this utility to generate fine adapted grid, laura new.g, and solution, laura new.rst,
files from coarse adapted grid, coarse.g, and solution, coarse.rst, files. You will
need to provide a fine un-adapted grid filename and coarsening stride used in the
coarse.g file.

7.11 self start

This interactive utility generates a single-block structured grid, laura.g, for fam-
ilies of 2D, axisymmetric and 3D blunt bodies. This utility will also generate
laura bound data. Schematics of several blunt body families are shown in Figure 3
on the next page. Note that for axisymmetric geometries, the symmetry boundaries
must be on the y-axis. Parameters for defining a probe shape are shown in Figure 4
on the facing page.

7.12 shuffle laura

This interactive utility modifies (shuffles) variables in the Laura restart, laura.rst,
to enable continuation of simulation if the gas model variables or parameters includ-
ing number of species, thermal nonequilibrium, radiation, ablation, and turbulence
model are modified. The users will be prompted to provide necessary information.
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(a) Spherically blunted cone. (b) Custom aerobrake. (c) Asymmetric 3D cone.

Figure 3: Sample geometries generated by self start utility.

Figure 4: Definition of probe shape parameters used by self start.
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8 Sample Cases

8.1 Sphere: 5-species Air, Thermo-chemical Nonequi-
librium

A working directory is created in which all requisite files are assembled. The utility
self start is used to generate a grid and the initial template for some required
input files within this working directory. A verbatim transcript of an interactive
session using self start follows.

% self_start

Select dimensionality:

1 = Axisymmetric

2 = Two-dimensional

3 = Three-dimensional

1

Select geometry:

1 = Conic (cone/wedge, paraboloid, etc.).

2 = Aerobrake (includes AFE without axis singularity).

2

Select aerobrake type:

0 = AFE

1 = hemisphere

2 = customized aerobrake

1

Enter radius (m) { 1.000000}:

1.

Select number of cells along symmetry plane.

30

Enter number of cells in k direction, prior to any doubling

16

At this point the grid file laura.g, the boundary data file laura bound data, and
the namelist file laura namelist data are created. The boundary data file does not
require any further modification. The task assignment file is set for point-implicit
relaxation - the standard practice for starting any simulation. The namelist file
requires editing to define free stream conditions and possibly alter default settings.
The edited file used for the first run of the test case follows.

&laura_namelist

velocity_ref = 5000. ! reference velocity, m/s

density_ref = 0.001 ! reference density, kg/m^3

tref = 200.0 ! reference temperature, K

alpha = 0.000 ! pitch angle, degrees

twall_bc = 500.0 ! initial wall temperature, K

chem_flag = 1 ! 0 chemically frozen, 1 chemical source on

therm_flag = 1 ! 0 thermally frozen, 1 thermal source on
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irest = 0 ! 0 for fresh start, 1 for restart

ncyc = 2000 ! global steps

jupdate = 4 ! steps between update of jacobian

ntran = 4 ! steps between update of transport properties

nitfo = 1500 ! number of 1st-order relaxation steps

iterwrt = 200 ! steps between saves of intermediate solution

rf_inv = 3.0 ! inviscid relaxation parameter

rf_vis = 1.0 ! viscous relaxation parameter

movegrd = 100 ! number of steps between calls to align_shock

maxmoves = 0 ! maximum number of calls to align_shock

re_cell = 0.1 ! target cell Reynolds number at wall

fsh = 0.6 ! target bow shock position arc length fraction

kmax_error = 0.005 ! error norm for doubling grid in k-dir.

kmax_final = 64 ! max number cells in k dir after all doubling

nexch = 2 ! steps between exchange of info in mpi

frac_line_implicit = 0.7 ! fraction of line by block tri-dia

surface_temperature_type_0 = `radiative equilibrium'
catalysis_model_0 = `super-catalytic'
emiss_a_0 = 0.89

ept = 0.010 ! relaxation factor on read eq wall bc

dimensionality = 'axisymmetric'
xmc = 0.0000

ymc = 0.0000

zmc = 0.0000

grid_conversion_factor = 1.0000

sref = 0.43633E-01

cref = 2.0000

/

The first 5 variables of the namelist in this particular template (other variable
orderings are acceptable) deal with free stream conditions. The user must set these
values, otherwise the user will get the default values assuming laminar flow of a per-
fect gas at 5 km/s and 0.001 kg/m3. In this case both the chem flag and therm flag

are reset to 1 to turn on the chemical and thermal source terms. Other template
values are defined to provide a reasonable compromise between solution robustness
and convergence rate for a fresh start solution (irest = 0). The template calls for
2,000 relaxation steps (ncyc) in the initial run with jacobian updates (jupdate) and
transport property updates (ntran) requested every four relaxation steps. The first
1,500 iterations are executed using first-order spatial accuracy (nitfo)—second-
order accuracy does not contribute significantly to the solution evolution in the
initial relaxation period. The inviscid and viscous relaxation factors ( rf inv = 3
and rf vis = 1 ) multiply the respective contributions to the Jacobian matrices
and provide damping of the update. Larger values sometimes improve robustness
for more energetic flows but are not required in this case.

Template values for grid movement are movegrd = 100, maxmoves = 0 (unlimited
number of moves), re cell = 0.1, and fsh = 0.6. These values are approximately
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tuned for optimal response in the opening relaxation process from a fresh start
where the body materializes in a supersonic flow. Allowing the grid to move every
100 steps provides frequent opportunity to follow the evolution of the shock front
as it initially is collapsed on the surface and then reflects off the surface into the
oncoming flow. Setting re cell to 0.1 provides very tight stretching near the wall.
If there is a large difference between the wall temperature and the temperature of
the first cell center off the wall then the upwind algorithm may fail to sense the wall
- the boundary condition using the Roe’s averaged interface may admit a supersonic
flow directed toward the wall at the interface. This condition subverts the ability of
the inviscid, no-slip boundary to properly engage. The tighter near wall resolution
enables the upwind scheme to sense the wall under all wall temperature conditions
tested to date. Setting fsh = 0.6 targets the captured bow shock location at 60% of
the distance between the wall and the inflow boundary, providing adequate margin
for the shock to reflect outward without striking the inflow boundary prior to the
next grid update.

Automated grid doubling in the k direction is controlled by the triggering error
norm magnitude (kmax error = 0.005) and the maximum number of cells in the k
direction (kmax final = 64). Recall that the grid was initialized with only 16 cells
in the k direction with the self start utility. The grid will double to 32 cells in the
k direction (normal to the wall) when the L2 norm first drops below 0.005. It will
double again when the error norm next falls below this trigger point. The selection
of a trigger point for more complex problems (three-dimensional, highly energetic)
may require user experimentation: trigger too high and the grid doubles too early
causing a lot of extra work; trigger too low and the solution may ring (limit cycle)
on a coarse grid and never engage a finer grid.

The template setting therefore updates the boundary condition after completion
of a forward and backward sweep through the domain. Other template values are not
discussed here. They are consistent with default values as described in Section 5.4
and are included for the users convenience.

The tdata file is generally the only file that requires editing by the user. For
the case of 5 species air in thermochemical nonequilibrium the file tdata is defined
as follows.

Two Temperature

N 6.217e-20

O 7.758e-09

N2 0.737795

O2 0.262205

NO 1.e-09

The fresh start run for this example case is now ready to be executed. It is
assumed that the executable file laura is available in the working directory. This
case is small enough to be run in interactive mode. For the purposes of discussion,
it is convenient to capture the output in a file called out 01.

% laura >& out_01 (for csh)

% laura > out_01 2>&1 (for sh)
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The user should note several types of information in out 01. The beginning of
this file contains diagnostic information regarding presence of optional files, free
stream conditions, and kinetic model diagnostics including warnings regarding ab-
sence of some allowed third body collision partners. Lines beginning with “step =”
keep track of the relaxation step number, elapsed wall time, sum of the L1 norms
over all conservation equations, and the L2 norm. Lines beginning with “block
=” keep track of the L1 norm for mixture continuity, x-momentum, y-momentum,
z-momentum, total energy, and vibrational-electronic energy residuals. The state-
ment Calling align shock... appears after every 100 steps (movegrd = 100). The
statement Saving restart and plot files. followed by intermediate values of
aerodynamic coefficients appear after every 200 steps (iterwrt = 200). The grid
doubles automatically after step 472 from 16 to 32 cells in the k direction when the
error norm first drops below 0.005.

block = 1 task = 1 err: 0.17E+01 0.30E+00 0.61E-15 0.44E+00 0.38E+00 0.53E-01

step = 472 time = 24.65 sum(abs(task error)) = 0.29E+01 L2 norm = 0.50E-02

Increased kmax to 32

block = 1 task = 1 err: 0.69E+05 0.54E+02 0.31E-14 0.51E+02 0.14E+04 0.40E+03

step = 476 time = 25.09 sum(abs(task error)) = 0.70E+05 L2 norm = 0.97E+08

In general, there is a large jump in the error norm following a grid move or grid
doubling which rapidly diminishes to pre-adjustment levels. A second doubling from
32 to 64 cells occurs after step 1348.

block = 1 task = 1 err: 0.15E+01 0.47E+00 0.13E-14 0.34E+00 0.45E+00 0.47E-01

step = 1348 time = 113.30 sum(abs(task error)) = 0.28E+01 L2 norm = 0.49E-02

Increased kmax to 64

block = 1 task = 1 err: 0.47E+05 0.46E+02 0.39E-14 0.41E+02 0.82E+03 0.23E+03

step = 1352 time = 114.19 sum(abs(task error)) = 0.49E+05 L2 norm = 0.46E+08

The interim solution for pressure contours after the first 2,000 steps is shown
in Figure 5a on the next page. The corresponding surface pressure and heating
distributions are shown in Figure 5b. The deep blue zone in front of the sphere
represents undisturbed free stream conditions. The deep red indicated the high
pressure stagnation region. The captured shock is approximately located at 60% of
the distance between the spherical surface and the inflow boundary. The surface
pressures and shock shape will be shown to be nearly converged at this point but
the heating rates are still far from converged. Converging the boundary layer profile
is the focus of the remaining relaxation steps.

Line relaxation is engaged at this point by point implicit = .false. in the
namelist file. The default is sweeping around the sphere in the i direction and
applying line relaxation across the boundary layer in the k direction.

sweep_direction = 1 ! i-direction

relax_direction = 3 ! k-direction

The adapted grid and restart files are renamed to start the second run.

% cp laura_new.g laura.g

% cp laura_new.rst laura.rst
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(a) Pressure contours - interim solution
after 2000 steps

(b) Surface pressure and heating - interim
solution after 2000 steps

(c) Pressure contours - converged solution
after 4000 steps.

(d) Surface pressure and heating - con-
verged solution after 4000 steps.

(e) Pressure contours - 1.e-12 error norm
solution after 5600 steps.

(f) Surface pressure and heating - 1.e-12
error norm solution after 5600 steps.

Figure 5: Solutions to the sphere test problem: V∞ = 5,000 m/s, ρ∞ =
0.001 kg/m3, T∞ = 200 K, 5-species air, thermochemical nonequilibrium, ra-
diative equilibrium wall, ε = 0.89, and super-catalytic wall boundary.
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Changes or additions to the file laura namelist data are indicated below.

irest = 1 ! 0 for fresh start, 1 for restart

jupdate = 20 ! steps between update of jacobian

ntran = 20 ! steps between update of transport properties

nitfo = 0 ! number of 1st-order relaxation steps

rf_inv = 2.0 ! inviscid relaxation parameter

rf_vis = 2.0 ! viscous relaxation parameter

movegrd = 400 ! number of steps between calls to align_shock

maxmoves = 3 ! maximum number of calls to align_shock

frac_line_implicit = 0.7

At the conclusion of these next 2,000 steps (4,000) total the L2 norm has dropped
to 0.74e-06 and the solution is converged. The solution for pressure contours after
4,000 steps is shown in Figure 5c. The corresponding surface pressure and heating
distributions are shown in Figure 5d. Significant reduction in heating level and
smoothing of the stagnation region profile has occurred using the line relaxation
across the boundary layer during this second set of 2,000 relaxation steps.

Line relaxation across the entire shock layer (frac line implicit = 1.0) can
be accommodated in this case if the relaxation factors (rf inv and rf vis) are
increased to 5. The tolerance for convergence of the L2 norm (rmstol) is set to 1.e-
12. Grid movement is switched off (movegrd = 0). The latest grid and restart files
are renamed as before to start the third run. The third run reaches the convergence
criteria in 1,600 additional relaxation steps, a drop of 6 orders of magnitude in
the L2 norm. The solutions (Figure 5e and Figure 5f) are nearly identical to the
corresponding figures at 4,000 steps.

block = 1 task = 1 err: 0.14E-04 0.50E-05 0.11E-14 0.36E-05 0.40E-05 0.53E-06

step = 1580 time = 335.39 sum(abs(task error)) = 0.27E-04 L2 norm = 0.10E-11

block = 1 task = 1 err: 0.14E-04 0.48E-05 0.12E-14 0.35E-05 0.39E-05 0.51E-06

step = 1600 time = 339.63 sum(abs(task error)) = 0.26E-04 L2 norm = 0.98E-12

Aerodynamic Coefficients

c_x = -0.8854

c_y = -0.0000

c_z = 0.6950

c_l = -0.0000

c_m = 0.3514

c_n = 0.0000

8.2 Coupled radiation procedure

Starting with the converged non-radiating LAURA solution, the shuffle laura

routine must be applied to the laura.rst file, and the option to convert from un-
coupled to coupled radiation must be chosen—see Section 5.4.11 on page 28 for more
info on radiation flags. The new .rst file created by shuffle laura must then be
renamed to laura.rst. Furthermore, the radiation command must be added to the
laura namelist data file:

radiation = .true.
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The first of these, radiation, must be set to true. With this flag other radiation
related flags (nrad, frac rad new, iinc rad, jinc rad) will get turned on. The
parameter nrad specifies the number of flowfield iterations between calls to Hara,
which is set to 3000 if it is not specified. frac rad new specifies the fraction of the
most recent Hara calculation applied to the LAURA solution, which is set to 0.8
if it is not specified. iinc rad and jinc rad, respectively, specify the increment in
the treated points along the surface and in the spanwise direction; both are default
to 3. For axisymmetric cases, jinc rad must be 1. For relatively weakly coupled
radiation, such as Earth lunar-return conditions [22], nrad may be set to 1,500 for
the first two calls to Hara, and 3,000–5,000 for the subsequent calls. For strongly
coupled flows, such as Mars-return entry to Earth [11], nrad should be set to 500
for the first two calls to Hara, and 1,000 for the rest.

The radiation models applied by the radiation code (HARA) are defined by the
optional file hara namelist data described in Section 5.8 on page 41. If this file
is not present in the working directory, then the code determines which radiative
mechanisms to apply based on the species number densities in the flowfield.

8.3 Unspecified ablation procedure - Coupled

The recommended procedure for an unspecified ablation computation, meaning the
ablation rate and wall temperature is computed as part of the flowfield solution
(instead of being specified by the user), is as follows:

1: Obtain a non-ablating solution assuming an equilibrium catalytic and radia-
tive equilibrium wall. Include only species required for a non-ablating solution.

2: Apply the shuffle laura utility to the converged non-ablating solution. Choose
the ablation option and increase the number of species to the amount required
to accommodate ablation species. Add the ablation species to tdata.

3: Modify laura namelist data to include the following—see Section 5.4.1 on
page 15 for more info on ablation parameters:

surface_temperature_type_0 = 'surface energy balance'
blowing_model_0 = "equil_char_quasi_steady"

CHONSi_frac_pyrolysis_0 = 0.547, 0.093, 0.341, 0.019, 0.000

CHONSi_frac_char_0 = 0.488, 0.000, 0.273, 0.000, 0.239

ept = 0.01

nexch = 2

freq_wall = 50

bprime_flag = 1

compute_mdot_initial = 1

ablation_option = 0

ablation_verbose = .true.

where CHONSi frac pyrolysis 0 and CHONSi char pyrolysis 0 should be
changed to represent the material of interest. Setting bprime flag = 1 spec-
ifies that an approximate film coefficient diffusion model is applied in the

74



surface elemental mass balance. This model is robust enough to apply to a
converged non-ablating flowfield. For this option, freq wall specifies how
often the cells at the wall are updated (instead of nexch). A value of 50 seems
to work for both weakly and strongly ablating cases. In addition, ept rep-
resents the fraction of the new ablation solution, which includes the ablation
rate, wall temperature, and wall species.

4: Run Laura for roughly 24,000 iterations. During each ablation computa-
tion, data is printed out for each point on the body, indicated by l. The
level of convergence is indicated with mdot residual at the end of ablation
computation:

mdot residual =
∑
l

(∆ṁ)2 (48)

Usually, mdot residual = 1.E-2 or lower indicates that ablation computa-
tion is adequately converged within 1%.

5: If the user considers the b-prime approach of sufficient accuracy, then the
computation is finished. If the user wishes to apply a rigorous diffusion model
at the surface, consistent with that applied throughout the flowfield, then the
following modifications should be made to laura namelist data:

freq_wall = 500

bprime_flag = 0

Setting bprime flag = 0 specifies the rigorous diffusion model at the sur-
face [2]. This model is significantly less robust than the b-prime approach
(bprime flag = 1) , which is why it requires the solution of the b-prime ap-
proach as an initial condition. With bprime flag = 0, the energy equation is
solved separately from the elemental mass balance and char equilibrium con-
straints. The number of flowfield iterations between solutions of the energy
equation is governed by freq wall, while the other equations are governed
by nexch. In general, freq wall should be much greater than nexch. The
energy equation requires the convective heating, which must be allowed to
converge to a meaningful value after the wall properties are perturbed. Note
that with bprime flag = 0, the ablation calls are significantly quicker than
for bprime flag = 1, and nothing is printed to the screen.

6: Run Laura until the ablation rate, wall temperature, and convective heating
reach steady values within one percent. After each solution of the energy
equation, an increase in the residual will be seen. Unlike the b-prime approach,
this value can be reduced within a reasonable number of iterations to 1e-7,
or lower.

8.4 Unspecified ablation procedure - Uncoupled

The uncoupled ablation analysis (defined in detail in Ref. [2]) differs from the coupled
analysis in that the influence of ablation on convective heating is treated approxi-
mately using the blowing correction. In this uncoupled analysis, ablation is never
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introduced into the flowfield, and it consists of simply a post-processing step to the
non-ablating flowfield. The recommended procedure for an uncoupled ablation anal-
ysis involves the same first two steps listed in Section 8.3 on page 74 for a coupled
analysis. After those steps, modify laura namelist data to include the following:

surface_temperature_type_0 = 'surface energy balance'
blowing_model_0 = "equil_char_quasi_steady"

CHONSi_frac_pyrolysis_0 = 0.8822, 0.0283., 0.0866, 0.0029, 0.0

ept = 1.0

bprime_flag = 1

uncoupled_ablation_flag = 1

ncyc = 0 ! global steps

where CHONSi frac pyrolysis 0 and CHONSi char pyrolysis 0, should be changed
to represent the ablator material of interest. Note that ncyc = 0 is required. The
final step is to run Laura. This will first call the ablation model. Then it will
print out an updated laura surface.q file with the computed ablation rate, wall
temperature, and altered convective heating (from the blowing correction) values.
Laura will then terminate without executing any flowfield iterations.

76



References

1. Mazaheri, A.; Gnoffo, P. A.; Johnston, C. O.; and Kleb, B.: Laura Users Man-
ual: 5.3-48528. NASA TM 216836, Aug. 2010.

2. Johnston, C. O.; Gnoffo, P. A.; and Mazaheri, A.: A Study of Ablation-Flowfield
Coupling Relevant to the Orion Heatshield. AIAA Paper 2009–4318, 2009.

3. Stewart, D. A.: Surface Catalysis and Characterization of Proposed Candidate
TPS for Access-to-Space Vehicles. NASA TM 112206, July 1997.

4. Scott, C. D.: Catalytic Recombination of Nitrogen and Oxygen on High Tem-
perature Reusable Surface Insulation. AIAA Progress in Astronautics and Aero-
nautics: Aerotermodynamics and Planetary Entry , A. L. Crosbie, ed., AIAA,
1981, pp. 192–213.

5. Zoby, E. V.; Gupta, R. N.; and Simmonds, A. L.: Temperatuure-Dependent
Reaction Rate Expression for Oxygen Recombination. AIAA Progress in As-
tronautics and Aeronautics: Thermal Design of Aeroassisted Orbital Transfer
Vehicles, H. F. Nelson, ed., AIAA, 1985, pp. 445–464.

6. Cheatwood, F. M.; and Thompson, R. A.: The Addition of Algebraic Turbulence
Modeling to Program LAURA. NASA TM 107758, Apr. 1993.

7. Srinivasan, S.; Tannehill, J. C.; and Weilmuenster, K. J.: Simplified Curve Fits
for the Thermodynamic Properties of Equilibrium Air. NASA RP 1181, June
1987.

8. Prabhu, R. K.; and Erickson, W. D.: A Rapid Method for the Computation of
Equilibrium Chemical Composition of Air to 15,000 K. NASA TP 2792, Mar.
1988.

9. Johnston, C. O.; Hollis, B. R.; and Sutton, K.: Spectrum Modeling for Air
Shock-Layer Radiation at Lunar-Return Conditions. Journal of Spacecraft and
Rockets, vol. 45, no. 6, Nov–Dec 2008, pp. 865–878.

10. Johnston, C. O.; Hollis, B. R.; and Sutton, K.: Non-Boltzmann Modeling for
Air Shock-Layer Radiation at Lunar-Return Conditions. Journal of Spacecraft
and Rockets, vol. 45, no. 6, Nov–Dec 2008, pp. 879–890.

11. Johnston, C. O.; Gnoffo, P. A.; and Sutton, K.: The Influence of Ablation on
Radiative Heating for Earth Entry. Journal of Spacecraft and Rockets, vol. 46,
no. 3, May–June 2009, pp. 481–491.

12. Gally, T.: Development of Engineering Methods for Nonequilibrium Radiative
Phenomena about Aeroassisted Entry Vehicles. Ph.D. Thesis, Texas A&M, 1992.

13. Johnston, C. O.; Hollis, B. R.; and Sutton, K.: Radiative Heating Methodology
for the Huygens Probe. Journal of Spacecraft and Rockets, vol. 44, no. 5, Sep–
Oct 2007, pp. 993–1002.

77



14. Multi-Species Subsonic Inlet Boundary Condition Formulation with RCS and
SRP Applications., International Planetary Probe Workshop (IPPW) 7,
Barcelona, Spain, 2010.

15. Gordon, S.; and McBride, B. J.: Computer Program for calculation of Complex
Equilibrium Compositions and Applications. NASA RP 1311, 1994.

16. Ali, A. W.: The Harmonic and Anharmanic Models fro Vibrational Relaxation
and Dissociation of the Nitrogen Molecule. U.S. Navy NRL Memo 5924, Dec.
1986.

17. Millikan, R. C.; and White, D. R.: Systematics of Vibrational Relaxation. Chem.
Phys., vol. 39, no. 12, Dec. 1963, pp. 3209–3213.

18. Fisher, B. D.; Holmes, B. J.; and Stough, H. P.: A flight evaluation of a trailing
anemometer for low-speed calibrations of airspeed systems on research aircraft.
NASA TP 1135, Feb. 1978.

19. Gupta, R.; Yos, J.; Thompson, R. A.; and Lee, K.: A Review of Reaction Rates
and Thermodynamic and Transport Properties for an 11-Species Air Model for
Chemical and Thermal Nonequilibrium Calculations to 30,000 K. NASA RP
1232, Aug. 1990.

20. Wright, M.: Recommended Collision Integrals for Transport Property Compu-
tations Part 1: Air Species. AIAA J., vol. 43, no. 12, 2005, pp. 2558–2564.

21. Wright, M.: Recommended Collision Integrals for Transport Property Com-
putations Part 2: Mars and Venus Entries. AIAA J., vol. 45, no. 1, 2005,
pp. 281–288.

22. Gnoffo, P. A.; Johnston, C. O.; and Thompson, R. A.: Implementation of Radia-
tion, Ablation, and Free-Energy Minimization Modules for Coupled Simulations
of Hypersonic Flow. AIAA Paper 2009–1399, 2009.

23. Cunto, W.: TOPbase at the CDS. Astronomy and Astrophysics, vol. 275, 1993,
pp. L5–L8.

78



Appendix A

Migrating Cases from Prior Versions

Follow the following steps to start Laura simulations run with Laura prior to
version 5.

Step 1. Create a new working directory and change to it

% mkdir [Working Directory]

Step 2. Copy following required files from the old directory:

% cp /old/root.rst old.rst

% cp /old/STRTfiles/bound_data.strt laura_bound_data

and, depending on the case, these files:

% cp /old/root.qtw old.qtw

% cp /old/root.2eq old.2eq

Step 3. Use the Laura convert bound data utility, or edit laura bound data so
that there are only integer numbers in this file and there is 6 integers
separated by at least one space per line per computational block. For
example, the original file may look something like:

C:CDATADATADATADATADATADATADATADATADATADATADATADATADATADATADATADATA

C:::::: $Name: $

data ( itype(i, 1), i=1,6 )

& / 1, 1002111, 2, 1, 0, 3 /

data ( itype(i, 2), i=1,6 )

& / 1001211, 1, 2, 1, 0, 3 /

C::CDATADATADATADATADATADATADATADATADATADATADATADATADATADATADATADATA

Edit the file to look like this:

1 1002111 2 1 0 3

1001211 1 2 1 0 3

Step 4. Run the interactive convert laura utility and answer all the questions.
The restart file from LAURA prior to version 5 is single-precision but files
produced by LAURA 5 and its utilities are all double-precision. This utility
creates laura.rst and laura.g files. You will have an option either to keep
the prior-to-version-5 coordinate system orientation or to rotate the grid
to the version 5 coordinate system orientation. As of version 5, Laura
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(a) Prior to Version 5. (b) Version 5.

Figure A6: Laura coordinate system orientations.

uses +x-axis as the body normal direction while prior to version 5 Laura
used the +z-axis as the body-normal direction. The two orientations are
show in Figure A6.

To run Laura with Laura grid orientation prior to version 5, use the
following formulas to correct the angle-of-attack α, and the center of the
moments coordinates:

αnew = αold − 90 (A49)

(xmc)new = −(zmc)old (A50)

(ymc)new = +(ymc)old (A51)

(zmc)new = +(xmc)old (A52)

Step 5. Copy the example laura namelist data file to your working directory
from the [installs prefix]/share/laura directory, where install prefix

is the installation prefix specified when Laura was installed.

% cp [install_prefix]/share/laura/laura_namelist_data .

Use this file as a template to define the simulation parameters. Refer
to Section 5.4 on page 14 for complete list of options. You must change
irest = 0 to irest = 1, otherwise the solution will be initialized to free
stream conditions.
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Step 6. If necessary, create the file laura vis data (see Section 5.14 on page 51
for more detail.)

Step 7. Modify tdata file (see Section 5.5 on page 37) to define the gas model
condition for your specific simulation. The species order in this file must
match the species order used in the prior version of Laura. The other
data files should not be changed.A21

Step 8. Run Laura as usual—see Section 4 on page 9.

A21These files may be changed if different thermodynamic model, curve-fit data, or thermo-
chemical reaction is needed—see Section 5.5 on page 37 for more detail.
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Appendix B

Additional Molecular Band Systems

This appendix lists molecular band systems available in addition to those listed
in Section 5.8 on page 41. The band systems listed here are generally weak emitters
and absorbers, and are therefore not engaged as a default (unlike those listed in Sec-
tion 5.8 on page 41). Therefore, for these band systems to be engaged, the following
flags (0 = off, 1 = SRB, 2 = LBL) must be present in the hara namelist data file.
The LBL treatment of these bands is not recommended.

treat band c2 br

A flag activating the C2 Ballik-Ramsay band system.

treat band c2 da

A flag activating the C2 Deslandres-d’Azambuja band system.

treat band c2 fh

A flag activating the C2 Fox-Herzberg band system.

treat band c2 mulliken

A flag activating the C2 Mulliken band system.

treat band c2 philip

A flag activating the C2 Philips band system.

treat band co3p

A flag activating the CO 3+ band system.

treat band co angstrom

A flag activating the CO angstrom band system.

treat band co asundi

A flag activating the CO Asundi band system.

treat band co triplet

A flag activating the CO triplet band system.

treat band co2

A flag activating the CO2 band system. A value of 2 activates an approximate
nonequilibrium model for UV emission, while a value of 1 assumes Boltzmann
emission. The LBL treatment of this band is not available.

treat band n2 cy

A flag activating the N2 Carrol-Yoshino band system.
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treat band n2 wj

A flag activating the N2 Worley-Jenkins band system.

treat band n2 worley

A flag activating the N2 Worley band system.

treat band no gamma

A flag activating the NO gamma band system.

treat band no betap

A flag activating the NO beta-prime band system.

treat band no gammap

A flag activating the NO gamma-prime band system.

treat band o2 sr

A flag activating the O2 Schumann-Runge band system.

treat [?] photo dis

A binary flag activating the molecular photo-dissociation mechanism [23] for
[?] specie, where [?] can be o2 or n2. This mechanism is not technically a
molecular band system.

treat [?] photo ion

A binary flag activating the molecular photo-ionization mechanism [23] for
[?] specie, where [?] can be o2 or n2. This mechanism is not technically a
molecular band system.

treat no photo

A binary flag activating the molecular photo-ionization mechanism [23] for
NO.
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Appendix C

Trouble Shooting

This appendix gives some tips if you experience trouble installing or running
LAURA. This is far from all-inclusive; it is only a modest attempt to capture some of
the experience shared by customers over the years through the community LAURA-
users@lists.nasa.gov and private LAURA-support@lists.nasa.gov email lists.

Of course the first step is to be sure you have the latest version of LAURA—
releases are announced on the LAURA-news@lists.nasa.gov mailing list.

C.1 Installation

C.1.1 Unterminated Constant / Line Truncated

An error during compilation like,

ifort [...] -DDATADIR=\"[some really long path]\" [...] \

-c -o datadir_file_manager.o datadir_file_manager.F90

In file datadir_file_manager.F90:30

search_paths(2) = "[some really long pa

1

Error: Unterminated character constant beginning at (1)

In file datadir_file_manager.F90:30

pa

1

Warning: Line truncated at (1)

make[5]: *** [datadir_file_manager.o] Error 1

are due to your installation path violating Fortran’s “free-form” line limit of 132
characters. Many compilers do not enforce this, but for those that do, compiler
options are usually available to circumvent this problem—for example, gfortran’s
-ffree-line-length-none or g95’s -ffree-line-length-huge.

C.2 Running

LAURA is designed to recognize when obvious mistakes in input are made: these
errors will be reported to you via standard output (nominally, the screen). Even
when the code runs successfully, the user should always check the standard output
for warning messages.

The ideas given below are mostly for when the code blows up, and the code’s
output ”advice” is not very helpful (NaN detected, segmentation faults, etc.).

Most of the time, problems running the code can be traced to the use of an
inadequate grid, block boundary condition errors, or other configuration missteps.
The grid should look “nice”. There should be “gentle” stretching factors (shoot for
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less than 1.15), the grid should be as orthogonal as possible—especially in viscous
regions, and dramatic changes in distance or orientation from one grid line to the
next should be avoided. Furthermore, the grid minimum spacing (at walls) should
be appropriate to the problem you are running. In other words, “viscous” grids
should have reasonably low cell-Reynolds numbers at the wall (re cell = 0.1–1.0
depending on the amount of diffusion); and one should not trying to run inviscid
flow on a “viscous” grid.

The first thing to try after a case blows up is to raise the inviscid and viscous
relaxation factors—see Section 5.4.9 on page 25. Typically, you can start with values
like rf inv=4 and rf vis=3 and end with values like 3 and 1.5, but sometimes you
need to raise them much higher (e.g., 20 and 10 or 200 and 100) to get a solution
past a particularly nasty transient. Other things to try include running first-order,
increasing the frequency of Jacobian, transport, and inter-processor communication
updates, or successively ramping up the Mach number.

Running on a coarser version of the grid sometimes helps get the solution going–
see the coarsen utility described in Section 7.3 on page 65.

C.2.1 NaNs

NaNs (Not a Numbers) are a type of IEEE Floating Point Exception. Most compilers
have options (either during compilation or at runtime via environment variables) to
trap these exceptions and stop the code in its tracks when one occurs. For example,
the g95 compiler has environment variables of the form G95 FPU INVALID that can
control this while the Intel compiler has the -fpe compilation option. Note: to pin
point where in the code the exception occurs, you will also want to turn on tracing
(e.g., -traceback for Intel and -ftrace=full for g95) and symbols (-g) so the
compiler will give you the precise source-code line number.

C.2.2 Segmentation Faults

Segmentation faults usually mean you’ve hit a shell-based memory limit, you’ve run
out of memory, or you’ve uncovered a coding error.

To check the first, remove your shell memory limits, i.e.,

csh: limit stacksize unlimited

bsh: ulimit -s unlimited

ulimit -d unlimited

ulimit -m unlimited

and try re-running. Note: For an MPI job, these have to be in your shell startup
environment (e.g., .cshrc or .bashrc).

To check the second, try a smaller case, request more resources (e.g., use less
cores per node), and/or use the batch option of the top command (-b) to monitor
memory usage.

For the third, please see Support, section D on the next page.

85



Appendix D

Support

Because Laura’s primary purpose is to serve NASA missions and it is not offered
as commercial software, support is available on an “as time allows basis” via two
channels: the public LAURA-users@lists.nasa.gov community email list, which you
are encouraged to join via lists.nasa.gov/mailman/listinfo/LAURA-users, and the
private LAURA-support@lists.nasa.gov email list.

If your issue is not proprietary or otherwise sensitive, you are strongly encour-
aged to use and become a member of the LAURA-users@lists.nasa.gov list.
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