

Modeling & Testing of the Capsule Parachute Assembly System (CPAS) February 21, 2013 'E ASSEMBLY S PARACHU

CPAS OVERVIEW

CPAS Overview

- Capsule Parachute Assembly System (CPAS) is the parachute system for the Orion vehicle used during re-entry
 - Similar to Apollo parachute design
- A Government Furnished Equipment (GFE) project responsible for:
 - Design
 - Development testing
 - Performance modeling
 - Fabrication
 - Qualification
 - Delivery

Collaboration between NASA JSC, ESCG, and Airborne Systems

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team

CPAS Concept of Operations

Nominal Mission and High Altitude Abort Deployment Sequence

CPAS Analysis Focus

- Flow from flight performance requirements from the CPAS Project Technical Requirements Specification (PTRS) Revision
 - Meet during specified failure conditions
- Rate of Descent (ROD)
 - Crew and vehicle structure safety
- Parachute Loads
 - Drogue and Main single riser loads
 - Individual parachute failure
 - Drogue and Main cluster loads
 - Sum of individual riser loads
 - Vehicle structural failure
- Rotation Torque Limit
 - Main risers induce rotation
 - Orient vehicle edge into water for landing

Agenda

Airdrop Testing

- ≻ Gen I & II
- > EDU

Parachute Analysis

- Simulations
- Preflight Analysis
- Post-Flight Analysis
- Development of a Parachute Model
 - Reconstructions
 - Statistically Derived Parameters
- System Verification
- Future of CPAS

Capsule Parachute Assembly System

Gen I & II

EDU

AIRDROP TESTING

- 1. Characterize single parachute inflation parameters
- 2. Demonstrate the system

Evolution of Test Vehicles & Techniques

2. Investigate potential design changes

CPAS Parachutes

- Extraction Chutes (~28 ft)
 - Pulls the vehicle out of the aircraft. Used for testing only.
- Programmer Parachutes
 - Used to create the proper test conditions for the Drogue, Pilot, or Main chutes. Used for testing only.
 - Can sometimes be an identical chute as the Drogues, but the use is different.
- Forward Bay Cover Parachutes (FBCPs) (~7 ft)
 - Pulls off Forward Bay Cover (FBC) from vehicle
- Drogue Parachutes (~23 ft)
 - Stabilizes the vehicle for Main deployment.
- Pilot Parachutes (~10 ft)
 - Pulls out the Main chutes.
- Main Parachutes (~116 ft)
 - Slow the vehicle to landing

Extraction Chute

Not to Scale

Gen I & II

EDU

AIRDROP TESTING

2/22/2013

Gen I & II Test Vehicles

- Each test vehicle was designed to achieve a specific test objective
- ➢ Weight Tub
 - Test the parachute system with a representative weight
 - Significantly tested and proven operations with a quick turn around
- Small or Medium Drop Test Vehicle (SDTV or MDTV)
 - Heritage vehicle from the X-38 program
 - High dynamic pressure
- Parashure Test Vehicle (PTV & P Wake similar othe Offion capsule

WOOD DISK

Gen I M Gen II CDT-2-

Gen I PTV (CDT-2)

Gen I MDT-3 Build Up

Capsule Parachute Assembly System

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team

Gen I CPAS PTV Failure (CDT-2)

- Cause of failure
 - Inability of programmer to remain inflated due to test vehicle wake
 - Programmer trailing distance was insufficient
 - > Stabilization parachutes caused additional, not simulated wake
- Contributing factors
 - Late completion of ConOps
 - Small, unproven reefing used on the programmer (20%)
 - Lack of robust extraction and separation simulations

Boilerplate Failure Recovery

- Increased knowledge regarding wake effects
 - Computational fluid dynamics (CFD) anchored to wind tunnel testing
- Improved understanding of vehicle separation
 - Smart separation algorithm was created
 - Validated on 3 Gen II tests Test Support Equipment (TSE) series
 - Separation simulations
 - Two-body 6-Degree of Freedom (DOF)
 - Models the separation and close proximity dynamics
- Lessons learned from boilerplate failure
 - Smart separation algorithm used to separate the PTV2 from the CPSS
 - Aerodynamic databases will be based on PTV wind tunnel data
 - Stabilization parachutes will not be used
 - Simulations will account for wake effects
 - All protuberances will be eliminated or rounded

Gen II Avionics Advancements

- Data Acquisition System (DAS) cRIO
 - Centralized unit for controlling and storing data from multiple instruments
 - Allowed for time-synchronization of data
 - Larger storage capacity
- Upgraded Velocity Measurement Instrumentation
 - NovAtel SPAN-SE
 - Accurate measurement assists in ROD
 - Crossbow Nav440
 - Higher velocity uncertainties than NovAtel
 - Triggers smart separation
 - Both are integrated GPS/IMU
 - Mitigates drop outs during extraction phase

NovAtel SPAN-SE

Crossbow Nav440

Gen II Avionics Advancements

- Upgraded Load Measurements
 - Gen I used Tension Measuring System (TMS) units attached to each riser - had high uncertainty
 - Gen II used 30,000 lbf strain links attached between the riser and confluence fitting
 - Provide adequate data for the Main parachutes
 - Provided noisy data on the Drogue parachutes due to the turbulent wake environment
- Increased Fidelity in Atmospheric Data
 - Windpack and balloon released to travel through similar air column as test
 - Ground weather stations on the drop zone
 - Anchors windpack and balloons with ground surface winds

AIRDROP TESTING

EDU

Gen I & II

EDU Test Vehicles

- Mid-Air Delivery System (MDS) & Cradle and Platform Separation System (CPSS)
 - > Allows the PCDTV and PTV to be deployed from an aircraft cargo bay
- Parachute Compartment Drop Test Vehicle (PCDTV)
 - Tests the full CPAS system utilizing a stable vehicle
 - Dart shape based on the Solid Rocket Booster and Ares booster parachute test program
 - > Allows for achievement of high dynamic pressure
- > PTV/CPSS
 - Tests the full CPAS system with representative vehicle aerodynamics
 - Unable to achieve high dynamic pressure with current test techniques

PCDTV Test Sequence

Mains 2nd Stage

Main 1st Stage

Full Open

2/22/2013

PTV Test Sequence

3 Pilots lift 3 Mains with

> nominal reefing

PTV Touchdown

5

Extraction from C-17 at

Simulations

Preflight Analysis Post-Flight Analysis

PARACHUTE ANALYSIS

Simulation Tools

- CPAS uses numerous simulation tools for preflight predictions, mission support, and post-flight data analysis and reconstructions
 - Determine configuration design
 - Ensure safety of test and personnel
 - Assess test objectives and solve unexpected test results
 - Parachute model development
- Tools have evolved from low fidelity spread sheets to high fidelity independent parachute simulations
- End-to-end trajectories currently require use of multiple simulations
 - Desired to consolidate number of simulations
- Many of the simulations are developed and maintained by NASA JSC EG
- Support and processing tools developed and maintained by ESCG

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team

Evolution of Simulation & Analysis Tools

	Time	2006	2007	2008	2009	2010	2011	2012	2013	
=	ions	DSSA v.Beta_5a, v.Beta_5b4, v.Beta_5b5	v.Beta_8e	v.Beta_8f1	v.Beta_8f3, v.Beta_8f5	v.Beta_8g, v.Beta_8g1 Monte Carlo capability	v.Beta_8g2 through v.Beta_8g5a	v.Beta_8g6 through v.Beta_8h1	v.Beta_8h1	
2	C	DTV-Sim v.14		v.15		v.16	v.17			
5	edi					Monte Carlo capability				
	L			Pallet Sim						
2	ght			CAP Sim			Separation Simulation			
5	ij			DSS	Monte Carlo					
Ś	Le la				сараршту					
	e						ADAMS	FACT		
5					<u> </u>			FASI		
5	lission Ipport	X-38 Legacy Footprint Tool	(Primary)	(Primary)	(Primary)					
5					Sasquatch (Secondary)	(Primary)		Polygons		
5	Sr Sr					Pressure Altitude Calculation				
)	_	Spreadsheets								
5	ght uction		DSSA v.Beta_8e	v.Beta_8f1	v.Beta_8f3, v.Beta_8f5	v.Beta_8g, v.Beta_8g1	v.Beta_8g2 through v.Beta_8g5a	v.Beta_8g6 through v.Beta_8h1	v.Beta_8h1	
2 7		DTV-Sim v.14		v.15		Monte Carlo capability	_ 0	_		
)				DSS						
	ost onsi		FDP v.1.07		v.1.09, v.1.10					
					BET/BEA/					
	С D				BEW Scripts					
	Č.							ADAMS		
		< Gen I			· ← G(en II>	▶ <	—_EDU		

Simulations

Preflight Analysis

Post-Flight Analysis

PARACHUTE ANALYSIS

EDU-A-CDT-3-7 Test and Simulation Architecture

2/22/2013

Preflight Predictions: Monte Carlo – Loads

Simulations Preflight Analysis

Post-Flight Analysis

PARACHUTE ANALYSIS

Post-Flight Data Analysis

- Windpack and balloon data
 - BEA: Best Estimate Atmosphere
 - BEW: Best Estimate Winds

Vehicle Data used to create Best Estimate Trajectory (BET)

- Dynamic Pressure
- Loads*
- Drag Area (C_DS)*
- Photogrammetry
 - Fly-out angles during steady state

*completed for each phase of each parachute

Wind Components Profile (CDT-3-5)

Winds < 30 ft/s mostly out of SW</p>

Dynamic Pressure

2/22/2013

Load Scaling

- Scaling due to load cells being below fairlead
 - Energy lost due to friction

Photogrammetrics

- Used to characterize Main parachute behavior in a cluster
 - Quantify fly-out angles, geometric inlet area, and twist angles
 - Understand collisions and other parachute dynamics
 - Rate of Descent (ROD)
 - Reefing line tension
- Provides insight into dynamics which is related to data gathered

CPAS

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team

Fly-Out Angles During Steady State

2/22/2013

Reconstructions

Statistically Derived Parameters

DEVELOPMENT OF A PARACHUTE MODEL

Test Reconstruction

➤ Use BEA/BEW/BET

Iterate parachute parameters

- Automated process
- Start with latest Model Memo values
- Output parachute parameters that cause simulation to match the BET
- Parameters are published in semiannual Model Memo
 Assess parameters through benchmarks

Finite Mass Inflation Curve Fit

Capsule Parachute Assembly System

2.

3.

4.

5.

1.

Determine Parachute Parameters:

Main Best Fit Inflation parameters

Reconstructions

Statistically Derived Parameters

DEVELOPMENT OF A PARACHUTE MODEL

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team **Transition from Uniform to Statistical Distributions**

Right Tail

Left Tail

SYSTEM VERIFICATION

CPAS Verification & Validation Cycle

- 1) Design the parachute subsystem
- 2) Test the design thought flight and ground tests
- 3) Development and Qualification test data is gathered
- 4) Document the test data and advancements in parachute physics knowledge
- 5) Verify the parachute subsystem meets flight performance requirements
 - If No, update the document for requirement clarification a)
 - b) If No, update the design so that it can meet the requirement
- Validate flight performance requirements at the integrated Crew Module level 6)
- Conduct integrated flight tests 7)
- 8) Run-for-the-record simulations

Capsule

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team

DSS Credibility Assessment Score (CAS)

امريما	Verification	Validation	<u>Input</u>	<u>Results</u>	<u>Results</u>	Lise History	<u>M&S</u>	<u>People</u>
Level	vermeation	vandation	<u>Pedigree</u>	<u>Uncertainty</u>	<u>Robustness</u>		<u>Management</u>	Qualifications
4	Numerical error small for all important features.	Results agree with real-world data.	Input data agree with real-world data.	Non- deterministic & numerical analysis.	Sensitivity known for most parameters; key sensitivities identified.	De facto standard.	Continual process improvement.	Extensive experience in and use of recommended practices for this particular M&S.
3	Formal numerical error estimation.	Results agree with experiemental data for problems of interest.	Input data agree with experiemental data for problems of interest.	Non- Deterministic analysis.	Sensitivity known for many parameters.	Previous predictions were later validated by mission data.	Predictable process.	Advanced degree or extensive M&S experience, and recommended practice knowledge.
2	Unit and regression testing of key features.	Results agree with experiemental data or other M&S on unit problems.	Input data traceable to formal documenation.	Deterministic analysis or expert opinion.	Sensitivity known for a few parameters.	Used before for critical decisions.	Estabilished process.	Formal M&S training and experience, and recommended practice training.
1	Conceptual and mathematical models verified.	Conceptual and mathematical models agree with simple referents.	Input data traceable to informal documenation.	Qualitative estimaes.	Qualitative estimates.	Passes simple tests.	Managed process.	Engineering or science degree.
0	Insufficient evidence.	Insufficient evidence.	Insufficient evidence.	Insufficient evidence.	Insufficient evidence.	Insufficient evidence.	Insufficient evidence.	Insufficient evidence.
	M&D Dev	elopment		M&S Operation	S	Su	pporting Evider	nce

Capsule Parachute Assembly System

FUTURE OF CPAS

Future of CPAS

- Testing
 - **EDU** (plan as of Feb 6, 2013)
 - ➤ 2013: 3 tests 2 PTV, 1 PCDTV
 - ➤ 2014: 5 tests 4 PTV, 1 PCDTV
 - Includes first Forward Bay Cover (FBC) test
 - > 2015: 2 tests 2 PTV
 - ➢ EFT-1 in fall 2014
- > CDR
- Qualification Tests

Lockheed Martin's MPCV

- Simulation & Model development
 - Transition to end-to-end simulation in an independent parachute model
 - Time varying ROD model using fly-out angles
 - Refinement of statistically derived dispersions

SPECIAL THANKS

CPAS Analysis Team
 Pat Galvin
 Eric Ray
 Kristin Bledsoe
 Usbaldo Fraire
 Joe Varela
 Johnny Blaschak
 Fernando Galaviz

Koki Machin
Mike Frostad
Entire CPAS team

For More Information...

- > 2009 AIAA ADS Conference
 - Overview of the Crew Exploration Vehicle Parachute Assembly System (CPAS) Generation I Drogue and Pilot Development Test Results, R. Olmstead
 - Overview of the Crew Exploration Vehicle Parachute Assembly System (CPAS) Generation I Main and Cluster Development Test Results, K. Bledsoe
 - 2011 AIAA ADS Conference
 - > Proposed Framework for Determining Added Mass of Orion Drogue Parachutes, U. Fraire
 - Summary of CPAS Gen II Testing Analysis Results, A. Morris
 - > Load Asymmetry Observed During Orion Main Parachute Inflation, A. Morris
 - Challenges of CPAS Flight Testing, E. Ray
 - > Verification and Validation of Requirements on the CEV Parachute Assembly System Using Design of Experiments, P. Schulte
 - > Development of Monte Carlo Capability for Orion Parachute Simulations, J. Moore
 - Photogrammetric Analysis of CPAS Main Parachutes, E. Ray
 - > A Hybrid Parachute Simulation Environment for the Orion Parachute Development Project, J. Moore
 - Measurement of CPAS Main Parachute Rate of Descent, E. Ray
 - Development of the Sasquatch Drop Test Footprint Tool, K. Bledsoe
 - > Development of a Smart Release Algorithm for Mid-Air Separation of Parachute Test Articles, J. Moore
 - Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System, A. Morris
 - > Verification and Validation of Flight Performance Requirements for Human Crewed Spacecraft Parachute Recovery Systems, A. Morris
 - 2013 AIAA ADS Conference
 - > Extraction and Separation Modeling of Orion Test Vehicles with ADAMS Simulation, U. Fraire
 - > An Airborne Parachute Compartment Test Bed for the Orion Parachute Test Program, J. Moore
 - > Application of a Smart Parachute Release Algorithm to the CPAS Test Architecture, K. Bledsoe
 - > Application of Statistically Derived CPAS Parachute Parameters, L. Romero
 - > A Boilerplate Capsule Test Technique for the Orion Parachute Test Program, J. Moore
 - Testing Small CPAS Parachutes Using HIVAS, E. Ray
 - > Improved CPAS Photogrammetric Capabilities for Engineering Development Unit (EDU) Testing, E. Ray
 - > Reefing Line Tension in CPAS Main Parachute Clusters, E. Ray
 - Skipped Stage Modeling and Testing of the Capsule Parachute Assembly System, J. Varela
 - > Reconstruction of Orion EDU Parachute Inflation Loads, E. Ray

 \geq

 \geq

QUESTIONS?

BACKUP

Parachute Deployment Envelope

Gen I Helicopter Tests

- Helicopter tests were simple to execute and analyze
- Test Conducted
 - Pilot Development Tests (PDT)
 Vehicle used: SDTV
 - Drogue Development Tests (DDT)
 Vehicle Used: MDTV
- Programmer parachute set up the desired dynamic pressure
 - Poor understanding of programmer drag lead to a failure to achieve the desired test condition

Small DTV Suspended Beneath UH-1

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team Gen I LVAD Platform with Weight Tub

- Low Velocity Aerial Delivery (LVAD)
 - Certified US Army cargo aircraft extraction method
 - Uses a Type V platform and standard Army extraction parachute
- Short Platforms (12 ft by 9 ft platform)
 - Significant pitch under the programmer by ~180°
 - Pilot or Main parachute slings could have been severed
 - Near-failure causes
 - Unstable & not well-characterized aerodynamics
 - Programmer trailing distance from platform
 - Changed on MDT-2 with no significant stability increase
 - Programmer size

MDT-1 During Main Deploy

Gen I/II Missile Shaped Vehicles

- Cradle Monorail System (CMS)
 - Allowed the MDTV to be deployed by a C-130A aircraft
 - Constructed on a 32 ft by 9 ft Type V platform to use the LVAD extraction technique
- No separation simulation created
 - Used low fidelity analysis methods and engineering judgment
 - Separation occurred at the time of lowest dynamic pressure predicted in preflight simulations
 - Assumed an instantaneous separation
 - Post-test analysis proved that separation occurs in 1.5 seconds

Summary of Generation II Tests

	Tost Namo	Numbe	r of Parachu	tes	Vahiela Type Primary Test Objective	
	lest Name	Programmer	Drogues	Mains	venicie rype	Primary lest Objective
_	MDT-2-1	1 Drogue	1	1	MDTV/CMS	Main skipped 1 st reefing stage
E U	MDT-2-2	1 Drogue	1	1	MDTV/CMS	Main skipped 2 nd Stage
<u> VSI</u>	MDT-2-3	0	1	1	MDTV/CMS	Increased Main Porosity
<i>N</i>	CDT-2-1	0	2	2	Weight Tub	Main Modified Line Length
la	CDT-2-2	0	2	2	Weight Tub	Increased Main Porosity
em	CDT-2-3	0	2	3	Weight Tub	Increased Main Porosity
PSS		MDT – Main Dev	elopment Test	t	MDTV – Mediur	n Drop Test Vehicle
		CDT – Cluster De	evelopment Te	st	CMS – Cradle M	Ionorail System

MDS (Mid-Air Deployment System) Sequence

MDS

CPSS Test Sequence

Extraction from C-17 at

25,000 ft with two 28 ft

Extraction Parachutes

Extraction chute cutaway, recovery chute deploy 128 s after Ramp Clear

2/22/2013

Trajectory Simulations

- CAPSIM & PalletSIM
 - Used to independently model two-vehicle systems post separation
 - Not used in EDU test phase
- Capsule Parachute Assembly System

 \geq

- DSS> High fidelity 6-DOF trajectory simulation
 - Does not have multi-body capability
 - Uses a composite model approach to simulation parachute clusters
- > ADAMS
 - Commercial multi-body simulation
 - Models contact forces between bodies
 - Used for EDU extraction and separation phases
- Flight Analysis and Simulation Tool (FAST)
 - 6-DOF multi-body trajectory simulator
 - Utilizes Lockheed Martin developed hi-fi parachute model
 - Currently being phased in as primary tool for preflight predictions

ADAMS Overlay

Trajectory Simulations

- Decelerator Simulation System Application (DSSA)
 - Provides end-to-end 6-DOF simulations of Type V LVAD tests
 - Includes an aircraft extraction model
 - Uses DSS parachute model
- > DTV-Sim

Assembly System

arachute

Ω

Ð

sul

Q

g

()

- 2-DOF simulation without an aircraft extraction model
- Provides a point mass trajectory of any vehicle type
- Uses DSS parachute model

2/22/2013

Parachute Parameters

Day of Flight Simulations & Lessons Learned

- Wind data
 - Preflight predictions are done concerning wind contingency release altitudes
 - Wind measurements gathered hourly from RAWIN balloons
 - Balloon data is input into Sasquatch to determine the test article footprints
 - Ground winds can cause parachute and test vehicle damage
 - Tests are timed to occur immediately after sunrise when winds are at a minimum

Release altitudes

- Gen I and II data showed higher than planned release altitudes
- Changes were made to provide the air crew with an indicated pressure altitude instead of the previously used geometric altitude
- Tests have shown that this procedure causes vehicles to be dropped at the planned altitude

Capsule Parachute Assembly System (CPAS) - ESCG Analysis Team

Map of Soundings and PTV Flight

2/22/2013

Parachute Reconstruction Process

- ➤ Loads
 - Probability per table with 50% confidence
- ➢ ROD (planned for Rev C)
 - 99.87% probability of meeting the requirement with 90% confidence
- Torque (planned for Rev C)
 - 99.87% probability of meeting the requirement with 90% confidence
- Necessitates the use of statistical assessments

Chute Loads	Reference Mission	Case	Probability of Meeting Design Limit Load
	High altitude	Nominal	0.9987
	abort/entry	One-drogue failure	0.9773
Drogue Loads	Low altitude/pad	Nominal	0.9773
	aborts	One-drogue failure	0.8413
		Nominal	0.9987
	High altitude	One-main failure	0.9773
Main Londo	abort/entry	One-drogue failure	0.9773
		One-main and one-drogue failure	0.8413
Main Loads		Nominal	0.9773
	Low altitude/pad	One-main failure	0.8413
	aborts	One-drogue failure	0.8413
		One-main and one-drogue failure	0.8413

Uniform Dispersions

- Previous Model Memos included uniform dispersions
 - Design dispersions maximum and minimum seen in test
 - Flight test dispersions engineer factor around design dispersions
 - > 5% for C_DS
 - ➤ 10% for other parameters

Test Number

Further Updates to Statistical Dispersions

6.7474

2.5

EDU Main Stage 3 expopen

___0 10

