


# Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment

Lawrence Carey<sup>1</sup>, Lamont Bain<sup>1</sup>, Ryan Rogers<sup>1</sup>, Danielle Kozlowski<sup>1</sup>, Adam Sherrer<sup>1</sup>, Matt Saari<sup>1</sup>, Brandon Bigelbach<sup>2</sup>, Mariana Scott<sup>1</sup>, Elise Schultz<sup>1</sup>, Chris Schultz<sup>1,3</sup>, Patrick Gatlin<sup>1,3</sup>, Matt Wingo<sup>1</sup>, Dustin Phillips<sup>1</sup>, Chris Phillips<sup>1</sup>, Harold Peterson<sup>4</sup>, Jeff Bailey<sup>1</sup>, Terryn Frederickson<sup>1</sup>, John Hall<sup>1</sup>, Richard Blakeslee<sup>3</sup>, William Koshak<sup>3</sup>, Nicole Bart<sup>2</sup>, Melissa Becker<sup>2</sup>, Kurtis Pinkney<sup>2</sup>, Scott Rowe<sup>2</sup>, Mariusz Starzec<sup>2</sup>, Justin Weber<sup>2</sup>, and Gretchen Mullendore<sup>2</sup>





<sup>1</sup> University of Alabama in Huntsville <sup>2</sup> University of North Dakota <sup>3</sup> NASA MSFC <sup>4</sup> USRA/STI





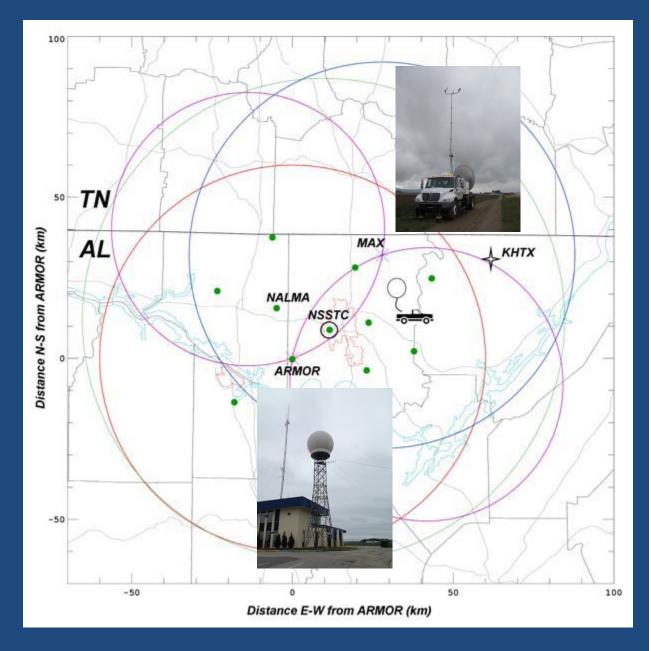


### DC3 Alabama Ground Facilities

#### UAHuntsville

- Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar
- Mobile Alabama X-band (MAX) polarimetric radar
- Mobile Integrated Profiling System (MIPS)
- iMET-3150 GPS sounding system mobile van based

#### NASA MSFC


- Northern Alabama Lightning Mapping Array (NA-LMA)
- Other lightning data (Regional/Global LF/VLF networks such as Vaisala NLDN, Vaisala GLD360, Earth Networks ENTLN)

#### Other

- Army Redstone Arsenal 12z sounding
- KHTX Hytop (also KBMX, KOHX, KFFC) WSR-88D S-band upgraded dual-polarimetric radars)
- KGWX WSR-888D (not upgraded)

### N. Alabama Network

- MAX deployed to New Market, AL site
  - 42.5 km ARMOR-MAXDD baseline
  - Multi-Doppler opportunities with KHTX
- ARMOR, MAX in coordinated DD sector volumes with surveillance
- 11 NA-LMA sensors (green dots)
- Mobile sounding positioned to be in approximate inflow
- MIPS (at NSSTC or in dual-Doppler lobes)



# UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR)





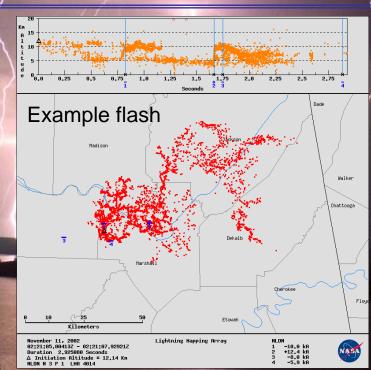
Frequency: 5625 MHz (C-band)

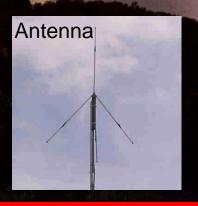
http://nsstc.uah.edu/ARMOR/

- Antenna Beam width: 1.1°
- Dual-polarization: transmit simultaneous H + V (dual-channel receive, H + V)
- Variables:  $Z_h$ ,  $V_r$ ,  $\sigma$ ,  $Z_{dr}$ ,  $\rho_{HV}$ ,  $\phi_{dp}$ ,  $K_{dp}$
- Vaisala RVP-8 IRIS control from UAHuntsville NSSTC network computer
- Continuous research operations/scanning: surveillance, PPI sector volume, RHI's
- 2 person team: 1 Radar Operator, 1 Nowcaster & Comms
- Real-time quality control, propagation correction, preliminary product generation (HID, QPE)

# Mobile Alabama X-band (MAX)

- Frequency: 9450 MHz
- Dual-polarization:
  - Simultaneous transmit (H+V), dual receive (H, V)
- $Z_h$ ,  $V_r$ ,  $\sigma$ ,  $Z_{dr}$ ,  $\phi_{dp}$ ,  $K_{dp}$ ,  $\rho_{hv}$
- Antenna Beam width: 1°
- 2 person MAX team
  - 1 Operator
  - 1 Nowcaster/Comms
- Vaisala RVP-8 IRIS controlled
  - PPI sector volumes, RHI's
- 10-m meteorological tower
- Mobile cell phone internet, data and voice comms


MAX setup for DC3 at New Market Site Cab pointing N/S **RM Young 05103** Fast response T/RH Video camera WXT-520


http://vortex.nsstc.uah.edu/mips/max/



# NASA's North Alabama Lightning Mapping Array (NALMA)

- Network of 11 detectors centered about Huntsville, AL (NMT heritage)
- Operational since ~ November 2001
- Detects VHF (76-82 MHz, "Ch. 5") radiation along the lightning channel - up to 100s-1000s of sources per flash
- Computes 4-D location of <u>all</u> electrical discharges ("flashes") within LMA (CG...and IC, CC, CA)
- LMA Sensors: New Mexico Tech (NMT)
  - VHF ground plane antenna
  - Sensor electronics / site computer (first generation)
- Communications
  - mostly 2.4 GHz wireless Ethernet network link
  - Cell phone modems used at some sites









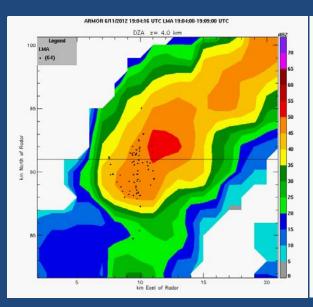
# DC3 Alabama Mission Summary

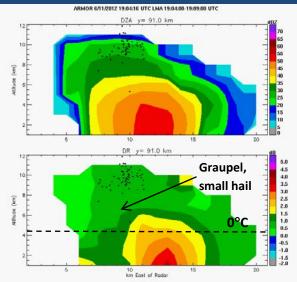
- 12 intensive ground operations on 13 days during May-June 2012
  - 2 combined aircraft (GV and DC8) and ground operations:
     21 May, 11 June
  - 10 ground only: 15, 18, 19, 20, 29, 31 May; 3-5, 14, 15
     June
  - UAH ARMOR, NOAA KHTX and NASA NALMA, in combination with UAH MAX (7 deployments), mobile sonde (9 deployments) and MIPS (2 deployments)
- Continuous NA-LMA, MIPS and low-level ARMOR record for all of DC3

# DC3 Alabama Highlights

- 21 May (Aircraft #1): ARMOR-MAX-KHTX radars, NALMA,
   MIPS at NSSTC, 4 sondes (1 pre-convective, 3 inflow), isolated
   to multicell convective line
- 11 June (Aircraft #2): ARMOR-MAX-KHTX radars, NALMA, MIPS at NSSTC, 5 sondes (1 pre-convective, 4 inflow), multicell thunderstorms
- Ground-only operations included isolated weak convection, weak to vigorous multicell thunderstorms, linear convection, severe storms, and 2 nocturnal Mesoscale Convective Systems (MCSs)
  - (next page for table details)

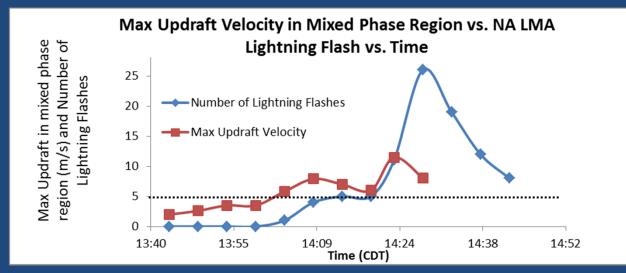
#### DC3 Alabama Mission Summary: 5/14/2012 - 6/30/2012


|    | Date         | Туре        | Ground Instruments*                                        | Summary                                                                              |
|----|--------------|-------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1  | 5/15         | Ground only | ARMOR-KHTX, NALMA, 1 sonde                                 | Few low flash rate shallow convection                                                |
| 2  | 5/18         | Ground only | ARMOR-MAX-KHTX, NALMA, 2 sondes                            | Several hours multicell thunderstorms                                                |
| 3  | 5/19         | Ground only | ARMOR-KHTX, NALMA                                          | Several hours isolated to multicell storms                                           |
| 4  | 5/20         | Ground only | ARMOR-KHTX, NALMA                                          | Few isolated thunderstorms                                                           |
| 5  | 5/21         | Aircraft #1 | ARMOX-MAX-KHTX, NALMA, 4 sondes, MIPS                      | Isolated thunderstorms evolving to multicell line                                    |
| 6  | 5/29         | Ground only | ARMOR-MAX-KHTX, NALMA, 2 sondes                            | Isolated to widely scattered weak convection                                         |
| 7  | 5/31         | Ground only | ARMOR-MAX-KHTX, NALMA, MIPS deployed in DD lobes, 3 sondes | Few isolated thunderstorms. Some low flash.                                          |
| 8  | 6/3 –<br>6/4 | Ground only | ARMOR-MAX-KHTX, NALMA, MIPS                                | Extended operations. Many hours multicell. Severe in evening. Nocturnal MCS passage. |
| 9  | 6/4 –<br>6/5 | Ground only | ARMOR-MAX-KHTX, NALMA, MIPS deployed in DD lobes, 4 sondes | Overnight operations. Leading stratiform nocturnal MCS.                              |
| 10 | 6/11         | Aircraft #2 | ARMOR-MAX-KHTX, NALMA, MIPS, 5 sondes                      | Multicell thunderstorms during aircraft mission.                                     |
| 11 | 6/14         | Ground only | ARMOR-KHTX, NALMA, 1 sonde                                 | Few isolated airmass convection. 1 vigorous.                                         |
| 12 | 6/15         | Ground only | ARMOR-KHTX, NALMA, 1 sonde                                 | Limited operations with isolated storms                                              |


<sup>\*</sup> ARMOR = Advanced Radar for Meteorological and Operational Research, UAH; MAX = Mobile Alabama X-band Radar, UAH; KHTX=Hytop WSR88D, NALMA=Northern Alabama Lightning Mapping Array, NASA MSFC; MIPS=Mobile Integrated Profiling Systems, UAH

# DC3 AL on June 11, 2012, 0743 UTC Aircraft Case #2: ordinary multicell thunderstorms

1404 CDT 1904 UTC (NALMA sources)


ARMOR CAPPI 4 km



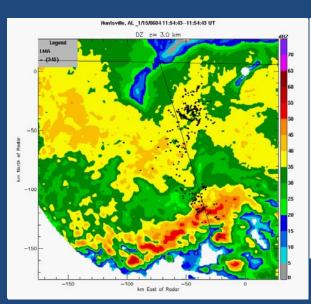


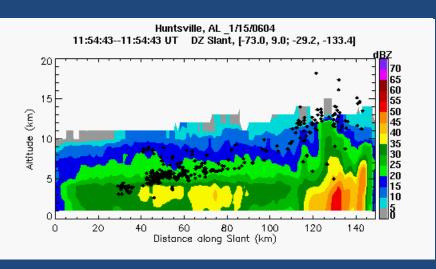
Vertical crosssection of Z<sub>h</sub> (dBZ)

Vertical crosssection of Z<sub>dr</sub> (dB)



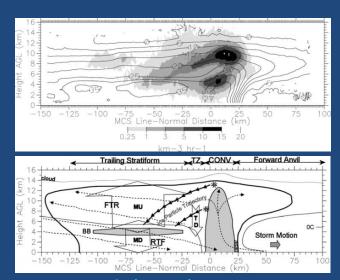
For more details on Aircraft Cases #1 and #2, please see Poster #267


Microphysical, Kinematic and Lightning Properties of Deep Moist Convection across Northern Alabama during the Deep Convective Clouds and Chemistry Experiment


A. L. Bain and L. D. Carey

# DC3 AL on June 4, 2012, 11-12 UTC Trailing stratiform MCS lightning

KHTX Z<sub>h</sub> CAPPI 3 km

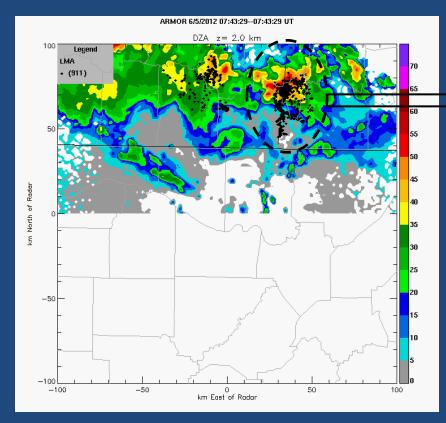

NALMA VHF Sources





Vertical crosssection of Z<sub>h</sub> (dBZ)

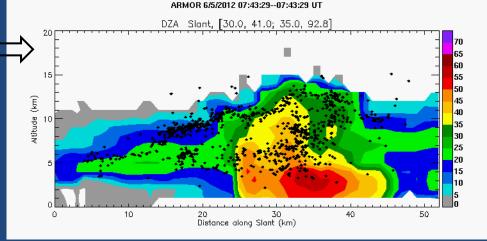
1155 UTC



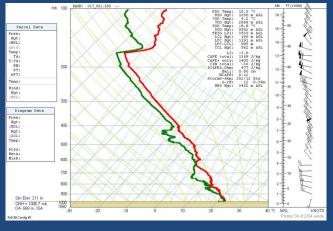

Carey et al. (2005)

- Document radar and lightning morphology associated with trailing stratiform MCS
  - Lightning rate, type, extent
- Infer microphysical and kinematic conditions from polarimetric and multi-Doppler radar analyses
- Infer charge structure from NA-LMA
- Investigate meteorological, microphysical and kinematic control of lightning rate, type, and extent and charge structure in MCS

# DC3 AL on June 5, 2012, 0743 UTC Leading stratiform anvil MCS lightning


ARMOR reflectivity (dBZ) and NA-LMA VHF sources

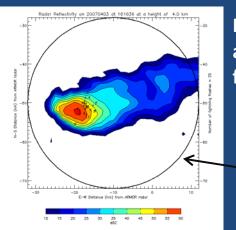



#### 2 km CAPPI from ARMOR

Few multi-Doppler, polarimetric studies of electrification and lightning in leading stratiform MCS

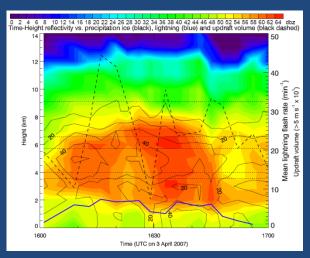
#### Vertical-cross section through Lincoln Co. TN flash (NE)




Sonde through leading stratiform anvil at 0929 UTC

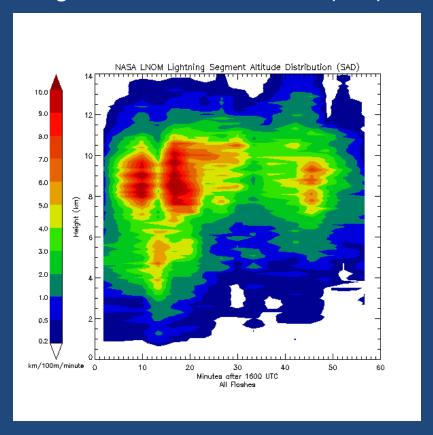


NNW flow


# NASA Lightning Nitrogen Oxides Model (LNOM) Application toward Thunderstorm Studies

April 3, 2007: Ordinary Convection over N. Alabama




Reflectivity at 4 km altitude with NA-LMA flash origins

Lagrangian LNOM analysis cylinder follows thunderstorm cell for 1 hour lifecycle

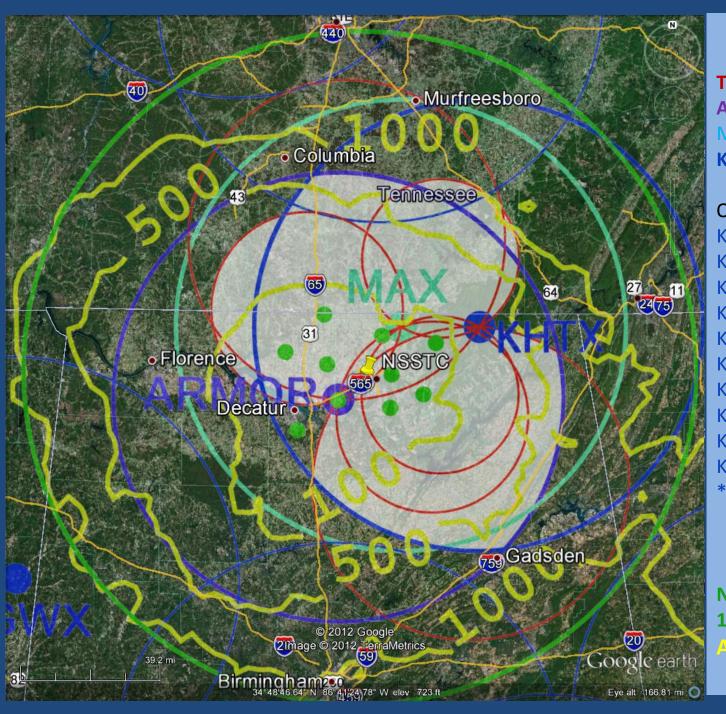


Time-Height
Cross-Section of
ARMOR Radar
Reflectivity,
Precipitation Ice
Volume, and
Updraft Volume

Time-Height Cross-Section of LNOM Segment Altitude Distribution (SAD)



#### For more details see Poster #271


The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

<u>Lawrence D. Carey</u>; William J. Koshak; Harold S. Peterson; Elise V. Schultz; Retha Matthee; Christopher J. Schultz; Walter A. Petersen; A. Lamont Bain

### Summary

- Successful ground operations for DC3 Alabama, including
  - 2 aircraft missions in and around multicell ordinary convection
  - − 2 nocturnal MCS's − 1 trailing and 1 leading stratiform event
  - Multiple ordinary thunderstorms isolated (airmass), multicell, squall line, severe storms
  - Shallow, warm-cloud base convection well sampled spectrum of no flash convection to marginal flashing thunderstorms
- Preliminary data (mobile sonde, NALMA, ARMOR, MAX)
   delivery to NCAR Field Catalog (FC) finishing up now
- Meteorological, kinematic and microphysical control of lightning flash rate, type, and extent
  - Initial priority on the 2 multicell aircraft cases (Poster #267)
  - Collaboration with NASA MSFC to apply the Lightning Nitrogen Oxides
     Model (LNOM) to individual thunderstorms (Poster #271)
  - Minimal requirements for lightning; MCS electrification and lightning

# **EXTRA/BACK-UP SLIDES**



#### Radars:

#### **Triple-Doppler (30°)**

ARMOR: 100 km

MAX: 100 km

KHTX/Hytop\*: 100 km

#### Other WSR-88D's

KBMX/Birmingham\*
KOHX/Nashville\*
KFFC/Atlanta\*
KNQA/Memphis\*
KMRX/Knoxville\*
KGWX/Columbus AFB
KHPX/Ft Campbell
KPAH/Paducah
KMXX/Maxwell AFB
KDGX/Jackson
\*dual-pol upgraded

#### NA-LMA:

NA-LMA sensors, 150, 250 km range rings Altitude errors (m)

#### **UAHuntsville ARMOR:** Advanced Radar for Meteorological and Operational Research.

#### C-band Polarimetric



**ARMOR at HSV Airport** 

• Location : Huntsville Intl. Airport

• Altitude (antenna MSL): 206 m

Transmit frequency: 5625 MHz (C-band)
Peak Power: 350 kW (Magnetron)

Pulse width: 0.4 – 2.0 μs
 Maximum PRF: 250-2000 s<sup>-1</sup>

• Antenna Diameter 3.7 m (12 ft CF Parabolic)

Antenna Beam width: 1.1°
 First side-lobe: -30 dB
 Cross-pol isolation: < -41 dB</li>
 Maximum rotation rate: 36° s<sup>-1</sup>

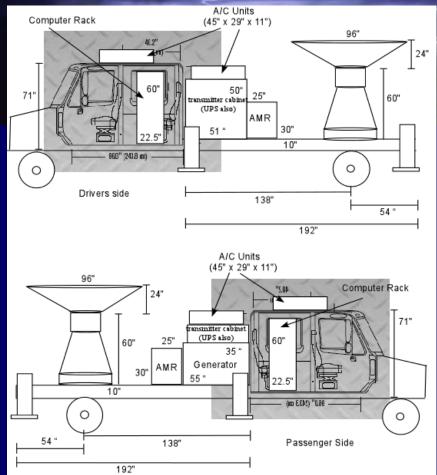
• Transmit polarization: Simultaneous H and V, [or H]

• Receive polarization: Vaisala Sigmet dual-channel; H + V, or H

• Signal Process: Vaisala Sigmet RVP/8

• Variables:  $Z, V_r, W, Z_{dr}, \rho_{HV}, \phi_{dp}, K_{dp}, [LDR]$ 

• 2002: NWS Doppler WSR-74C donated to UAHuntsville


• 2004: Upgraded to dual-polarimetric using the SIGMET Antenna Mounted Receiver

• 2005: Upgrade to solid state transmitter by Baron Services

• 2006: Upgrade to high performance Seavey antenna and Orbit pedestal with integration by Baron Services

 More information regarding the ARMOR can be found at http://nsstc.uah.edu/armor/

#### MAX: Mobile Alabama X-band polarimetric Doppler Radar





http://vortex.nsstc.uah.edu/mips/max/

Oct. 2006: Initial procurement of hardware

Nov. 2006 - Fall 2007: Construction

Fall 2007 - Winter 2008: Shakedown/field ready

• Transmit frequency: 9450 MHz (H+V, H)

• Peak Power: 250 kW

Pulse width: 0.4 – 2.0 μs
 Min/Max PRF: 250 / 2000 s<sup>-1</sup>

• Antenna Diameter 2.4 m (8 ft, CF Parabolic)

Antenna Gain 44.5 dB

Antenna Beam width: 1°

• First side-lobe: -31 dB

• Cross-pol isolation: <-36 dB

Receiver polarization: RVP/8

• Variables: Z, V, W, ZDR,  $\phi_{DP}$ , KDP,  $\rho_{hv}$ , LDR

#### **Radar Development**

- Tx/Rx/Ant. Design/Integration: Baron Services, Huntsville
- MP-61 Pedestal (Radio Research): UAH with prep. work and checkout by Mr. Bob Bowie, CSU-CHILL
- Truck/generator/data system: UAH



### LMA Hardware

### New Mexico Tech System

- LMA Sensor Sites
  - VHF ground plane antenna
  - Sensor electronics / site computer (first generation)
  - Communications (mostly 2.4 GHz wireless Ethernet network link)
- Relay Sites and Central Station
  - PC router (up to 4 network links)
  - Communications (multiple antennas require great care in channel selection)
  - Cell phone modems used at some sites







### LMA Site Installations

- Sites selected on basis of noise level, ability to establis wireless com link, and low / no cost access
- Installations include: water towers, public/private radio towers, user supplied towers/masts, utility poles, even a firetower and a building





User supplied tower (Owen)



Utility pole (AAMU)

Commercial radio tower (Drake)



ransitioning unique NASA data and research technologies to the NWS

# North Alabama



Home
Overview
Status
Participants
News & Highlights
Links
FAQ
Contacts

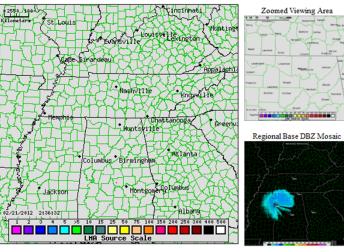
#### Recent Daily Summaries







Monthly Thumbnails




#### North Alabama Lightning Mapping Array

The North Alabama Lightning Mapping Array is a joint project involving NASA, New Mexico Tech, and Georgia Tech. The network locates the total lightning activity inside storms using a network of 11 stations around the North Alabama area and 2 stations in the Atlanta Georgia area.

The information on this web site is for general interest and information only and should not be used for operational purposes or depended upon for making decisions in regard to safety.

#### **Latest 10 Minute Summaries**



**Recent Daily Density Summaries** 



Privacy Policy Disclaimer NASA Contact: <u>Jim Smoot</u> WEB Site Contact: <u>John Hall</u>





http://branch.nsstc.nasa.gov/PUBLIC/NALMA/



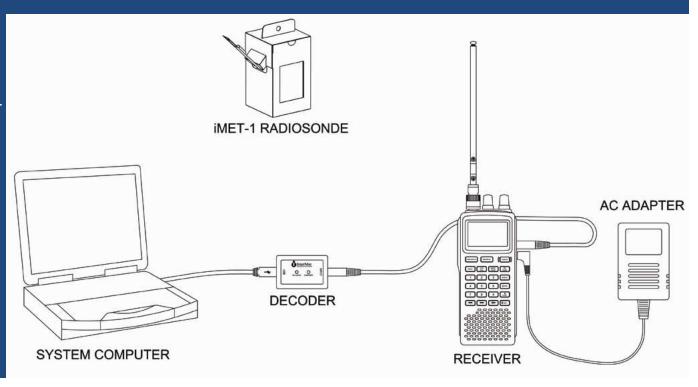
### Mobile Integrated Profiling System (MIPS)



10 kW generator

915 MHz Doppler wind profiler

Microwave Profiling Radiometer X-band Profiling Radar


Lidar Ceilometer

### iMET-3150 (403 MHz GPS) Upper Air Sounding System

- iMetOS (Windows PC based) provides
  - Flight status display
  - Radiosonde data display
  - Real-time processing, quality control and reporting of met data
  - Graphical output (e.g., Skew-T Log-P) of T, Td, RH, wind speed & direction
  - Playback of previously recorded flights
  - Data editing and archiving
  - WMO, STANAG and custom reports

#### • iMet-1 radiosonde

- Factory calibrated, 1
   year accuracy
- meets the current
   NWS radiosonde
   specification (NWS-J070-RS-SP005C.)



- 60 radiosondes for DC3 (40/20 reserved for flight/non-flight operations)
  - iMet-1-AB 403 MHz GPS Radiosonde C/A code GPS receiver with solid state pressure sensor
  - De-reeler, pre-wound with 30 m string
  - 300 gm Latex meteorological balloon (24.7 km burst altitude), parachute

