
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

677 4'c3I:f

Automated Translation of Safety Critical Application
Software Specifications into PLC Ladder Logic

Kurt W. Leucht, Glenn S. Semmel
National Aeronautics and Space Administration

Kennedy Space Center, Florida 32899, USA
Kurt.W.Leuchtnasa.gov, Glenn.S.Semmelnasa.gov

Abstract—The numerous benefits of automatic application
code generation are widely accepted within the software
engineering community. A few of these benefits include
raising the abstraction level of application programming,
shorter product development time, lower maintenance costs,
and increased code quality and consistency. Surprisingly,
code generation concepts have not yet found wide
acceptance and use in the field of programmable logic
controller (PLC) software development.

Software engineers at the NASA Kennedy Space Center
(KSC) recognized the need for PLC code generation while
developing their new ground checkout and launch
processing system. They developed a process and a
prototype software tool that automatically translates a high-
level representation or specification of safety critical
application software into ladder logic that executes on a
PLC. This process and tool are expected to increase the
reliability of the PLC code over that which is written
manually, and may even lower life-cycle costs and shorten
the development schedule of the new control system at KSC.
This paper examines the problem domain and discusses the

process and software tool that were prototyped by the KSC'
software engineers. 1.2

TABLE OF CONTENTS

1. INTRODUCTION ..
2. APPLICATION ..S
3. CONCLUSIONS AND FUTURE WORK12
ACRONYMS.. 13
REFERENCES ...13
BIOGRAPHY ...14

1. INTRODUCTION

A New Direction

NASA Kennedy Space Center (KSC) engineers are
responsible for pre-launch ground checkout of the Space
Shuttle and associated ground support equipment (GSE).
On January 14, 2004, the President of the United States
announced a new vision for space exploration which
changed NASA's goals from low earth orbit operations to
lunar operations and beyond [I]. In response to the
presidential announcement, NASA formulated what is called

'U.S. Government work not protected by U.S. copyright.
2 IEEEAC paper #1402, VersionS, Updated November 26, 2007

the Constellation program to develop a new generation of
spacecraft and infrastructure for return to the Moon [2]. A
concept image of the new spacecraft is shown in Figure 1.
At KSC, where these new space vehicles will be launched, a
new ground checkout and launch processing system is
currently being developed in support of this effort.

Figure 1 - Artists concept of NASA's next-generation
launch vehicle systems.
Image credit: www. nasa.gov

Many large and complex systems that have been
implemented by NASA in the past, including previous
ground checkout and launch processing systems, contained
functionality or performance requirements and specifications
that forced custom solutions. As software processes and
technologies have matured, commercial off the shelf
(COTS) hardware and software components have become
more reliable and provide higher performance. Thus, NASA
expects to save development schedule and cost by
integrating various COTS solutions together in order to

% Lwo:ons1tfl
I	 '•=.J	 I G'Ound.'P9N	 '

System Jsers

DSp4ay	 ______ essage
Ground Support	 lndustn

Equipment(GSE)	 Controllers	 unchTower
Server Bus

Gateway	 (PLCS)	 -	 Systems

—1	
vsors. valves,

motors)

_Laurut Pad	 =	 - Aptication	 _______________
Systems	 -	 ___________________

(Sensors, valves.

[IIF	
j2'	

Mobile Launcher

heaters motors)	 Systems
JH _ -	 (sensors. valves. I	

heaters motors)

I	 -	 tt

Figure 2 - Simplified Architecture of KSC's Launch Control System (LCS).
Rocket concept image credit: www. nasa.gov

implement large and complex systems. COTS solutions can
generally offer significant life-cycle cost savings.3

A simplified high level architecture of the new ground
checkout and launch processing system is shown in Figure 2.
This system is called the Launch Control System or LCS.
All the computer hardware in the LCS is planned to be
COTS, including Industrial Controllers or PLCs that are
connected to the sensors and end items out in the field. A
significant portion of the software in the LCS is also planned
to be COTS, with only small adapter software modules that
must be developed in order to interface between the various
COTS software products.

PLCs are basically environmentally ruggedized computers
that are specifically designed to automate or control a
process in a factory or plant. PLCs are commonly
distributed throughout a factory or plant near the motors,
valves, heaters, etc. they are controlling and near the sensors
from which they are reading values. Control logic or control
software typically executes in a PLC to read data or state
values from input channels, and to control output channels
accordingly. KSC is not technically a factory or plant, but it
is an industrial type of environment that is well suited for
industrial (e.g., PLC) control of end items located in the
field.

2
Risks associated with using COTS products, such as vendor dependency,

vendor propriety, product quality, product support, and code ownership

were considered and are beyond the scope of this paper.

In the launch vehicle and spacecraft processing domain the
control logic in the PLCs that monitors and controls high
energy equipment or machines, such as pressurized fuel
tanks, is categorized as safety critical. A safety critical
component or system is defined as one whose failure can
cause injury or death.

Application Software

Application software is the high level layer of computer
software that the end user actually interacts with. It allows
the user to perform specific and productive tasks on the
computer. Some common examples of application software
are word processors, database programs, and media players.
Application software is usually contrasted with system
software which is the low level layer that interacts directly
with the computer at a very basic level (e.g., the hardware
level, the driver level).

In the LCS, application software is the set of software
programs conceived, written, and executed by the user that
is intended to monitor specific end item measurements and
user inputs and use that information to control the user's
remote system located in the field. The LCS architecture
allows application software functionality to be distributed
between an application server in the control room and the
PLCs out in the field. The LCS will likely distribute the
time-critical closed loop control functionality and the low
level end item command and response functionality in the
field-located PLCs and house the higher level supervisory
control and sequencing functionality in the application
servers located in the control room.

Figure 3 shows a typical example of application software
source code4 that might be found in the existing legacy
ground processing system at KSC. This small portion of
code, written in a custom high level test procedure language
called Ground Operations Aerospace Language (GOAL) [3],
commands a valve to the open state and then looks for the
appropriate valve position indications within the appropriate
time constraints.

SEND PRIMARY OPEN CVI+tANl) $
TURN ON VLV1_PRI_OPEN_CPiD";

$ DELAYS UP LV $ SEC FOR INDICATION OP MOTION. STEP 20
LOOPS TO STEP 10 UNTIL CLOSED INDICATOR TURNS OFF OR
P SEC PASSES. $
READ . GNT AND SAVE AS (G4T1);

STEP 10 READ GMT> AND SAVE AS (.fr2);
LET (VLVTM)	 (GMT2) - (GMT1);

ADD 24 HOURS IF DAY WRAPS $
IF (VLVTH) IS LESS THAN 0.0 SEC.

LET (VLVT?4) = (VLVTTI) • $6400 EEC;

IF (VLVTM) IS LESS THAN OR EQUAL TO 8 SEC
THEN GO'TO STEP 20;

ERROR MESSAGE $
RECORD •ra4T=.

TEXT (VALVEI INITIAL MOTION GREATER),
TEXT (THAN 8 SECt 'IX) 'PAGE-A, YELLOW TO 'CNSL-PP>;

OPEN VALVEI USING SECONDARY COMMAND & VIEW SECONDARY
INDICATORS $
PERFORM PROGRAM (OpenValvelSecondary);
GO TO STEP 100;	 $ DONE $

STEP 20 VERIFY <VLV1 PRI_CLOSED_IND= IS OFF
ELSE GO TO STEP 10;

DELAYS UP TO 26 SEC FOR INDICATION OF MOTION COMPLETE
STEP 40 LOOPS TO STEP 30 UNTIL OPEN INDICATOR TURNS
ON OR 26 SEC PASSES. $

STEP 30 READ GMT, AND SAVE AS (ralT2),
LET (VLVTM) = (GMT2) 	 (.rr1)

ADD 24 HOURS IF DAY WRAPS $
IF (VLVTM) IS LESS THAN 0.0 SEC.

LET (VLVTH) = (VLVTM) • 86400 EEC;

IF (VLVTM) IS LESS THAN OR EQUAL TO 26 SEC
THEN GO TO STEP 40;

ERROR MESSAGE $
RECORD GPfF=,

TEXT (VALVE1 OPEN TIME EXCEEDED LIMIT)
TO <PAOE-A YELLOW TO CTSSL-PP;

OPEN VALVE1 USING SECONDARY COMMAND AND
VIEW SECONDARY INDICATORS $
PERFORM PROGRAM (OpenValvelSecondary);
GO TO STEP 100;	 $ DONE $

STEP 40 VERIFY VLV1 FRI OPEN IND> IS ON
ELSE GO TO STEP 30;

$	 SUCCESS MESSAGE $
STEP 50 RECORD G'TF,,

TEXT (VALVEI OPEN TIME IS), (VLPrM)
TO PAGE-5 TO <CNSL-PP>;

STEP 100 TERMINATE;

Figure 3 - Typical example of existing legacy application
software source code

It is evident from the above code example that software
programming skills are necessary to write application
software in the existing legacy ground launch processing
system at KSC. This necessity led to the formation of a
group of programmers at KSC that specifically takes

Due to International Traffic in Arms Regulations (ITAR) restrictions, all
source code examples have been simplified from their original form and all
Space Shuttle program specific information has been removed.

requirements from ground and flight system users and writes
the application software code. Hiring and maintaining a
group of dedicated application software programmers was
chosen over the option of training all the ground and flight
system users to simultaneously be software developers. But
this decision has turned out to be quite costly over the total
life-cycle of the legacy control system so alternative
processes are being investigated for the LCS.

A Language Of Their Own

The developers of the LCS are investigating processes and
tools that will allow non programmers (i.e., system
engineers, domain experts and end users who are not
software savvy) to write safety critical control applications
using a high level representation or format. This high level
representation is actually considered a "model" of the
control system from the perspective of the Model-Driven
Software Development (MDSD) discipline [4]. MDSD
uses domain-specific abstractions or domain-specific
languages to formulate the model of a system that is being
developed.

A domain-specific language (DSL) is a programming
language that is designed to perform tasks and to solve
problems in a particular domain, such as operating a power
plant or processing launch vehicles. For example, UNIX®
shell scripts are a good example of a DSL for data
organization because they are very useful for taking user
input and manipulating data in files. Although powerful and
robust, UNIX® shell scripts are not very conducive for
creating complex data structures, such as lists and trees, and
most do not support object oriented design [5].

A DSL has been created by the LCS Application Services
Product Group for developing test sequences of ground
checkout and launch operations of Constellation vehicle
elements [6]. Figure 4 shows the software functionality that
was previously shown in Figure 3 for opening a valve, but it
is now written in the new DSL that was created for the LCS.
This example is a simplified snippet from a much larger and
more complex DSL-based program that was recently
developed as an LCS prototype user application.

P SEND THE PRIMARY OPEN COMMAND
send coandtdi,,crete("VLV1 PHI OPEN CMD", "ON'))

VERIFY THE PRIMARY INDICATORS CHANGE APPROPRIATELY WITHIN
4 THE REQUIRED TIME CONSTRAINTS
if verlfy_witMn_voting (2,

(lambda read.VLV1PRICLOSEDIND	 OFF,
lambda read.VLV1 PHI OPEN lED == ON),
("VLV1_PRI_CLOSED_YND' 'VLI PRIORESS IND').
(8, 261, DIALOG.	 -
'VLVlPRICLOSEDIND and VLV1 PHI OPEN IND')	 0

4 A FAILURE OCCURRED. GENERATE ERROR MESSAGE.
send_message ('VALVEl PRIMARY COMMAND FAILED",

GYSX. WARNING)

4 USE SECONDARY COMMAND & SECONDARY INDICATORS
perform ("OpeaVa 1volSecondary, 	 , BLOCKING)

P SUCCESS. GENERATE MESSAGE TO USER.
send message ('VALVEl OPENED SUCCESSFULLY", SYS1, INFORMATION)

Figure 4 - Typical example of new application software
source code using a DSL

The DSL code that was created for the LCS uses keywords
and functions that are familiar to the ground and flight
system user, such as "send command", "send message", and
"voted verify within". The "voted verify within" scenario
will now be explained briefly as it will be used later in
numerous examples.

In the spacecraft ground processing domain, a simple "verify
within" operation takes a single measurement (e.g., a valve
position indicator) and verifies that it changes to a specified
or expected value (e.g., OPEN, CLOSED, ON, OFF, etc.)
within a specified time period. A "voted verify within"
operation is similar to the "verify within" operation, except
that it takes multiple measurement parameters instead ofjust
one and it also takes an argument for the total number of
voted measurement parameters that must be true in order for
the whole voted verify within operation to be true.

This voted verification functionality is very useful in safety
critical control systems that utilize a lot of redundancy or
duplication of commands and/or measurements. A ground
or flight system might contain three separate measurements
that all give the state of a single end item, such as the
position of a valve. However, the ground or flight system
user might consider the valve to be successfully opened and
operating within specifications if one of the three indicator
measurements was failed and only two of the three actually
indicated that the valve was open. This is a "2 of 3 voting"
indicator scenario and is quite common in this domain.

The DSL code encapsulates the programming details of the
voted verify within operation and attempts to elevate the
programming language to the abstraction and level of
understanding within the ground and flight system users
domain. Unfortunately, some software programming skills

are still necessary to write application software using this
new DSL. So the developers of the LCS investigated other
ways to represent the application software and is currently
developing a tabular specification format that uses the DSL
keywords and functions that are familiar to the ground and
flight system users. The tabular specification format, or
tabular spec, allows most ground and flight system users to
document how the application software is intended to
function and requires little or no software programming
knowledge or experience.

Figures 5, 6 and 7 show small portions of application
software tabular spec from the LCS prototype effort. The
sample in Figure 5 demonstrates the same application
software functionality that was previously shown in Figures
3 and 4. It commands a valve to the open state and then
looks for the appropriate valve position indicators within the
appropriate time constraints. The sample in Figure 6
configures the LCS to start monitoring the pressure in a tank
and to react appropriately when the pressure goes below or
above some specific thresholds. The sample in Figure 7
sends a text message to the user console in order to notify
the user of an important event.

It is evident from these three simple tabular spec examples
that software programming skills are no longer required to
write application software in the LCS. Representing
application software in this tabular spec format has many
advantages. It is a high level semantic that is conducive for
end users who are not software savvy, to create their
applications themselves. This new representation of the
application software is smaller in size and is also less
complex than the prior representations which equates to a
productivity increase by comparison.

LINE ROUTINE jDSL API	 IOBJECT4S OESCR1P11ONMESSAGE [OVAL HI V011N()URAT1OI EACTION
4* Roulo,e sesds pcmwy CPFN comrrredd arid neOn for 	 .tpnete ThdicMors -
OpeIrVeIvelPriIn.oty I SeridpnmerjOPEitcommaori -
____________________ seuirlcoiein.and VLV1PRLOPEN_CMD VeIvel Pnmery Open Command ON

______________ MVero', both pnme ndrcato,n cherige	 corieEet, eathe, epp,qonete bme doreEon 	 on (nikon call e'clhe,,ouf,r,e ormSecorrdayOpenCommarei
_____________________ verity within VLVI PRI CLOSED IND VaIvel Primary Closed Indicator OFF 2of2 8 Sec -

7 _____________________ verity within Vt_Vt P81 OPEN ND Valvel Pnma,y Open Indicator ON 2of2 26 sec OpeeV4IveISecenJaIy -
end _________________ __ ___________________________________

Figure 5 - Typical example of new LCS application software tabular spec - Opening a valve

liNE ROUTINE	 [LIS[API	 '4BJECTISI	 IDESCRIPnoN MESSAGE LOyAL HI VOTING DURATION REACTION
4 $ Rou4ice startS assert mori'i'r,r for high or low tnrlr pressures arid	 eria end closes vaponzer valoe e,c,ratefr,i
4 St.a,tAutolenkPuen I_Monllorfo,highpressere _______________________________

- ___________________

_______________________ .ats.st_cottstraint lANK_PRESSURE_i lank Pressure Indicator #1 IS 1 sf3

_______________________ .tsneit coestu.tint TAJJK_PRESSURE_2 Tank Pressure Indicator #2 IS lof 3

4 anseit cenwiriuut TANK PRESSURE 3 Tank Pressure Indicator #2 15 tof 3

(Ip.nVapeilee.Valve
46

____________ _________ ______________ _____________________

4 ____________________ 4* Mon4o, to, low pressure __________________________________

.rss.,l courstl.lint lANK_PRESSURE_i lack Pressure Indicator #1 26 lot 3

- ..es.,e cottstualet TANK PRESSURE 2 Tank Pressure Indicator #2 25 lot 3

150 _____________________ an.,t con,tt.tInI TANK PRESSURE 3 leek Pressure Indicator *13 25 lot 3

CIan.Vapeilz.,VaIv.
Send _________________ __________________________ __ ______________________

Figure 6 - Typical example of new LCS application software tabular spec - Monitoring pressure in a tank

[INE I ROUTINE [Ds[API OBJECTIS) I3ESCRIPTIONMESSAGE LOVAL III 'OTINC IlIRATIOI IEACTION

2 1 4* Roulr* notifies line, of fan'vre ________________________
22jOpeu.ValvelEuuot i Serrila teifire message to Ike use, __________________________________

231 s.nd_ineesa. Unable Is open Valeel

Figure 7 - Typical example of new LCS application software tabular spec - Sending a user a text message

The tabular spec also contains inherent tracing from user
requirements to implementation and minimizes the learning
curve for capturing application requirements and brings
consistency to the process. It also improves the quality of
the application requirements with a consistent, structured
format. The use of a DSL along with this tabular spec
allows the domain expert or end user to focus on solving the
domain problem rather than focusing on the software.

The LCS developers realize that this tabular spec format is
limited in features and capabilities as compared to the prose
programming approach shown in Figure 4, but many
existing application software examples from the ground
processing domain have already successfully been
represented in this tabular spec format. Even if only half of
the total user application software can be represented in
tabular spec format, that equates to a significant
improvement in cost, schedule and manpower necessary to
develop, implement and maintain the LCS. Anecdotal
evidence suggests that up to 80% of the existing Space
Shuttle program user application software might be
successfully represented in the new tabular spec format. We
are currently investigating this estimate and hope to produce
empirical data to further refine it. This level of applicability
could translate into significant cost savings for the
Constellation program which reuses some legacy Space
Shuttle program elements, such as Solid Rocket Boosters.

Problem Description

The LCS developers needed a mechanism or tool to translate
application software from tabular spec format into PLC code
to execute on the PLC platforms out in the field. The LCS
developers were tasked to investigate the possibility of
manually and automatically creating the application software
portion of the PLC code from the tabular spec
representation. A portion of some legacy application
sothvare that performs the task of loading fluids into a tank
was represented in tabular spec format by a team of NASA
KSC ground system engineers. This representative sample
tabular spec was used as the starting point for both the

manual and the automatic PLC code creation process.

This work was considered a prototype effort and was
performed for the sole purpose of determining if it was even
possible to automatically create PLC code from a high level
representation of the application software. The tabular spec
format (Figures 5, 6, 7) was chosen for this prototype effort
over the DSL prose format (Figure 4) for multiple reasons,
but mostly because representing user application software in
the tabular spec format has many cost and schedule benefits
over the DSL prose format. Also, the tabular spec format is
simpler and more structured and should lend itself better to
parsing and translation.

In the LCS, the application software will be distributed
between servers that are located locally in the control room
and PLCs that are located remotely out in the field . This
paper focuses only on the portion of the application software
functionality that is expected to execute on the PLCs out in
the field, and not the portion that is expected to execute in
the control room.

2. APPLICATION

Manual Translation

A few small executable sections from the previously
mentioned tank loading tabular spec were selected for
manual translation into PLC code. The first selection was
made up of three subroutines, shown in Figure 8, that
attempt to open a valve allowing fluid to flow in a pipe. The
first subroutine attempts to open the valve using the primary
command and response path. The second subroutine is
called from the first if the valve fails to open. This second
subroutine attempts to open the same valve using the
secondary or backup command and response path. The third
subroutine is called from the second if the valve fails to
open again on the second attempt. This third subroutine
generates an error message to the user.

r ! r r ,rn Name ValveOpenlnqSequeuice	 Proq Descnplron This p rouram rlsrrnonst,ates sendrn q a command and verify irro dscrete nd'calors Uses mulice routines roth error oaths
hIRE ROUTINE los'- API	 IOBJEITISI DESCRIPTION MESSAGE 10 VAt HI 'OT1N(¶IURATION EACTION
- i Rovath,at sends peeneiy OPEN command and waits fo,	 pvopoafe iedicMom ___________________________

Op.nvalvelPllmasy N SettdprrmaryoPENcontrnarid ___________________________
- ______ ________________

-
______________________ see.I_couirruianil 1VLV1yRI_OPEN ..CMD Valvel Primary Open Command ON

______ ________________
- _________ _______________________

_______________ N Veeifp both pnmary indicators charee appecpraate, hen cpeqenaf e time diroatmn	 on feeler. caff aroth.e,outA' ttTr Secoc dny Open Cun stand
___________________ veuft	 withIn Vt_Vt PRI CLOSED IND Valvel Primary Closed Indicator OFF Jof2 S sec -

- _____________________ veiIfN within Vt_Vt PRI OPEN NO Valvet Primary Open Indicator ON 2sf? 2D sec

Op.nValv.IS.condaiy
end _____________________________ __ __________ __________________________

I t Root,ne sends secoerrdery PEN command and icris lot appeoparale indicators _______________________________ -
_t OpenvalvelSecondary N_SendsecondariiOPENcomrnard _______________________________

_______ __________________

_____________________ send caerieaud VLV1yRI_OPEN_CMD Velvel Primary Open Command OFF
_______ __________________

1 ______________________ n.niI_caininaud V1..V1_SEC_SELECT_CMD Velvet Secondary Select Commend ON

I - _____________________ 5.11.1 coeiuuua,i,I Vt_Vt SEC OPEN CMD Valvet Secondary Open Commaed ON - _________ _____________________

_______________ N Verily both secOnd,r, rnd,cato,s change opp.'cpanate eN Ion approperafC torte drrratrons sin fo,fore cab .9, n•5se5•
1 _____________________ v.ulty_wlthhi VLVI_SEC_CLOSED ND Valset Secondary Closed Indicator OFF 7of2 Dccc

1 ___________________ veiily within Vt_V1_SEC OPEN IND Valsel Secondary Open Indicator ON .1 sf2 25 sec

Op.nValv.IEiuou
end ________________ ________________________ _____________________________________ _________ _____________________

2 * Routine nohijea era., of fibre __________________ ___________________________
22 OpeuiV.aIvaIEtsau N Seodaladame message lathe user _____________________________

______ ________________

22 send urieseae Unable to open Valsel
_______ _________________

end __ __

E

2
2 ________ ________________ ______________

Figure 8 - First selected executable tabular spec section - Opening a valve with error paths
5

The functionality of all three of these subroutines was 	 Automation's RSlestStand TM simulator software [7].
manually coded into PLC ladder logic 5 and tested using a
field item simulator in order to verify the proper operation 	 Figure 9 shows an example of some of the resulting
of the manually coded ladder logic. An Allen Bradley	 manually translated PLC ladder logic. For brevity, only a
ControlLogix PLC was utilized along with Rockwell 	 very small portion of the PLC code is shown here.

Fist stete in conITwd se,eflcer
Resets sonar Wemawy used varl4es xt InCTerTexils air iWnal usiJier

0

Valve Operr Cird S*e
(. 1=Pnopen

2SecOpn.

Equ
Sor,ceA Sequencetlol

Soutein

Primary Correnand was Secondary Connnand Message wan Primary coninarro Secondary comand
successful	 was successfi4	 successfrjl	 Tailed	 failed
Success(OJ	 Successlil	 Successt2l	 FasixeOJ	 Failurep]

U	 1U	 U—

Primary Cmd Routine
ExecutingO]

Primary Routine
Execution Count

cru
Corrot Up
Counter	 CounlelO]
Preset	 0
Accum	 0

serdccearrid API from spreadsheet
Sends priTy cormarnd to end ftern

Primary Cord Routine
Valve 1 PflrTrary Open

C
MSID_VLV1_PRLOPEN_CMD

Nerd 3 nm hane tile 2 T wiled VERIFV_WITHIW lines In tire spreacleireel
The 11,51 rung exeailes the tinves aid then ory one el the next 2 nm will becorre isie.

Valvel Ckrved led
ValveI Primary	 must go OFF whine $

Primary Cord Routine	 Closed trndlCatOr	 seconds

2

Vaivel Primary Open
IndEalor

Trner On Delay
Tenor	 Twnellol
Preset	 leCo
ACcian	 0

EN —
ED$ —

Valve 1 Open led 0*1st
go ON wIthin 26

seconds

TirnerOn Delay EN —
Timer	 Thmerpj ON —
Preset	 26o
AcctJfl	 122245

It elth ERIE'! WITHIN- ts. weJItrç In the next sequence or nerd Reuline (sending Ri. secOiy open consrxt)
Valve Open Cord Stal.

Valve 1 Closed led	 (Owalt. IPflOpen.
ITnist go OFF wIthin 8 	 Primary corrinand	 2=SecOpn.

Primary Cord Routine	 seconds	 failed	 PTtrrniry Cord Routine	 3=Proniptusert
Executing(0(TllTrer(O ON	 Faflurefo]	 Execuuing(Ol

Vabel open no	
501st.	 2

mustgooNwlttrIn 26	
seqnrrcer]o

I both VERIFY_WflHIN lire! are arjccessSi, we conlinie IC the nerd aug.
Valve 1 Pnmacy	 Valve 1 Pnmary Open	 Pninwy corrilnind	 PTinaiy Colrwraind was

Primary Cord Routine	 Cloned hn(Scalnj 	 indicator	 failed	 successful
ExecllIng(OJ	 MSID_VI_P1RICLOSED_IND__MSIO_VIV IP1_OPEN_IND	 Falluref 0]	 SuccesslO]

Reijile in ouquleIn Reset the conarard sequencer.
Valve Open Cr50 Stale

l0=wwh. l=PflOpen.
Primary Con'enand was	 2SecOpn.

Primary Cr50 Routine	 successful	 Primary Cord Routine	 3=Prcsrçtliser)
s(OJ	 Executrvg(Ol	 V—i Suce	

___['°
Dest Sequencer(0]

ol

Figure 9 - Typical example of manually translated PLC code

5The process described in this paper should also work for other PLC
programming languages besides ladder logic, but ladder logic was chosen
for this prototype effort.

6

Tabular Spec Scenario Brief PLC Code Description of Translation Point
discrete "send_command" Latch to send ON command and Unlatch to send OFF command.
analog "send_command" Move an integer or float (real) value to a stimulus tag.
discrete "set" command Latch to set ON and Unlatch to set OFF.
analog "set" command Move an integer or float (real) value to a tag.

all voted "verify_within"
A prerequisite rung with timers, then a failure rung if any (Boolean OR) timer
finishes, then a success rung with Discrete (XIC/XIO) or Analog (GRT/LES)
comparators in series (Boolean AND). _____________________________

any voted "verify_within"
Very similar to above.	 A prerequisite rung with timers, then a failure rung if all
(Boolean AND) timers finish, then a success rung with Discrete (XIC/XIO) or
Analog (GRT!LES) comparators in parallel (Boolean OR). _____________________________

verify within	 (non-voted)
Simplification of voted case. Only one timer and only one comparator in the success
rung. __________________________

"verify" command Same as "verify_within" cases, only without the timers.
•	 ,,

any voted assert_constraint
Routine that executes continuously upon activation.	 Violation rung with Discrete
(XIC/XIO) or Analog (GRT/LES) comparators in parallel (Boolean OR).

•	 ,,
all voted	 assert_constraint

Very similar to above. 	 Executes continuously with a violation rung with Discrete
(XIC/XIO) or Analog (GRT!LES) comparators in series (Boolean AND).

"assert_constraint" (non-voted) Simplification of voted case. Only one comparator in the violation rung.
"remove_constraint" command Just halts the "assert_constraint" routine that executes continuously.

send message command
Pass a text string to a PLC System Message routine that was written manually as a
System Software mini-layer on the PLCs. ____________________________

"send_message_id" command Same as "send_message" case, only using message databank for parameters.
"delay" command Rung with a timer. Halt execution of routine until timer finishes.
"perform" command Start a PLC routine by setting the value of a routine sequencer.

Table 1 Translation points from tabular spec to PLC code

Translation Points

This manual process of conversion or translation from
tabular spec representation to PLC ladder logic
demonstrated that translation points or patterns existed
between portions of the tabular spec and portions of the PLC
ladder logic. Table 1 shows the translation points that were
identified by this manual translation process.

Using these translation points, a few representative samples
of the manually coded PLC ladder logic were exported from
the PLC coding integrated development environment (IDE)
as plain text. This exported text was then converted by hand
into plain text PLC code "libraries" with the intent that a
future automatic tabular spec to ladder logic translation
utility would use these PLC code libraries during its
translation process. In this context, the PLC code libraries
could also be considered as code templates.

Figure 10 shows a small sample from the PLC code library
that was created by this manual translation process.

Gendn a di,jcrete ON/OFF) commanid
LIBRRY object=D1creteSendConuennd>

KIc (<INRT object=ExecutingTag"h)
<INSERT object=°Ot1OrOtuVkINSERT object=ObjectTag'/)

/LIBRARY>

Figure 10 - Typical example of PLC code library

This PLC code library object is intended to be used
whenever a discrete (or Boolean) command is sent in the
tabular spec. The IHERr obJectExecotingTagV' portion is to
be replaced by the automatic translation utility with a
Boolean PLC flag that tells the PLC that the routine that
contains this ladder rung is supposed to execute. The

object=Ot1OrOtu/ portion is to be replaced with an
output latch object or an output unlatch object, depending on
whether an "ON" command or an "OFF" command is being
sent.	 The .ItdSRT object=Objectflg/, portion is to be
replaced with the name of the discrete commandable object
that is intended to be commanded. After the automatic
translation utility employs this PLC code library, a tabular
spec line that looks like that shown in Figure II should be
translated into some PLC code that looks like that shown in
Figure 12.

DSI. API	 OBJECT(S	 DESCRIPTIONMESSAGE	 LOyAL
,.nd cemmind	 V1_PR1OPEN CMD	 VeNI Pnmery Open Commend	 ON

Figure 11 Tabular spec example of discrete ON
command

API 1mm ep.e.d,h,
Send5 pl1mwy colmmmd 10 end een

Valeel P'lmay Open
P1,na,y Cmi R005ne
	

COmmnd
Eeeoin9iOJ
	

MSIO_VLVI_PRI_OPEN_CMO

Figure 12 Manually translated PLC code for discrete
ON command

Figure 13 shows another small sample from the PLC code
library that was created by this manual translation process.

6 Fir-it line of a voted vet itir within cect ion.
6 This code seto up a tiser for each of th. voted cbie:ts.
<LIbRARY object=VotedverifywithinTiirers'

N'
XIC(eINSERT object=ExecutingTag/o)

<Loop object=Tota1voted"r
<INSERT object'XicXiol/v(sINSERT object='ObjectTag'/o

<INSERT object=XicXio2'/o)
TONkINSERT object=TisrerTg'/s,

<INSERT object='TilrerValue'/>,?l

/LOOP'

s/LIBRARY>

Figure 13 - Typical example of PLC code library

This PLC code library object is intended to be used to set up
a ladder rung with timers for an "all voted verify within"
scenario in the tabular spec. The section of code library
surrounded by the °LP object='TotalVoted'o and the 5/LOOP>

is to be repeated by the automatic translation utility for
every voted measurement contained in the voted verify
within section of the tabular spec. Inside that repeated loop,
the <INSERT object Timermg"/o portion is to be replaced with
the name of an instance of a timer object that is to be
automatically created for every voted measurement. The

object=TiecrValu&'/o portion is to be replaced with
the actual time value that the timer object will count to in
milliseconds. After the automatic translation utility employs
this PLC code library, a tabular spec line that looks like that
shown in Figure 14 should be translated into some PLC code
that starts like that shown in Figure 15.

Automatic Translation

After manually performing some representative samples of
translation from tabular spec to PLC ladder logic, and after
manually creating a PLC code library for each of the
translation points that were contained in the samples, a
prototype automatic translation utility was then developed.
A limitation of this prototype translation utility is that it only
translates tabular spec snippets that match the translation
points that were identified during the earlier manual

translation process. The translation capabilities of the utility
will be expanded as more and more translation points are
identified, translated manually, and then turned into
additional PLC code libraries.

Figure 16 shows the simplified process flow for translating a
single "send_command" line from tabular spec to PLC code.
The spreadsheet that contains the application software in
tabular spec format is exported to plain text and is used as
input to the translation utility along with the PLC code
library. The translation utility processes these input files
using program transformation steps. This creates an output
file that is capable of being imported by the PLC coding
IDE.

Tabular epic (sIweucoreetl

h id API	 be-u fru	 tItv Iii? li 14 MI ddl%..l	 to VAt I
P4t	 ic

Tabular spec (spreadsheet eopol(

, sent .ssiirl'/LV1 F	 PEtlMc,Vsjv.: Friesry./.n -iooersnd.cIi.

PLC cod. bbt&y

14 Sends a discrete ON/OFF
IERARY ob1set.Df.cr.t..ndCoand'.

N:
Xl sflERT obst.'!zcutsngtaqe.)

INSERT obj.et - 0t lOrOtu' / INST ob.ct.	 .ctTaq I.)

'!LIBRARY>

TrsnW.abon uabty OIApIá

F- s5t5 tIre vats, of	 Lie-ret, Ft -ci PL Tagi fLoe	 line 0
N- XIC Leecit irog (>3 c°rr. FL_0LV1 PPI_cPSN-MD

Laddie logic .aac*abIgOn PLC

So ne,.,o4.0.oeI. CO 04 PtC lsg)(Ise me5.. xl
i've I	 hue I Pen7 0p40

Fri Vi S iSl iPFS i/MO

Figure 16 - Flow of tabular spec to PLC code translation

API

veulfy within	 YLV1 PRI CLOSED_IND	 Valvel Primary Closed Indicator 	 OFF	 2 of 2	 5 sec
veulfy within	 VLV1 PRI OPEN IND	 Valvel Primary Open Indicator	 ON	 2 of 2	 25 secj

Figure 14— Tabular spec example of an all voted verify within

Next 3 rungs hanthe the '2 ot 2 voted VERIFY_WITHIN lines In the spreadsheet
The tPrsl rung executes the timers and hen coPy one of the next 2 rungs wIlt become IOU..

Valvel Closed mO

	

Valee Primary	 must 900FF Within S
PrImary Cmd Routihe	 Closed mnditalor 	 seconds

ExecubngfOj 	 MSID_VLV 1_PRI CLOSED_IND	 I
H]-

Vatvel Open rid must

	

Vl> I Primary Open	 go ON withIn 26
Indicator	 seconds

Timer On Delay	 5 EN
Timer	 TImerjlJ	 ON
Preset	 26000
AcCurir	 122245

Figure 15 - Portion of manually translated PLC code for an all voted verify within

Pert, a widely used scripting language, was used for the
prototype translation utility due to Pen's regular expression
and text processing capabilities, and also due to its rapid
application development capabilities [8]. Figure 17 shows a
short code snippet from the prototype translation utility.

Rockwell Software's RSLogix IDE was used to demonstrate
that the output of the prototype translation utility could be
imported into a PLC and executed without modification.
RSLogix imports and exports a unique plain text project
definition format, although the vendor is in the process of
transitioning to an Extensible Markup Language (XML)

if ($ foundLihr.rv eq true
if ($verbooity >= $oineLiebug) { 	 (Lii.rt'z nipet f:und	 $LibToPare." n)

$nwTot Rout ineo = getTotRc.1t ine Fro4nRout ineNaue ($Rout me, Rout ineM.p);
if ($verbooitv >= $ootuDebuq) { tint T r 1 R:.ut in	 ""	 $myTotRcut ines	 '' n")

$mvRetStart = getReoourceStartFroiRoutineName($Routine, Roitin.Mp);
if ($verboitv '= $cneLehu. i) { rrin	 '1r1fl. P.'oure Nun	 . $myReastart	 n'

$t.ibToParoe	 i/eLIP.ARY object=\Routine.AndSequenceStarter\=(L.])/$i/;
$LibToPare	 s/ INSERT object=YsequencerTag\"\/'/Sequencer [$CiivrenteqId] I;
$LibToPeroe =- a/.LOOP object=\GucceTago\'>(E.]*)J$1/;
for (my ctrmyReeStart; $ctr 	 ($myPcttrt + $rnyTotRoutinec); $ctr++)

if ($ctr	 ($siykentarr + $niyTotP.:ttine- -
$LibToPare = o/([\n1) (INERT object=\"SucceTag\'\/>) (L'\n)*)/$1Succeüa($ctr)$3\n$1$2$/;

clue
$LibToParoe =	 /(('\nl) (<INSERT object=\"SucceeTag\\/>) ((\n]*)/$i.Succesi[$etr]$3/;

$LibToPare =-

$LibToPare =- INSERT object=YExecutingTeg\"\//Executing[$curRoutineId1/;
$LibToperoe =- i/<INSE.RT object=\'CounterTagY\/>/Counterl$CurRoutincldl I;
$LihToPare =.
$Li}ToFroe =
$LiI:T:Ptr	 = /\t f/g;

=- /.] /1 /g;
Figure 17—Sample of translation utility perl code

The syntax for using the translation utility is as follows:
> TabularToPlcUtility-protO.pl [-i in] [-o Out]

Since the PLC code library was not expected to be changed
or switched out by the user, it was not deemed necessary or
useful to include it as a command tine argument during the
prototype phase of the project. Figure 18 shows the
translation utility being used during the prototype phase of
the project.

Figui	 IS -. I.iinplc ul ti	 iiI Iloil ii(iliI	 Iii us&

import and export spec format [9]. XML is a specification
for a widely accepted general purpose markup language that
is commonly used to share structured data between different
information systems [10]. PLCOpen, a PLC open standards
organization, has created an XML-based specification for
the exchange of PLC programs, libraries, and projects
between PLC development environments [11]. However,
most of the major PLC vendors have not adopted this open
standard in favor of their own import/export approaches,
which many feet are more powerful and robust.

After the prototype translation utility was developed, the
same set of executable tabular spec sections from the tank
loading application that were used for manual translation
were selected for automatic translation into PLC code, in
addition to a few other executable examples of tabular spec.
Figure 19 shows a small tabular spec subroutine that
attempts to open a valve using the primary command and
response path. This same subroutine was used earlier in the
manual translation section of the paper. Figure 20 shows the
PLC code that was automatically translated from this
particular tabular spec subroutine.

This automatically translated PLC code looks almost exactly
like the manually translated PLC code shown earlier in
Figure 9, with the addition of tabular spec line numbers in

LII OUTINE IDSI API	 IOBJECTISI IESCRIPTION MESSAGE LOVAL III nIOTING[IIURA11ON lEACTIOIl
A RoiAPe aeode prona OPEN con,mancl end wide fo, OpP,CCe ,dexlota -
Op.nValv.IP,Ielary A SendpnrnwyoPENco.nrvend

_______________________ ______________
-

___________________ ene.Icoeimand	 V1.V1_PRLOPEN CMD

Veinil Pnnnary Open Conrinend ON

—

______________ A Vor#y miS poney ndr.atou change	 pncgeraieA, neh,, appnopnale S,nw du,ahoos a, fe/one caM anolve, on 'e Secon1 pçn-mand
___________________ neulfy within Vi.V1 PIE CLOSED IND Va/eel Pnn,ery Cloned Indicator OFF 2ot2 Asec -
__________________ verify wIthin VD.Vl PIE OPEN IND Va/eel Pnn,eq Open indicetor ON 2of2 oec

Op.s.VaIselS.caedaiy -

end _________________ __________________________ __ _______________________

0

Figure 19 - Portion of tabular spec to be automatically translated into PLC code

Execution Sequencer
0 stalls in)penValvetPrirnlary OnVaivelSecondary OpenValvelErrrrr OpenValverprlrriary

OpenValvelPnirnary routine routine routine routine
[0 SuccesslO) Success(1) SuCCess)2J Faflure)Oj

Equ U
ScnzceA Sequencer)D)

0
SoisceB	 1

OpenValve 1 Secondary OpenValvel Error OpenVaivel Pnrnafy 	 OpenVafvel Primary

	

routine	 routine	 routine	 execution courter

	

Fallurell)	 Failuxe(2J	 Executlngtcl)	 r-CT

	

U;	 Li	 L -- Count Up
Counter	 Counterjoj
Preset	 0
Accum	 0

2

3

4

Sets the value	 a Olsoelo PD (or PLC Tag) (front 	 Jp lIne 3)
OpenVatvei Pflrnaiy Valve 1 Primary Open

routine Command
EoeculrngjO] FD_VLV1_PRIOPEN_CMD

Verify brith primary Ircators change 	 proprlately within apprngflale ne disations, on talkie caN ancther routine 10 perform Secondary Open CorrirTalnd
Next 3 rongs hancie vialed verify within First sung executes tknefs, then ordy one ot following 2 nirge wIll become lrue (from • 	 lInes 6-7)

FO
VL Vl FRI CLOSED INC

(Valve 1 Primary
Closed indicator)

OpenValvel Primary 	 Valvel Primary must 900FF within 8
routine	 Cloned indicator sec

Executlng(0)	 FO_VLV1_PRI CLOSED_iWO T

] [TimerOnoefay EN

FD VLV1 _PRI_OPENJNO
(Valve I Primary Open

VaNel Primary Open indicator) rri,st 90
Indicator ON within 26 sec

FD_VLV1_PRI OPEN_INC TON-1
TATierrOe3ay F-<EN

If arty verify_within falls, we set the falure flag and llch sequencer execution to lie talkie s,
FO

VL VI PRI CLOSED INC
(Valvel Prirnaly

Closed Indicator)	 Execution Sequencer
OperrValvelPflmay	 must go OFF Within 8	 OpenValvelPllmafy OpenVatvelPflmary 	 0 starls in

routine	 sec	 routine	 routine	 OpenValvelpvmary
Executin0)	 11rrer1t ON	 FaHurefOl	 ExecutlngfOj	 V

Ff2	
Soisce	 2

Dent Sequencerjoj

indicator) trUst go
ON withIn 26 sec

Tpmer1ON

a v ely wWln's succeed, we set the succese flag and conIflie 10 a normal fOiAVle exit
OpenValvel PrImary	 Valve I Primary	 Vaivel Prilnaly Open	 C)penVa/ee lPrtnmary	 OpenVaivelPflmnaly

routine	 Closed indicator	 indicator	 routine	 ref/line
Executin0J	 FO'kVt Phi CLOSED IWO FO_VLV1_PRI OPEN IWO	 FailurejO)	 Succeyyfoj

][1T	 1E-

End of rou*re. Reset conirwird sequencer to the wait state (from agp tine 8)
Execution Sequencer

OpenValvelPr/enraiy OpenValvetPnmary	 OpenValveiPrinwy	 0 stalls in
routine	 routine	 routine	 OpenVaivelPtlmary

ExecutinO1	 SuccessfOj

IS0

Figure 20 - Automatically translated PLC code from tabular spec portion shown in Figure 19

10

the rung comments of the automatically translated PLC
code. The execution behavior of the manually translated
code and of the automatically translated code was exactly
the same. The similarity between the two was no accident.
This code similarity is inherent to the process of manually
creating PLC code libraries or code templates for use by the
automatic translation utility. The authors recognize there
are tradeoffs here. The manually and automatically
translated PLC code may not be the most compact nor
efficient. However, we feel that it is very important that the
automatically translated PLC code be readable and
understandable by PLC programmers. This strategy favors
life-cycle costs as long as performance requirements
continue to be met.

Some readers may ask why we would need to keep any PLC
programmers on staff if we are automatically "generating"
PLC code. There are many reasons:

(1) The resulting PLC code will have to be tested
functionally and also for performance.

(2) The PLC programmers will be needed to troubleshoot
and fix any problems that are found.

(3) Assuming that problems are found and corrected, those
corrections will have to be back-implemented into the
automatic translation utility and into the PLC code
libraries.

Also, there may be PLC code needed by the control system
that cannot easily be automatically translated. For example,
layers of PLC code that are deemed as "system software"
that are used to interface between the application software
layer and the rest of the LCS subsystems and components do
not have to be written nor maintained in the domain of the
ground and flight system user. Thus, these layers can be
written directly in low level PLC code by experienced PLC
programmers. These system software layers along with
some other PLC code will probably need to be merged with
the automatically translated PLC code. The automatic
translation utility could be modified to perform this merge
operation, or a separate utility could be created specifically
for the merge task.

Return On In vestment

Automatic application code generation from a high-level
tabular spec has many economic advantages. In large
systems, this technique helps to prevent quality and
maintainability problems; it automates recurring software
development steps; and it allows shorter product
development time. The ability to represent the software
design using a DSL that is oriented more towards the
problem space than the solution space also contributes to
these economic advantages. Also, miscommunications and
misunderstandings between the requirements of the domain
expert and the code implementation of the software
developer are reduced in this process. In addition, code

consistency is increased and maintenance costs are
decreased. [4], [12], [13]

Assuming that the automatic translation utility is tested
thoroughly and formally validated and certified after
development, the use of such a tool during the LCS
development and future maintenance phases will increase
the reliability and quality of the code that resides in the
PLCs. In addition, a certified tool such as that described
here will also increase the verification and validation (V&V)
pedigree of the final PLC code because much of it will be
generated by a certified tool as opposed to being generated
by error prone human programmers 6. This is very important
for any sothvare system, but even more so for safety critical
software systems.

Using an automatic translation utility, the LCS will contain
identical translations of identical portions of application
software across different ground systems. This level of code
consistency is difficult or impossible to obtain when
multiple human programmers, or even one single human
programmer is in the loop. Even when following approved
and published coding standards, each coder has his or her
own style and preferences as to how to solve each problem
that is set before them. Even a single coder will sometimes
solve the same problem differently on different days.
Inconsistency in code can become a burden during
troubleshooting efforts, during maintenance activities, and
especially during the future upgrade process.

In our domain, the potential exists for very large tabular
spec representations of application software and the
potential also exists for significant repetition of similar tasks
and functions within those potentially very large tabular
specs. The automated production of large amounts of
repetitious andlor tedious PLC software is expected to be a
significant cost and schedule savings in the overall LCS
project development life-cycle.

There are also payoffs down the road after the LCS is
operational. Operations and Maintenance (O&M) costs of
the application software residing on the PLCs could be
reduced by this process for system changes and maintenance
activities. Not only do these tools and processes have great
potential to save the LCS project both cost and schedule, but
the use of these tools and processes has the potential of
making a better product than could be made manually.

One problem worth noting during this prototyping process
was resistance and skepticism from some members of the
PLC programming community. Since many PLC
programmers generally have an electrical or electronics
design background instead of a software engineering
11

6Please note that the authors are both error prone human programmers

ourselves and we value the numerous benefits of humans in the loop.

However, we also value the numerous benefits of letting computer

programs handle tedious and repetitious tasks, at which human

programmers are more prone to make errors.

background, the notion of automatic code generation often
appeared foreign and the benefits of said technology were
not completely obvious to them. It is hoped that our
proposed solution will help the PLC programmers become
more aware of some software engineering and V&V
principles and their benefits.

Related Work

Automatic code generation and automatic code translation
technologies have been in use in the Software Engineering
industry for a long time. Literature reviews by the authors
turned up only a few examples where these techniques and
technologies were being used to automatically generate PLC
code.

The U.S. Navy (Naval Surface Warfare Center,
Philadelphia) has developed PLC based Machinery Control
Systems (MCS) for use on various ships. Much of the PLC
code, along with the SCADA display code in MCS is
automatically generated from information in a hardware and
measurement configuration database, however the actual
machine control logic (i.e., application software) is written
entirely by hand. The generated PLC code is automatically
integrated with the machine control logic [14].

Semantic Designs, Inc. has developed an enterprise level
productivity suite called the Design Maintenance System
(DMS) ® Software Reengineering Toolkit. This program
transformation tool is capable of translating very large high
level mechanical process specifications or a DSL into highly
optimized PLC ladder logic. The tool is designed to use
several small and relatively simple layers of translation
stacked on top of one another. This multi-layered
transformation tool design is less brittle than other program
transformation tools that have to do more work and perform
more complex transformations all at one time [15], [16].

This DMS ® toolkit appears capable of producing efficient
PLC code from our tabular spec format but was not chosen
for the LCS prototype effort due to the added cost and
schedule impact of needing to engineer new transformation
layers and domain specific knowledge between our new
tabular spec format and transformation layers that already
exist in the tool. Also, to a lesser extent, highly optimized
PLC ladder logic was not as much of a priority on this
project as was human readable and understandable PLC
ladder logic.

3. CONCLUSIONS AND FUTURE WORK

This work has successfully demonstrated that a process and
a software tool are capable of generating executable PLC
code from a high level specification representation of a
safety critical control system. This process includes some
manual work to find translation points and to create PLC
code libraries. However, that up front and one-time manual
effort is overshadowed in the end by the automatic
generation of repetitious and tedious functionality that
would be difficult and error prone to perform manually.

Such a process and tool increases the quality, reliability,
maintainability, and verification/validation pedigree of the
PLC code over that which is coded manually. It also
provides a high level of PLC code consistency and could
even reduce operations and maintenance costs for the
control system after it is deployed.

Follow-on phases of development of the automatic
translation utility should include most, if not all, of the
following tasks:

(1) Prototype and demonstrate manual and automatic
translation into mixed PLC programming languages as
appropriate (e.g., function block diagram, sequential
function chart, structured text, instruction list).

(2) Represent as much of the LCS application software in
the tabular spec format as possible without
overcomplicating the tabular spec format.

(3) Manually implement the remaining translation points
and any newly discovered translation points along with
the matching PLC code libraries.

(4) Add code to the translation utility to recognize and
handle the new translation points along with the new
PLC code libraries.

(5) Test and certify the translation utility for automatic
generation of safety critical PLC control logic in the
LCS at KSC.

(6) Extend the translation utility as necessary to generate
PLC code that can be imported by various PLC vendor
products.

12

REFERENCES

[1]President George W. Bush, "President Bush Announces
New Vision for Space Exploration Program", Press
Release, January 14, 2004. Retrieved September 7, 2007
from the Internet:
http://www.whitehouse.gov/news/releases/2004/0 1/20040
1 14-3.html

[2] NASA, Constellation Program Office, John F. Connolly,
"Constellation Program Overview", Media slideshow,
October, 2006. Retrieved September 7, 2007 from the
Internet:
http ://www.nasa. gov/pdf7l 63092main constellation progr
am overview.pdf

[3] Terry R. Mitchell, "A standard test language - GOAL
(Ground Operations Aerospace Language)", ACM IEEE
Design Automation Conference, Proceedings of the 10th
workshop on Design automation (DAC'73), June 1973.

[4] Tom Stahl and Markus Volter, "Model-Driven Software
Development: Technology, Engineering, Management",
Chichester, West Sussex, England: Wiley, 2006.

[5]Wikipedia, "Domain-specific programming language",
Community encyclopedia, August 24, 2007. Retrieved
September 7, 2007 from the Internet:
http://en.wikipedia.org/wiki/Domain-
specific programming language

[6] Michel Ingham, Matthew Bennett, Richard Borgen, Klaus
Havelund, and David Wagner, "Development of a
Prototype Domain-Specific Language for Monitor and
Control Systems", Proceedings of the 2008 IEEE
Aerospace Conference, Big Sky, MT, March 2008.

[7] Rockwell Automation, "Rockwell Automation
RSTestStandTM Speeds Control System Development and
Deployment", Press Release February 19, 2002.
Retrieved September 25, 2007 from the Internet:
http://www.rockwellsoftware.coni'corporate/pressrelease/2
OO2rsteststand.cfm

[8] Larry Wall, Tom Christiansen, and Jon Orwant,
"Programming Perl, Third Edition", Sebastopol, CA:
O'Reilly & Associates, Inc., July 2000.

[9] Rockwell Automation, "LogixS000 Controllers
Import/Export Reference Manual", Publication 1756-
RMO84L-EN-P, January 2007. Retrieved September 25,
2007 from the Internet:
http://literature.rockwellautomation.com/idc/groups/literat
ure/documents/rm/l 756-rm084 -en-p.pdf

ACRONYMS

COTS: commercial off the shelf

DMS: Design Maintenance System

DSL: domain-specific language

GOAL: Ground Operations Aerospace Language

GSE: ground support equipment

mE: integrated development environment

KSC: Kennedy Space Center

LCS: Launch Control System

MCS: Machinery Control Systems

MDSD: Model-Driven Software Development

NASA: National Aeronautics and Space Administration

O&M: Operations & Maintenance

PLC: programmable logic controller

V&V: Verification and Validation

XML: Extensible Markup Language

13

[10] World Wide Web Consortium, "Extensible Markup
Language (XML) 1.1 (Second Edition)", W3C
Recommendation, September 29, 2006. Retrieved
September 25, 2007 from the Internet:
http ://www.w3.orgfl'RIxml 11/

[11] PLCopen association, Phil Melore, "PLCopen adds
independent schemes to IEC 6113 1-3", PLCopen spec
website, September 4, 2007. Retrieved September 7. 2007
from the Internet:
http://www.plcopen.org/pages/tc6 xmllxml intro -

[12] Stephen J. Mellor, Anthony N. Clark, and Takao
Futagami, "Model-Driven Development", IEEE Software,
Volume 20, IssueS, Sept.-Oct. 2003 Pages:14 - 18.
Retrieved September 25, 2007 from the Internet:
http://ieeexplore.ieee.orgJiel5/52/27576/0 123 11 45.pdf

[13] CodeGeneration.net , Jack D. Herrington, "Code
Generation: The One Page Guide", Code generation
website, 2003. Retrieved September 25, 2007 from the
Internet:
http ://www.code generation.netlfiles/JavaOne OnePagc(
ide vl.pdf

[14] Naval Surface Warfare Center, Jeffiey Cohen and \daiu
Sass, "Machinery Control Systems", NAVY slideshow Ir
NASA KSC, January 31, 2007.

[15] Ira D. Baxter, Christopher Pidgeon and Michael
Mehlich, 'DMS®: Program Transformations for Practical
Scalable Software Evolution", 26th International
Conference on Software Engineering (ICSE'04), 2004 pp.
625-634. Retrieved September 7, 2007 from the Internet:
http://www.semdesigns.com/Company/Publications/DMS-
for-ICSE2004-reprinti,df

[16] Michael Mehlich and Ira D. Baxter, "Mechanical Tool
Support for High Integrity Software Development",
Proceedings of Conference on High Integrity Systems '97,
1997, IEEE Press. Retrieved September 7, 2007 from the
Internet:
http://www.semdesigns.com/Company/Publications/HIS97

BIOGRAPHY

Kurt fl Leucht is a software and test engineer in the
Engineering	 Development
directorate at NASA Kennedy
Space Center, FL. He has been
writing and testing command and
control software and advisory tool
software for various KSC customers
for the past 10 years.	 He
previously worked hardware failure

- analysis for NASA KSC, but always
dreainJ uJ willing software instead. He has a BSEE from
the University of Missouri-Rolla (formerly Missouri School
of Mines) and an MS in Space Systems from Florida
Institute of Technology. He can be contacted at
Kurt. W. Leucht(linasa.gov.

Glen,, S. Scm me! is the Chief of the Application,

n

Simulation, and Support Software
Branch within the Engineering
Development directorate at NASA
KSC. He has previously lead
efforts	 to	 infuse Al-based
technologies for ground support of
the Space Shuttle and future space
vehicles. He has a BS Electrical

-	 Engineering, MS Engineering
'IS Computer Engineering from the

University of Central Florida. He us currently pursuing a
PhD in computer engineering in the field of model based
diagnostic	 reasoning.	 Contact	 him	 at
Glenn. S. Semmel(ánasa.gov .

14

£97- 93/2/

REPORT DOCUMENTATION PAGE
I OMBN.O7O4-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway. Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid 0MB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

conference poster March 1-8, 2008
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Automated Translation of Safety Critical Application Software Specifications
into PLC Ladder Logic

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Kurt W. Leucht, NASAIKSC
Glenn S. Semmel, NASAJKSC 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

NASA
Engineering Directorate/Electrical Division, NE-E7
ASRC-14
Kennedy Space Center, FL 32899

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORS ACRONYM(S)
National Aeronautics and Space Administration
Engineering Directorate, NE NASAIKSC

Kennedy Space Center, FL 32899 11. SPONSORING/MONITORING
REPORT NUMBER

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The numerous benefits of automatic application code generation are widely accepted within the software engineering community. A
few of these benefits include raising the abstraction level of application programming, shorter product development time, lower
maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide
acceptance and use in the field of Programmable Logic Controller (PLC) software development. Software engineers at the NASA
Kennedy Space Center (KSC) recognized the need for PLC code generation while developing their new ground checkout and launch
processing system. They have developed a process and a prototype software tool that automatically translates a high level
representation or specification of application software into ladder logic that executes on a PLC. This process and tool are expected to
increase the reliability of the PLC code over that which is written manually and may even lower costs and shorten the development
schedule of the new control system at KSC. This paper examines the problem domain and discusses the process and software tool that
were prototyped by the KSC software engineers.

15. SUBJECT TERMS
code generation, software engineering, programmable logic controller, ground checkout, launch processing, domain specific language,
tabular specification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19b. NAME OF RESPONSIBLE PERSON

PAGES Kurt W. Leucht a. REPORT b. ABSTRACT c. THIS PAGE
19b. TELEPHONE NUMBER (/nclude area code)

13 (321)861-7594
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

