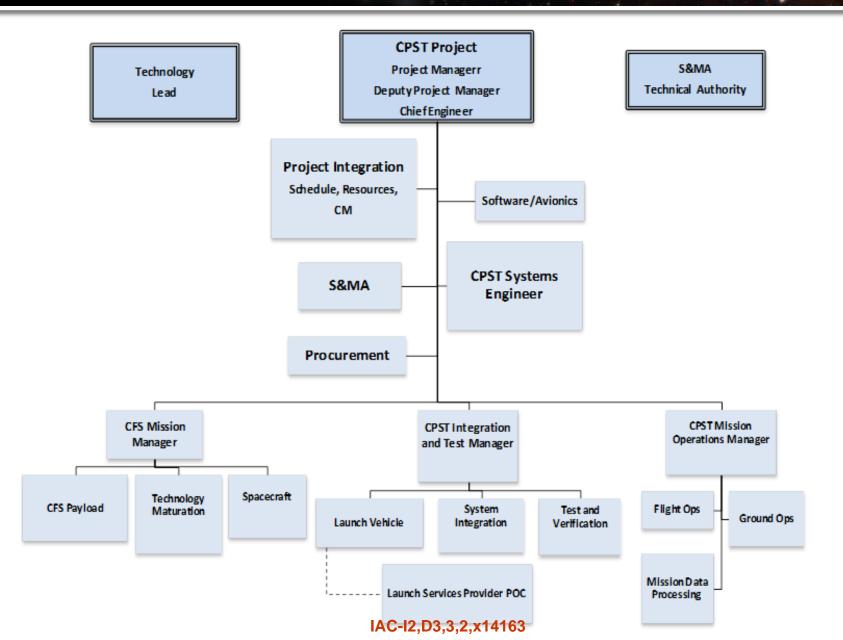


CONCEPT DESIGN OF CRYOGENIC PROPELLANT STORAGE AND TRANSFER FOR SPACE EXPLORATION

63rd International Astronautical Congress 2012

Naples, Italy October 2-5, 2012

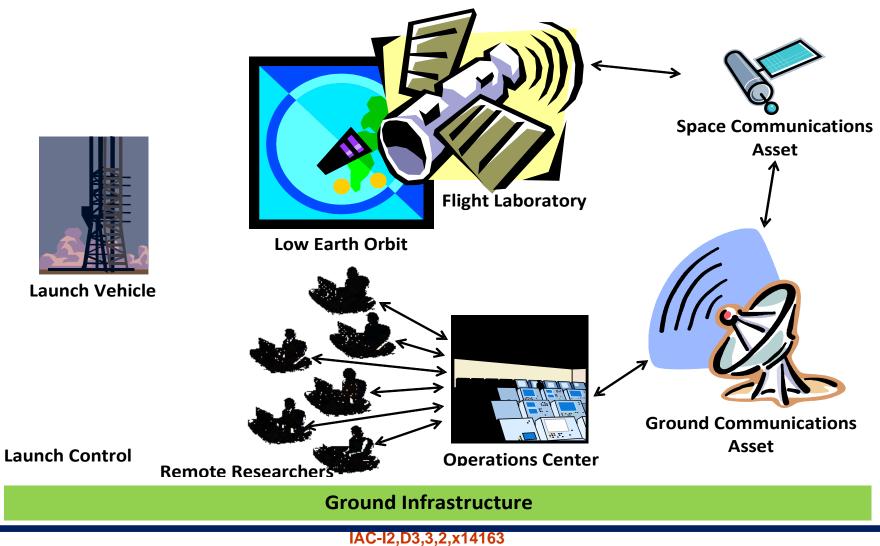
James M. Free


Susan M. Motil, Trudy F. Kortes, Michael L. Meyer, William J. Taylor NASA Glenn Research Center, Cleveland, Ohio, USA

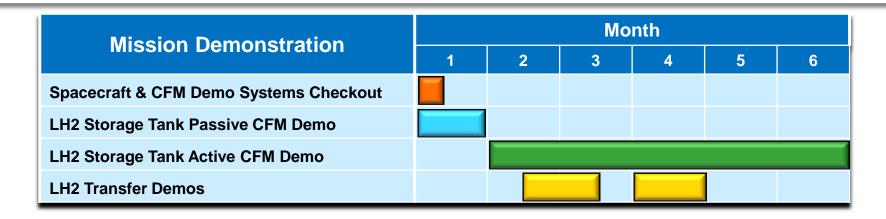
CPST Goal Statement: Advance cryogenic propellant systems technologies for infusion into future extended in-space missions.

Objectives

- Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration
- Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment
- Accurately monitor and gauge cryogenic propellants situated in a microgravity environment


CPST Project Organization

NASA


Mission Overview

Flight Demonstration System Mission Architecture

NAS

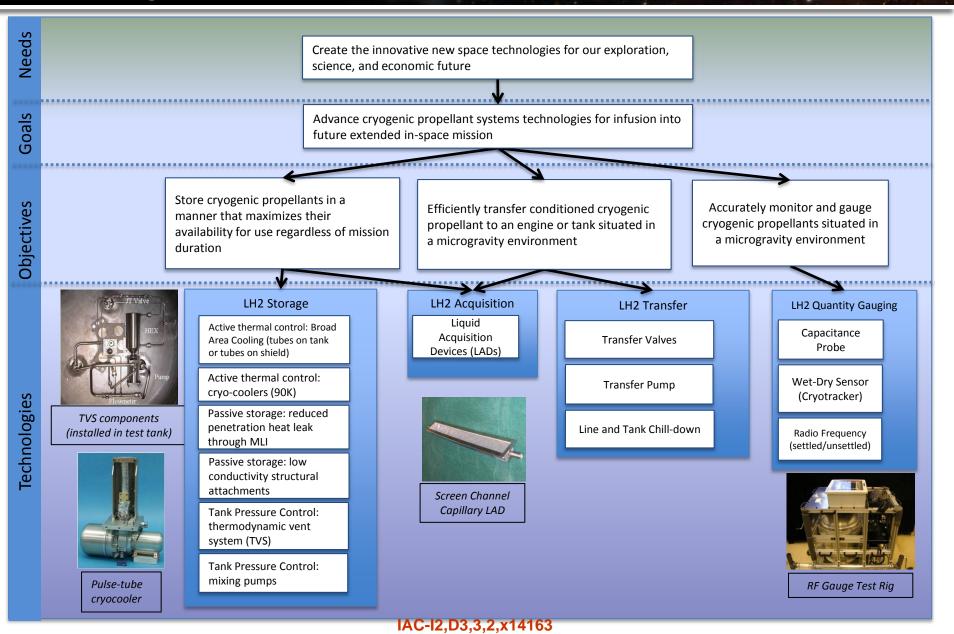
Mission Timeline

Storage Tank Passive CFM Demos include:

- Determination of passive thermal control performance
- Settled mass gauging
- Unsettled mass gauging
- Low-conduction structural concepts

Storage Tank Active CFM Demos include:

- Determination of active thermal control performance
- Settled mass gauging
- Unsettled mass gauging
- Low-conduction structural concepts


Tanks Sized to Provide (at least): 6 Month Storage Demo for LH2

2 Transfer Demo Series for LH2

Propellant Transfer Demos include:

- Pump-fed propellant transfer
- Pressure-fed propellant transfer
- Settled propellant transfer
- Unsettled propellant transfer
- Transfer Tank and Transfer system conditioning
- Transfer rate measurement and vapor detection
- Settled and unsettled liquid acquisition
- Tank expulsion demos

CPST NASA Point of Departure Concept Recommended Technologies

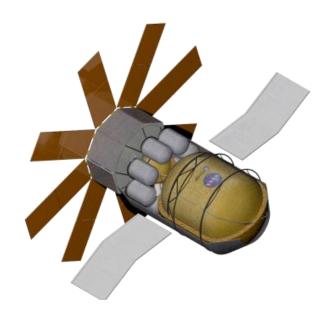
	CPST Technology	TRL Now
1	Active Thermal Control: Cryocoolers w/ tube-on-shield heat collection	4
2	Thick Multilayer Insulation with Foam Substrate	4/6
3	Low Conductivity Structures: High Strength Composite Struts	4/6
4	Micro-G Pressure Control: Thermodynamic Vent System	5
5	Micro-G Pressure Control: Mixing Pumps	5
6	Unsettled Liquid Acquisition Devices	4/5
7	Micro-G Transfer Line Chilldown	4
8	Pressurization Systems	5
9	Settled Mass Gauging: Wet/dry silicon diode sensors	5
10	Unsettled Mass Gauging: Radio Frequency Gauging	5
11	Micro-G Tank Chilldown	5
12	Automated Leak Detection	5

* Items with two TRLs listed are where there is a propellant dependence (hydrogen/oxygen)

- First 11 items address primary mission objectives
 - Leak detection is a secondary objective
- TRL highlighted in yellow indicates TRL is currently being advanced through the Technology Maturation portion of the project
 - Project goal is to have candidate technologies at TRL = 5 before mission authority to proceed (ATP)

CPST Technology Maturation Activities

Task Name	Objective					
LH2 Reduced Boil-off Active Cooling Thermal Demonstration	Demonstration of a flight representative active thermal control system for Reduced Boil-Off (RBO) storage of LH2 for extended duration in a simulated space thermal vacuum environment					
LH2 Reduced Boil-off Broad Area Cooling Shield/MLI Structural Integrity	Assess the structural performance of an MLI / BAC shield assembly subjected to launch environmental representative loads					
Composite Strut Thermal Performance in LH2	Measurement of heat leak due to composite struts integrated with MLI.					
Liquid Acquisition Device (LAD) Outflow & Line Chill	Quantify the LAD stability (no LAD breakdown) due to transfer line chill down transient dynamic pressure perturbations during outflow					
MLI Penetration Heat Leak Study	Measurement of heat leak due to struts penetration integrated with MLI.					
Active Thermal Control Scaling Study	Conduct study to show relevancy of CPST-TDM active thermal control flight data to full scale CPS or Depot application					
Thick MLI Extensibility Study	Assess optimum approach for attachment of thick (40-80 layer) MLI to very large tanks					
Analytical tools	Continue development of tools to be validated by CPST					
Pathfinder Integrated System Test (GTA)	Demonstrate flight-scale system operations & interactions; demo tank manufacturing; early software development					
Instrumentation Advancement	Mature Radio Frequency Mass Gauge flight avionics and leak detection sensor system for vacuum enviroment					


NASA Internally Developed Point of Departure (POD) Mission Concept

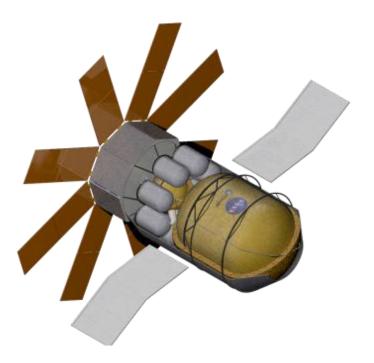
NASA conducted an internal conceptual design study in 2011 with the objectives of

- defining a preliminary design concept to enable initial assessments of mission viability
- enabling early project formulation activities

POD Salient Features

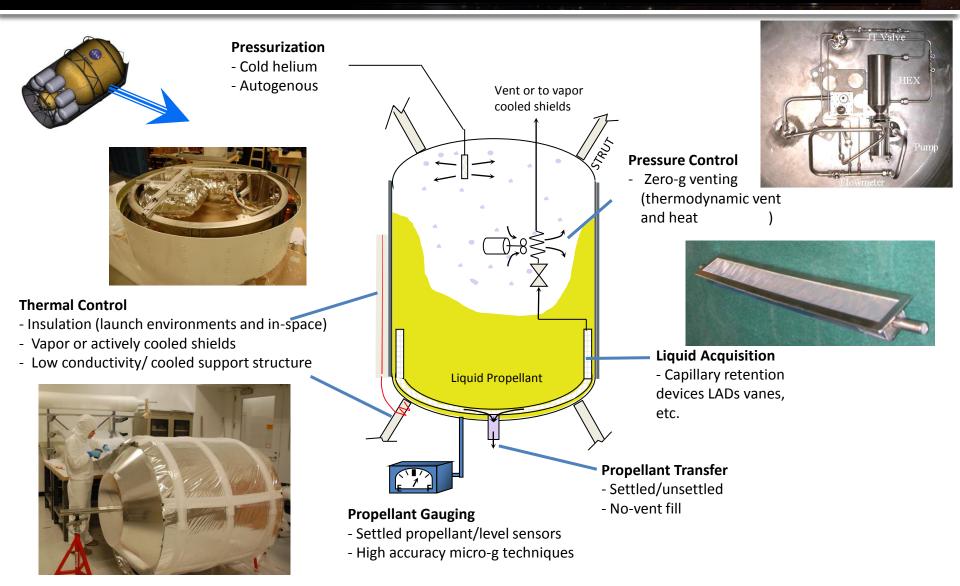
- Free flying spacecraft separate bus and cryogenic payload
- Downs-selected to flying a single fluid (LH2)
- A smaller secondary tank is included for propellant transfer demonstration
- Carries the full technology suite described earlier
- Loaded with LH2 on the PAD with a TO disconnect

Five contractor mission concept studies were conducted to augment the Government POD study


- Analytical Mechanics Associates, Ball Aerospace, Boeing, Lockheed Martin, and United Launch Alliance
- The overall objectives of the mission studies were the same as used for the NASA internal POD study
- Cost constraint was a primary challenge and the mission concepts brought various options into the trade space including:
 - Launch: dedicated launch vs. rideshare or dual manifest
 - Spacecraft Bus Function: payload/bus configuration vs. integrated bus functions
 - Loading propellants into the payload: ground loading vs. preloaded vacuum jacketed tanks vs. propellant scavenging from an upper stage
- Technology demonstration included in the concepts were overall similar to NASA POD, with some unique options
- Single fluid and two fluid options were provided by the contractors

CPST Project Notional Schedule

	FY 12	FY 13	FY 14	FY 15	FY 16	FY 17	FY 18	
Program Milestones	KDPA	ASM	KDPB	KDPC	V KDPD	V KDPE	KDPF	
Project Milestones	MCR	VSPR CA	ontract RR/MDR	VPDR V	OR SIR OR	FRR Laur 12/1	Mission Com Review	ommissior plete
Technology Development	Penetration Heat Leak TDR LAD Outflow and Line Chill TDR	LH ₂ Active Cooling TDR	LO ₂ Active Cooling TDR					
GTA	Design TIM	Storage Tank Ready for Integration I GTA Installat in TS-300 Com		e and ete arations				
RF Mass Gauge (GFE to contract)			RFMG PDR	RFMG CD		livery		


CPST Summary

- NASA is planning to fly a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission in late 2016 (TBR).
- Mission Concept Review (MCR) and Acquisition Strategy Meeting were recently completed.
 - Based on a NASA in-house mission concept and five contractor developed mission concepts, mission feasibility was demonstrated.
- Preparation for System Requirements Review (SRR) underway.
- Technology Maturation activities to raise candidate technologies to TRL 5 are near completion, by end of CY2012.

- Project Manager: Susan Motil; susan.motil@nasa.gov
- Chief Technologist: Mike Meyer; <u>michael.l.meyer@nasa.gov</u>
- Chief Engineer: Bill Taylor; <u>william.j.taylor@nasa.gov</u>

Cryogenic Propellant Storage and Transfer Functions that CPST Can Demonstrate

NASA