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ABSTRACT 

This report describes the work conducted by The Boeing Company under American Recovery and 
Reinvestment Act (ARRA) and NASA funding to experimentally validate the conceptual design of a 
supersonic airliner feasible for entry into service in the 2018 to 2020 timeframe (NASA N+2 generation). 
The report discusses the design, analysis and development of a low-boom concept that meets aggressive 
sonic boom and performance goals for a cruise Mach number of 1.8. The design is achieved through 
integrated multidisciplinary optimization tools. The report also describes the detailed design and 
fabrication of both sonic boom and performance wind tunnel models of the low-boom concept. 
Additionally, a description of the detailed validation wind tunnel testing that was performed with the 
wind tunnel models is provided along with validation comparisons with pretest Computational Fluid 
Dynamics (CFD). Finally, the report describes the evaluation of existing NASA sonic boom pressure rail 
measurement instrumentation and a detailed description of new sonic boom measurement instrumentation 
that was constructed for the validation wind tunnel testing. 
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1.0  EXECUTIVE SUMMARY 

This report describes the work conducted under ARRA and NASA funding on the Boeing N+2 
Supersonic Experimental Validation project to experimentally validate the conceptual design of a 
supersonic airliner feasible for entry into service in the 2018 to 2020 timeframe (NASA N+2 generation). 
The goal of the project is to develop a low-boom configuration optimized for minimum sonic boom levels 
and maximum performance efficiency, with special emphasis on shaping the aft sonic boom signature. 
The NASA Supersonics Project sonic boom goal for N+2 concepts is 65 to 70 PLdB. This is a very 
aggressive goal that can be achieved only through integrated multidisciplinary optimization tools 
validated in relevant ground and, later, flight environments. The Boeing N+2 Supersonic Experimental 
Validation project comprises the detailed aerodynamic design of an N+2 low-boom supersonic airliner 
configuration (ARRA-funded) and wind tunnel tests (NASA-funded) to validate the design.  

The report is broken down into seven sections. The first technical section (Section 2) describes the 
complete Boeing N+2 Experimental Validation efforts, including both ARRA- and NASA-funded 
activities. The second section of the report details the low-boom design and analysis effort that resulted in 
a low-boom concept. The third section focuses on the design and fabrication of two low-boom wind 
tunnel models and one cruise performance wind tunnel model. Also included in the section is information 
on the fabrication of a new pressure measurement rail, and model-support hardware required to 
appropriately position the model relative to the rail in the tunnel. The fourth section focuses on the Boeing 
evaluation of existing NASA sonic boom pressure measurement rails for measuring sonic booms in wind 
tunnels. The fifth section provides a description of the validation wind tunnel test that took place at the 
NASA Ames 9’ x 7’ supersonic wind tunnel. The sixth section provides the CFD validation with wind 
tunnel data.  Finally, in the seventh section (Section 8) some recommendations and future work are 
discussed.  

For this project, a set of priorities and goals was developed to eventually enable a viable N+2 
supersonic airliner that meets the 65- to 70-PLdB requirement. The primary goal was to develop a low-
boom concept with a shaped front and aft signature that achieves an under-track perceived loudness of 85 
PLdB. The low-boom concept should have robust sonic boom characteristics that persist at off-design and 
off-track locations. The secondary goal was to design a low-boom concept that meets the cruise 
aerodynamic performance levels of the 765-076E configuration developed under the Boeing N+2 
Supersonic System study. This concept was analyzed in other areas such as fuel loading, stability, trim, 
and center-of-gravity. The aircraft design was not required to close in all areas; however, shortfalls were 
identified and noted for future work. 

The ARRA- and NASA- funded work was successful in meeting all contract objectives. A low-boom 
concept was developed that passed the required gate review. Additional optimization work was conducted 
to determine the sensitivity of certain design variables on sonic boom levels and performance goals. An 
alternate low-boom concept was developed to enhance the validation work, and three wind tunnel models 
were designed and fabricated, including two sonic boom models and one cruise performance wind tunnel 
model. The existing NASA pressure rails were evaluated, and a recommendation for a new sonic boom 
pressure rail was made.  Two new sonic boom pressure rails were fabricated and tested.  A validation 
wind tunnel test using the concept wind tunnel models was conducted at the NASA Ames 9’ x 7’ 
supersonic wind tunnel.  Finally, the data that was gathered during the wind tunnel test was compared 
with pre-test CFD results and validated the low-boom design.  Several issues surfaced during the Phase I 
project concerning flow quality in the NASA Ames 9’ x 7’ supersonic wind tunnel.  These issues are 
discussed in the report and recommendations for solution are provided. 
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2.0  SCOPE OF ACTIVITY 

Overview 

Since 1968, the FAA has banned civil supersonic flight over the continental United States (FAA Part 
91.817) without a specific waiver. For all supersonic aircraft operating at the time, and in fact since then, 
the sonic boom produced as a result of flight at supersonic speeds has been deemed to be too annoying to 
the public at large to be declared acceptable. Limiting supersonic-capable commercial aircraft to subsonic 
speed over land has been a major obstacle to the development of second-generation commercial 
supersonic aircraft after the Concorde. 

At the beginning of the 21st century, a renewed interest in sonic boom research had occurred, focused 
on solving the problems that hinder the furtherance of a new generation of civil supersonic aviation. Since 
then, significant research has been conducted that shows that it is possible to design a supersonic airplane 
with a very low sonic boom level by shaping the outer mold-line (OML). In August 2003, the first flight 
demonstration of this technology was successful in showing that the sonic boom signature can be shaped 
by shaping the OML and that this signature-shaping persists to the ground. This flight experiment, called 
the Shaped Sonic Boom Demonstrator (SSBD), was a vital first step in validating the approach (ref. 1). 
Although the SSBD successfully demonstrated signature shaping on the front of an aircraft, it was readily 
apparent that to reduce the sonic boom noise, the entire aircraft and resultant sonic boom signature needed 
shaping. With advances in multidisciplinary optimization (MDO), complete aircraft shaping is now 
possible. Successfully implementing MDO, Boeing and others have developed the necessary techniques 
to design low-boom aircraft. The goal of this project was not only to conduct further low-boom concept 
designs using the latest techniques, but also to validate these methods in a wind tunnel environment.  

This project is funded by ARRA and NASA. In this section, a brief outline of the project follows 
which describes Boeing tasks using both ARRA and NASA funds.  

2.1  Project Objectives and Goals 

There are two main objectives for this project. The first objective is to validate the sonic boom and 
performance characteristics of an N+2-class supersonic vehicle specifically designed for low-boom 
operation. The second main objective is to assess the effect of nacelle and nozzle shaping on sonic boom 
levels and cruise performance for an N+2-class supersonic vehicle. The project is broken down into two 
distinct 18-month phases to address each of these objectives. The first phase of the project was designed 
to address the sonic boom and performance validation. The specific objectives for Phase I are listed 
below. 

Phase I objective: Validate the low-boom configuration and its cruise efficiency. 

• Starting with an N+2 supersonic vehicle, optimize the configuration to meet specified sonic boom 
and supersonic aerodynamic performance goals. 

• Ensure that the low-boom concept sonic boom signature has front and aft signature shaping. 
• Ensure that the low-boom concept has robust signature characteristics in under-track, off-track, 

and off-design flight conditions (i.e., Mach and CL). 
• Validate the concept through sonic boom and supersonic performance wind tunnel  

testing. 
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Phase II objective: Assess the effect of nacelle and nozzle shaping on sonic boom and cruise 
performance. 

• Starting with the Phase I supersonic vehicle, further optimize the configuration to meet sonic 
boom and cruise efficiency goals based on the lessons learned in Phase I testing. 

• Focus special attention on the effects of the inlet and plume on the sonic boom signature and 
supersonic cruise efficiency.  

• Consider the interaction of the plume on aft signature shaping. 
• Validate the new design through wind tunnel testing. 

Note: Only Phase I objectives were addressed with ARRA funding. 

Table 2.1-1 illustrates the goals for the project, the most important of which is the 85-PLdB under-
track sonic boom noise level with front and aft signature shaping. The second most important goal is the 
lift/drag (L/D) ratio remaining as good as the 765-076E configuration (i.e., L/D ≥7.0 at Mach = 1.6). In 
this study, Boeing chose to design the concept to the low end of the scale, with 35 passengers. The 
remaining goals are essentially fallouts of the previous three goals. Although aircraft design is not 
required to close in all disciplines, all disciplines (e.g., aerodynamics, stability and control, and mass 
properties) are to be assessed, and those that do not close are to be noted for future research. 

Table 2.1-1.  Technical Goals for the N+2 Experimental Validation Project 
Goal Phase I Phase II 

Objective Validation of low-boom configuration 
and efficiency 

Effect of nacelle and nozzle shaping on 
sonic boom and efficiency 

Sonic Boom (PLdB) 85 PLdB with front and aft shaping 85 PLdB with front and aft shaping 
Lift/Drag Ratio As good as 765-076E As good as 765-076E 
Cruise Speed Mach 1.6–1.8 Mach 1.6 to 1.8 
Range 4000 nmi 4000 nmi 
Payload (Passengers) 35 to 70 35 to 70 
Fuel Efficiency  
(passenger miles per lb of fuel) Fallout Fallout 

Tools Used/Validated Gen 3.0 Gen 3.5 

Sonic Boom Design Tools Nonlinear CFD-based shape  
optimization 

Nonlinear CFD-based shape 
optimization with propulsion effects 

Optimization Tools MDOPT and TRANAIR MDOPT and TRANAIR 
Analysis Tools MDA MDA 

CFD Tools OVERFLOW, Cart3d, and TRANAIR OVERFLOW, Cart3d, with adjoint, and 
TRANAIR 

Sonic Boom Tools MDBOOM and Zephyrus MDBOOM and Zephyrus 
 
2.2  Project Scope 

This project employs a phased and gated approach to experimentally validate a supersonic N+2 low-
boom concept. As discussed previously, the project is broken down into two 18-month phases. In Phase I, 
which is covered in this final report, a low-boom concept would be developed that met the goals and 
objectives discussed in section 2.1. Once the concept was designed, its sonic boom and performance 
would be assessed using high-fidelity CFD. The results of this assessment would then be presented at a 
gate review with NASA. If the concept sufficiently met project goals, it would pass the gate review and 
enter fabrication and testing. Two wind tunnel models were then to be fabricated, a sonic boom and a 
performance wind tunnel model, which would be tested at a NASA wind tunnel facility. Both sonic boom 
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and aerodynamic performance testing would be conducted. After testing, validation analysis would be 
conducted through the evaluation of the test data and pretest CFD predictions, and the results documented 
and presented to NASA. A second gate review would then be held to determine whether or not the project 
should advance to Phase II. 

The scope of Phase II essentially mirrors the Phase I effort, except that the focus is now on the effect 
of the inlet and nozzle plume on the sonic boom and the aircraft aerodynamic performance. The low-
boom concept in Phase II is updated based on lessons learned in Phase I. Additional design work is 
conducted that leverages nacelle and nozzle shaping with aircraft integration to achieve low sonic boom 
noise and high installed propulsion efficiency. The design must pass a gate review similar to the one 
conducted in Phase I. Upon passing this gate review, two wind tunnel models are fabricated, one sonic 
boom model and one cruise performance model. Upon completion of the wind tunnel models, sonic boom 
and cruise performance wind tunnel testing are conducted. Following this testing, validation is conducted 
using the wind tunnel test data and pretest CFD, and the results are documented and presented to NASA. 

Only the concept design, analysis, and wind tunnel model fabrication in Phase I are funded by ARRA. 
The remainder of the project is funded by NASA. 

2.3  Project Plan and Schedule 

The project plan is broken down by WBS, with each phase having similar items. The Phase I project 
plan is listed below. 

Phase I 

• 3.1 Development of Generation 3.0 Geometry (ARRA-funded task). 

− 3.1.1—Develop low-boom concept. 
− 3.1.2—Assess low-boom concept and preliminary model mount system. 
− 3.1.3—Gate Review 1. 

• 3.2 Fabrication of Experimental Validation Hardware (ARRA-funded task). 
• 3.3 Evaluation of Existing NASA Sonic Boom Pressure Rails (ARRA-funded task). 
• 3.4 Validation Analysis. 
• 3.5 Test Planning, Pretest Support, and Post-test Support. 
• 3.6 Wind Tunnel Test Support. 
• 3.7 Technical Management, Planning, and Deliverables. 

− 3.7.1—ARRA-funded tasks.  

− 3.7.2—NASA-funded tasks (Gate Review 2 is included in this WBS item). 

In Phase I, ARRA-funded activities include WBS items 3.1, 3.2, 3.3, and 3.7.1. The remaining WBS 
items are NASA-funded activities. 
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The Phase II project plan is listed below. 

Phase II 

• 3.8 Development of Updated Propulsion Effects Geometry. 

− Gate Review 3. 

• 3.9 Fabrication of Experimental Validation Hardware. 
• 3.10 Validation Analysis. 
• 3.11 Test Planning, Pretest Support, and Post-test Support. 
• 3.12 Wind Tunnel Test Support. 
• 3.13 Technical Management, Planning, and Documentation. 

All WBS elements in Phase II are NASA-funded activities. 

From the project plan, an integrated master schedule was developed. During the 14 months of the 
ARRA-funded part of the project, the master schedule changed somewhat to capture developments in the 
project. Specific changes included the early start of the NASA pressure rail evaluation and the continued 
design and analysis activities following Gate Review 1. The continued design activities focused on 
gathering additional sensitivity and optimization data to improve the resultant validation.  It was also 
decided with NASA to consolidate the two wind tunnel tests into one larger sonic-boom and performance 
test in WBS 3.5 and 3.6. 

Three additional tasks were added during Phase I to cover hardware development that was not in the 
original plan.  This new hardware included two pressure measurement rail concepts and additional model 
support hardware.  The specific new WBS elements are listed below. 

• 3.14 Sonic boom measurement rail design and fabrication (Blade Rail) 
• 3.15 Alternate sonic boom measurement rail design, analysis, and fabrication 
• 3.16 New sting and spacer 

The first pressure measurement rail (WBS 3.14) was based on the NASA Blade Rail design and the 
second pressure measurement rail (WBS 3.15) was based on the Boeing short rail design. Figure 2.3-1 
shows the resulting Phase I master schedule. 

The Phase I ARRA-funded period completed at the end of February 2011. Phase I under NASA 
funding continued until the end of June 2011. 
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Figure 2.3-1.  Phase I Master Schedule 
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2.4  Project Organization 

Figure 2.4-1 shows the project organization. NASA leadership for the project consists of Peter Coen 
(NASA Supersonics Project manager) and Linda Bangert (N+2 Experimental Validation contracting 
officer’s technical representative [COTR]). The project principal investigator is Todd Magee, and the 
project co-investigator is Eric Adamson. Personnel from both Boeing Research & Technology and Boeing 
Commercial Airplanes were involved in the project. A single supplier, Tri Models, Inc., was selected for 
wind tunnel model fabrication. Boeing functional leadership and technical contributors also are identified 
in Figure 2.4-1. 

 

Figure 2.4-1.  Supersonic Experimental Validation Project Organization 

 

2.5  Project Deliverables 

The project has 60 deliverables, as listed in Figure 2.5-1. At the time of this writing, several Phase II 
delivery dates are in flux, so only the Phase I deliverables are shown. 

The remainder of the report focuses specifically on the Phase I project.  The Phase II information in 
this section was provided for continuity.  A second report will be provided at the end of Phase II. 
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Figure 2.5-1.  Boeing N+2 Supersonic Experimental Validation Project Deliverables 

# Phase Deliverable 

Due Date (Months 
After Contract 

Award) Comments 
1 Phase 1  ARRA - CAD definition for N+2 OML designed with generation 3.0 tools  Aug-10 Complete 
2 Phase 1  ARRA - Preliminary boom model mount design  Aug-10 Complete 
3 Phase 1  ARRA - Sonic boom wind tunnel model (Model #1a)  Feb-11 Complete 
4 Phase 1  ARRA - Required support hardware for Model #1a  Feb-11 Complete 
5 Phase 1  ARRA - Model #1a documentation (drawings, stress report, quality report)  Feb-11 Complete 
6 Phase 1  ARRA - Model #1a support hardware documentation  Feb-11 Complete 
7 Phase 1  ARRA - Supersonic cruise performance wind tunnel model (Model #2a)  Feb-11 Complete 
8 Phase 1  ARRA - Required support hardware for Model #2a  Feb-11 Complete 
9 Phase 1  ARRA - Model #2a documentation (drawings, stress report, quality report)  Feb-11 Complete 
10 Phase 1  ARRA - Model #2a support hardware documentation  Feb-11 Complete 
11 Phase 1  ARRA - NASA Pressure rail evaluation PowerPoint file  Jun-10 Complete 
12 Phase 1  Phase 1 validation report  Jun-11 Complete 
13 Phase 1  Sonic boom wind tunnel test plan - Test #1 (1 performance & 1 boom) Apr-11 Complete 
14 Phase 1  Sonic boom wind tunnel test report - Test #1 (1 performance & 1 boom) Jun-11 Complete 
15 Phase 1  Deleted per Mod. 11 (included in #13 above)     
16 Phase 1  Deleted per Mod. 11 (included in #14 above)     
17 Phase 1  ARRA – technical report for tasks 3.1 – 3.3  Feb-11 Complete 
18 Phase 1  ARRA - monthly progress reports   Jan-11 - Feb-11 Complete 
19 Phase 1  ARRA - 2010 FAP Annual Meeting PowerPoint Presentation  Feb-11 Complete 
20 Phase 1  ARRA - Technical Interchange Meeting #1 briefing  May-10 Complete 
21 Phase 1  ARRA - Technical Interchange Meeting #2 briefing  Jan-11 Complete 
22 Phase 1  ARRA - Gate Review #1 briefing  Aug-10 Complete 

23 Phase 1  ARRA FAR Clause 52.204-11 reporting  

Compliance with all 
clause reporting 
requirements  Complete 

24 Phase 1  Phase 1 final report for tasks 3.1 – 3.7 (NASA CR)  Sep-11 Complete 
25 Phase 1  Monthly progress reports  Mar-11 - Sep-21  Complete 
26 Phase 1  Gate Review #2 briefing  Jul-11 Complete 
27 Phase 1  Phase 1 review briefing  Aug-11 Complete 
28 Phase 1  Boeing Sonic Boom Measurement Rail Documentation  Nov-10 Complete 
29 Phase 1  Boeing Pressure Rail Performance Documentation  Feb-11 Complete 
       Additional Phase I deliverables added after the start of the contract 

50 Phase 1  Gate Review #R1 briefing  Oct-10 Complete 
51 Phase 1  Sonic boom measurement rail  Nov-10 Complete 
52 Phase 1  Interim Annual Report Dec-10 10 days prior to contract award anniversary, Complete 
53 Phase 1  Alternate sonic boom pressure rail PDR briefing Jan-11 Complete 
54 Phase 1  Alternate sonic boom pressure rail  Mar-11 Delivered to NASA Ames 9’ x 7’ supersonic  wind tunnel March 7, 2011 
55 Phase 1  Alternate sonic boom pressure rail documentation Mar-11 Complete 
56 Phase 1  Alternate rail evaluation report Jun-11 Complete 
57 Phase 1  New 28" sting Mar-11 Delivered to NASA Ames 9’ x 7’ supersonic wind tunnel March 15, 2011 
58 Phase 1  New 28" sting Documentation Mar-11 Complete 
59 Phase 1  New 40" spacer Mar-11 Delivered to NASA Ames 9’ x 7’  supersonic wind tunnel March 15, 2011 
60 Phase 1  New 40" spacer Documentation Mar-11 Complete 
61 Contract award on Dec 17, 2009     
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3.0  LOW-BOOM CONCEPT DEVELOPMENT 

Overview 

Low-boom concept development encompassed three phases that spanned an overall period of 8 
months. 

The first phase was associated with the conceptual design definition, which lasted just longer than 3 
months. During this period, a seed configuration was devised and screening analysis and optimizations on 
configuration details such as planform, body length, and tail design were then performed. The intent of 
the conceptual design definition phase was to perform sufficient analysis to ensure that the down-selected 
preliminary concept configuration had sufficient degrees of freedom and the basic characteristics 
necessary to meet project requirements once detailed design commenced. For configuration-tracking 
purposes, the preliminary concept was called the Quiet Experimental Validation Concept 2 (QEVC2). 
Following preliminary concept definition, a preliminary engine sizing effort was conducted to ensure that 
any configuration changes made since the original 765-076 were compatible with the propulsion concept. 

The second phase, low-boom concept development, was the primary design phase. Throughout this 
period and starting with the QEVC2 as a baseline, detailed low-boom optimization studies were 
performed and progress toward meeting N+2 project requirements was monitored. Four figures of merit 
were tracked: (1) the near-field under-track signature shape at three body lengths away, (2) the ground 
signature shape, (3) the total ground signature PLdB and the PLdB of just the front and rear signatures 
and (4) the cruise point inviscid pressure drag at M = 1.8 and CL = 0.10. The product of the primary 
design phase was a configuration that could meet the N+2 project requirements and would be suitable for 
integration with the proposed wind tunnel validation model support hardware.  

The last phase of the low-boom concept development was the final design phase. In this phase, the 
configuration was to be assessed in greater detail for on- and off- design characteristics. It had to be 
checked for model support hardware tare and interference effects. It also had to pass the Gate 1 review to 
receive authorization for fabrication. Lastly, it had to incorporate the typical modifications required for 
wind-tunnel-scale geometry without unduly compromising the design and jeopardizing overall program 
objectives. This period lasted 2 months, with the final configuration concept termed the QEVC3. 

3.1  Preliminary Concept Definition 

The first stage in the development of the N+2 experimental validation models was to “freeze” the 
conceptual design. The contract specified that the -076E configuration was the starting point but also that 
the goal ground signature would be less than 85 PLdB. Figure 3.1-1 shows the -076E concept (refs. 2 and 
3). It was estimated that after detailed design and optimization was complete, the vehicle sonic boom 
would be >91 PLdB. Consequently, three other concepts were considered: (1) 765-076F, shown in Figure 
3.1-2; (2) 765-076G, shown in Figure 3.1-3; and (3) 765-100A, shown in Figure 3.1-4. Two of these 
concepts underwent an initial cycle of TRANAIR optimization to down-select the best candidate moving 
forward. 
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Figure 3.1-1.  765-076E General Arrangement 
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Figure 3.1-2.  765-076F General Arrangement 
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Figure 3.1-3.  765-076G General Arrangement 



 

22 

 

Total @ Receiver With Reflection

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

-0.05 0.00 0.05 0.10 0.15 0.20

Time, S

Si
gn

at
ur

e,
 P

sf

RECEIVER_REFL

Mach = 1.8, Weight = 162 klbs, Altitude = 49,000 ft

86.1 ft

Time (seconds)

O
ve

rp
re

ss
ur

e 
(p

sf
)

202 ft

 

ZEPHYRUS PERCEIVED LOUDNESS RESULTS

OASPL DBA DBC PLDB
114.96 61.52 94.22 76.92

Conventional 
Dihedral

Sweep reduced 
from 72 to 71 deg

Inboard Fillet
Changes 

compared to -
076G

Reduced TE 
Sweep

Reduced Tip 
chord

Blade Body

Model
Item Wing V-tail

Reference Area (ft2) 2586.3 387.9
Aspect Ratio 2.87 3.15
Taper Ratio 0.17 0.20
Span (ft) 86.1 34.5
LE Sweep Angle (deg)  71 / 52 48
Root Chord (in) 647.2 222.4
Tip Chord (in) 73.8 44.0
M.A.C. IN 436.5 153.1
X ¼ mac (in) 1667.8 2113.8
Ymac (in) 189.8 263.5
Total Vehicle Length (ft) 202 -
T/C 0.024 0.030
Tail Volume Coefficient - 0.153
Tail Arm (in) - 446.0

765-100A

Total @ Receiver With Reflection

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

-0.05 0.00 0.05 0.10 0.15 0.20

Time, S

Si
gn

at
ur

e,
 P

sf

RECEIVER_REFL

Mach = 1.8, Weight = 162 klbs, Altitude = 49,000 ft

86.1 ft

Time (seconds)

O
ve

rp
re

ss
ur

e 
(p

sf
)

202 ft

 

ZEPHYRUS PERCEIVED LOUDNESS RESULTS

OASPL DBA DBC PLDB
114.96 61.52 94.22 76.92

Conventional 
Dihedral

Sweep reduced 
from 72 to 71 deg

Inboard Fillet
Changes 

compared to -
076G

Reduced TE 
Sweep

Reduced Tip 
chord

Blade Body

Model
Item Wing V-tail

Reference Area (ft2) 2586.3 387.9
Aspect Ratio 2.87 3.15
Taper Ratio 0.17 0.20
Span (ft) 86.1 34.5
LE Sweep Angle (deg)  71 / 52 48
Root Chord (in) 647.2 222.4
Tip Chord (in) 73.8 44.0
M.A.C. IN 436.5 153.1
X ¼ mac (in) 1667.8 2113.8
Ymac (in) 189.8 263.5
Total Vehicle Length (ft) 202 -
T/C 0.024 0.030
Tail Volume Coefficient - 0.153
Tail Arm (in) - 446.0

765-100A

 

Figure 3.1-4.  765-100A General Arrangement
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In all, during a 1-month period, 12 TRANAIR designs were completed to define the initial concept. 
The TRANAIR designs included W/B/N/V optimizations for L/D, and W/B and W/B/N/V for sonic boom 
run on the 765-076F configuration. The W/B optimizations for sonic boom were run on the -100A 
configuration at M = 1.6 and 1.8. With the configuration variables used in the initial TRANAIR designs, 
there was a distinct tradeoff between lowering drag and lowering boom. At the completion of the 
TRANAIR designs, it was decided that the starting configuration should have the -076F planform and the 
-100A body. This composite concept was designated the 765-076I. The initial target for ground signature 
was set at 76.92 PLdB (Figure 3.1-5). 
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Figure 3.1-5.  Initial Design Target 

Lofts of the 765-076I vehicle concept were created and a computational mesh was developed for 
analysis and optimization in OVERFLOW. Before detailed optimization, the -076I drag was 
approximately 30 counts higher than the N+2 goal, and the boom signature was 13 PLdB higher (99 
PLdB versus the goal of <85 PLdB).  

Next, a series of independent studies were conducted to refine individual configuration features. The 
initial QEVC2 was the culmination of these studies. Figure 3.1-6 shows the list of detailed design features 
refined in the design period between definition of the 765-076I and the QEVC2. Figure 3.1-7 shows the 
comparison of the two concepts and their relative performance. Figure 3.1-8 shows the QEVC2 general 
arrangement. Figure 3.1-9 identifies the QEVC2 drag and boom levels relative to project goals. 
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Figure 3.1-6.  Changes to -076I to Create QEVC2 
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Figure 3.1-7.  765-076I Compared to QEVC2 Concept 
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Figure 3.1-8.  QEVC2 General Arrangement 
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Figure 3.1-9.  QEVC2 Drag and Boom Levels Relative to Project Targets 
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3.2  Preliminary Engine Sizing 

A top-level assessment of the propulsion system installation was conducted to ensure that the nacelle 
used during the validation phase was representatively sized. The baseline engine configuration and 
installation concept were established through trade studies conducted under the N+2 Supersonic Concept 
Development and Systems Integration project, NASA NRA 4.71, completed in July 2009. Of particular 
interest were the inlet and diffuser designs, which will be central to the Phase II portion of this validation 
project. 

The aircraft of interest for this study will have a design cruise Mach number between 1.6 and 1.8. For 
this initial sizing exercise, a Mach 1.6 cruise level was assumed. A design for Mach 1.8 cruise will be 
developed during Phase II. 

The engine model used for this analysis was configured from the dual-spool, mixed-flow turbofan 
model developed by the Georgia Institute of Technology. The general flow path of this engine is depicted 
in a Rolls-Royce cross-section concept shown in Figure 3.2-1. Georgia Tech’s Numerical Propulsion 
System Simulation (NPSS) engine model was cycled to be sized consistently for the QEVC 2 vehicle 
with a 41,000-lb sea-level static thrust level. The result is an engine with a 69-in fan diameter and a length 
of 149 in. With a bypass ratio of 3.72 in cruise, this engine represents a compromise to provide relatively 
low jet velocities at takeoff (<1,200 ft/s) and low specific fuel consumption (SFC) in cruise, while 
limiting the growth of fan diameter to retain reasonably low cruise drag and installed weight levels. 

 

Figure 3.2-1.  Concept Flow Path for Mixed-Flow Turbofan Provided by Rolls-Royce (Unscaled) 

Figure 3.2-2 shows the concept installation. The target installation features a fixed-aperture, bleed-less 
and diverter-less inlet design to minimize weight, complexity, and cost. Given the selection of a Mach 1.6 
cruise speed; there is a reasonable prospect of achieving target performance and distortion levels. At a 
Mach 1.8 cruise level, it is more likely that ramp bleed or a diverter will be required to maintain tolerable 
engine fan face distortion levels throughout the flight envelope. 
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Figure 3.2-2.  Cross-Section of Concept Propulsion System Installation 

The inlet concept is shown in more detail in Figure 3.2-3. To maximize inlet total pressure recovery in 
cruise, the inlet must incorporate several features. First, most of the compression must be completed 
isentropically to minimize shock losses. In addition, the diffuser must be short to minimize diffuser skin 
friction losses. Furthermore, in an effort to minimize drag, the inlet will be run to near-critical to 
minimize spillage drag and nacelle scrubbing losses. 

 

Small initial ramp (4-deg) 
to initialize turning

Isentropic compression to minimize losses
(terminate at Mach 1.3 typically)

Terminal normal shock

Low spillage to minimize drag 
(98% critical target)

Sharp lip and minimal projected 
frontal area to minimize drag

Short offset diffuser to minimize 
weight (may require flow control)

 

Figure 3.2-3.  Notional Inlet Concept 

Note that an isentropic compression system requires additional frontal area and running length relative 
to an inlet using shocks to compress the flow. As illustrated in Figure 3.2-4, if less turning is 
accomplished, the inlet can be made more compact. The shock losses incurred through the compression of 
the compact inlet, however, will lead to a significant increase in SFC. At a Mach 1.6 cruise speed, the 
volume required to implement isentropic compression is relatively modest and remains competitive in 
trade studies with shock compression inlet systems. 
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• Black: baseline concept with terminal 
normal shock at Mach 1.3

• Blue: more compact inlet with terminal 
normal shock at Mach 1.4
─ reduced frontal area
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Figure 3.2-4.  Impact of Inlet Turning on Propulsion System Installation and Performance 

As cruise Mach increases, the frontal area required for the isentropic ramp alone will produce a 
considerable increase in capture area, which will lead directly to significant increases in structural weight 
and drag. When these penalties are included in the propulsion system performance assessment, the 
increase is dramatic (fig. 3.2-5). Thus, as expected, the amount of external isentropic compression that is 
practical diminishes as cruise Mach number increases. 
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Figure 3.2-5.  Effect of Freestream Mach on Propulsion System Installation and Performance 

The propulsion system under consideration here is over-the-wing mounted. This arrangement adds an 
additional design challenge for the propulsion system. When mounted under the wing, the propulsion 
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system can leverage wing pressurization to help compress the flow. The opposite is true when mounted 
over the wing, as the flow field has been accelerated to generate a suction force. This means that the 
propulsion system must be designed for a higher effective Mach number. The amount of flow acceleration 
is a direct function of the angle of attack (AOA). The effect has been reported previously (fig. 3.2-6) and 
is corroborated by Boeing CFD analysis of this configuration. Given a nominal cruise Mach of 1.6 and an 
AOA of 2 deg, the inlet will see an oncoming Mach of 1.67 and must be designed accordingly. 

Design Mach

Freestream local
1.6 1.67
1.8 1.90
2.0 2.12

 

Figure 3.2-6.  Over-wing Inlet Design Mach 

Given this background, an initial layout of a 2D external compression inlet was incorporated on 
QEVC2e. As shown in Figures 3.2-7 and 3.2-8, the installation is similar in size and scale to the 
placeholder nacelle. A cutaway of the propulsion system installation (fig. 3.2-9) reveals that this inlet and 
nozzle each were drawn very short, which represents a risk that target inlet performance and operability 
levels may not be achievable because of diffuser flow separation, or that sufficient volume is provided for 
mechanical integration of the nozzle and thrust reverser. Even with these caveats, this approach represents 
a reasonable starting point in the effort to maximize airplane performance. 
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Flow-thru placeholder

2-D external 
compression

QEVC 2 (05 Apr 10)

 

Figure 3.2-7.  Notional Concept Propulsion System Compared With Flow-Through  
Placeholder Nacelle 

Flow-thru2-D external 
compression  

Figure 3.2-8.  Front View of Propulsion System Installation 
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engine 
placeholder

Diffuser L/D = 1.8
Offset Z/D = 0.2
1.6-deg inwash orientation (CFD derived)

Fixed A8, Variable 
A9 Nozzle
(shown for Mach 1.6 
cruise)

 

Figure 3.2-9.  Notional Nacelle with 2D Inlet and Nozzle Design Concepts 

 

3.3  Preliminary Design Definition 

Following the definition of the QEVC2 concept, several months were devoted to detailed 
configuration optimizations to develop a preliminary design that would meet project objectives for both 
boom and L/D. The initial optimizations were set up to attain the best possible under-track signature 
without concern for drag, pitching moment or off-track signature. The starting geometry was the QEVC 
seed geometry, and the optimization was run at M = 1.8, with lift constrained to 0.1039. The pitching 
moment observed with the original geometry was -0.04. The initial objective was to match a target under-
track pressure distribution at three body lengths below the aircraft.  The target undertrack pressure 
distribution was one that provided a shaped ~77 PLdB ground signature (Figure 3.1-5).  Table 3.3-1 
shows the optimization parameters. 

 

Table 3.3-1.  Optimization Parameters 
 Optimization for Preliminary Design 

Starting geometry QEVC seed 
Mach 1.8 
Lift coefficient 0.1039 
Pitching moment No constraint 

 
After several optimization and refinement iterations with this objective, a new model was created to 

predict the difference from the target signature. Several more iterations of the optimization process 
produced the blue signature shown in Figure 3.3-1. The QEVC seed signature is shown in green, and the 
target is shown in red. Both the forward and aft signatures are significantly better than the starting 
signature, but the forward signature produces an N-wave at the ground. The lift, drag and pitching 
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moment for this optimized configuration are listed in Table 3.3-2, which shows a one-count reduction in 
drag and a more negative pitching moment. 

 

Figure 3.3-1.  Initial Optimization Results (M = 1.8, CL = 0.104) 

Green is seed signature; blue is optimized signature. 

 

Table 3.3-2.  Initial Optimization Force Results at M = 1.8 

Subcase Description Alpha CL CD CM 
8000 QEVC seed 2.957 0.1039 0.00893 -0.0396 
9121 Optimization I DOE result 3.008 0.1039 0.00883 -0.0418 

 
The geometry that results from the optimization process typically has some obvious features in the off-

body pressure signature that must be fixed, but the limited design space in this case would not allow it. 
These features are fixed with additional local refinement cycles. The first design that came close to 
meeting project goals was the QEVC-8038. Figure 3.3-2 shows where the 8038 drag and boom levels 
were relative to project goals. The 8038 was further refined to become the QEVC-7038. For similar 
under-track ground PLdB levels, the 7038 improved the off-track signatures and had a 4.8-count drag 
reduction compared with the 8038. Figure 3.3-3 identifies the 7038 drag and boom levels relative to the 
program goals.  
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Figure 3.3-2.  8038 Drag and Boom Levels Relative to Project Targets 
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Figure 3.3-3.  7038 Drag and Boom Levels Relative to Project Targets 
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Table 3.3-3.  Final Optimization Force Results at M = 1.8 

Subcase Description Alpha CL CD CM 
8000 QEVC seed 2.957 0.1039 0.008931 -0.0396 
6007 Optimization I final result (includes hand fixes) 3.282 0.1039 0.008933 -0.0341 

 
Based on NASA feedback provided at the monthly status review at the end of June 2010, the 7038 

design was discarded. Additional optimizations favoring an aft flat-top signature shape were conducted, 
starting with the 8038 as a seed. The resultant design, the 6007, was agreed upon to be a more suitable 
geometry for an experimental validation model. Table 3.3-3 shows the lift, drag, and pitching moment 
comparison between the 6007 and the QEVC seed configuration.  Figure 3.3-4 identifies the 6007 drag 
and boom levels relative to project goals. Figure 3.3-5 shows 6007 final surface and centerline pressure 
(M = 1.8, CL = 0.1039). The QEVC -6007 was submitted for approval at the Gate 1 Review. 

M=1.8,  CL=.10,  Alt=47500

Near Field Pressure Signature H/l=3 Propagated Ground Signature

Cruise Drag Performance Ground Front and Aft Signature Noise 

CDP (W/B)
CDP (W/B)

CD-w/b/p/v/n

CD-w/b/p/v/n
CD-w/b/p/v/n

CD-w/b/p/v/n
CD-w/b/p/v/n

CD-w/b/p/v/n

0.0050

0.0060

0.0070

0.0080

0.0090

0.0100

0.0110

Cr
ui

se
 P

re
ss

ur
e 

Dr
ag

Date

Program 
Objective

Design 
Target

Aft  PLdb

Front PLdb

Front PLDB

Aft PLDB

Total PLdb

70

75

80

85

90

95

100

G
ro

un
d 

Si
gn

at
ur

e 
PL

db

Date

Program 
Objective

Design 
Target

6007 Design

8038-Status

Target

6007 Design

8038-Status

M=1.8,  CL=.10,  Alt=47500

Near Field Pressure Signature H/l=3 Propagated Ground Signature

Cruise Drag Performance Ground Front and Aft Signature Noise 

CDP (W/B)
CDP (W/B)

CD-w/b/p/v/n

CD-w/b/p/v/n
CD-w/b/p/v/n

CD-w/b/p/v/n
CD-w/b/p/v/n

CD-w/b/p/v/n

0.0050

0.0060

0.0070

0.0080

0.0090

0.0100

0.0110

Cr
ui

se
 P

re
ss

ur
e 

Dr
ag

Date

Program 
Objective

Design 
Target

Aft  PLdb

Front PLdb

Front PLDB

Aft PLDB

Total PLdb

70

75

80

85

90

95

100

G
ro

un
d 

Si
gn

at
ur

e 
PL

db

Date

Program 
Objective

Design 
Target

6007 Design

8038-Status

Target

6007 Design

8038-Status

 

Figure 3.3-4.  6007 Drag and Boom Levels Relative to Project Targets 
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Figure 3.3-5.  6007 Final Surface and Centerline Pressure (M = 1.8, CL = 0.1039) 

3.4  Final Design Definition 

There were three basic criteria for passing Gate 1 Review: (1) the low-boom concept had to meet the 
<85 PLdB shaped ground signature and have L/D comparable to the -076E N+2 concept, (2) the off-
design boom and drag characteristics needed to be evaluated to ensure that the concept was not so point-
designed that an experimental validation would be exceedingly difficult, and (3) the proposed mounting 
systems for the models would not excessively change the results. 

For the Gate 1 Review, ground signatures and near-field pressure distributions at multiple distances 
away from the aircraft were prepared for several different lift coefficients at Mach numbers of 1.6 and 
1.8. Given the schedule constraints and the geometric and boom similarities between the 8038 and the 
6007 configuration, the tare and interference effects of the large model flared aft-body (aft sting-mounted 
model) and the small model upper swept strut were deemed modest and within acceptable bounds. 
(Section 3.5 provides details on these results.) 

The 6007 concept passed the Gate 1 Review and was approved to proceed to fabrication. To meet the 
manufacturing requirements of small-scale wind tunnel models, the 6007 geometry had to be altered in 
several ways before the machining of parts could begin. For the performance model, the aft-body had to 
be flared to have a constant cross-section from the mid-body aft to provide clearance for the internal 
balance and aft sting support system. The sharp wing leading and trailing edges, nacelle inlet and nozzle, 
and V-tail leading and trailing edges were increased to a finite thickness of 0.22 inch full-scale. For the 
boom model, the sharp wing leading and trailing edges, nacelle inlet and nozzle, and V-tail leading and 
trailing edges were increased to a finite thickness of 0.62 inch full-scale. The nacelles had to be moved 
inboard 5 inches, and the support pod thickness needed to be increased by 50%. In addition, the V-tail 
wing tips and winglet needed to be increased from an original t/c = 3% to 4.5%. Each of these features 
was checked with analysis in OVERFLOW before approval for fabrication was given. Figure 3.4-1 shows 
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the general arrangement for the configuration (6007 [i.e., QEVC3]) that passed the Gate 1 Review. 
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Figure 3.4-1.  QEVC3 General Arrangement 

3.5  Low-Boom Concept Analysis, Gate 1 Review 

Once the low-boom design had achieved the sonic boom and performance goals, the configuration was 
analyzed in detail in several areas. These areas included sonic boom analysis, cruise aerodynamics, 
performance analysis and cruise trim CG. Each of these areas was presented during the low-boom Gate 1 
Review on 13 August 2010. At the end of the gate review, the concept was deemed suitable to proceed 
with conducting validation testing. 

Sonic Boom Analysis 

The intent of this analysis was to demonstrate that the low-boom design met the sonic boom goals for 
the project; specifically, that the under-track signature was 85 PLdB or lower, the signature had fore and 
aft shaping, the signature was robust at off-design Mach and CL conditions and that it had robust off-track 
signature characteristics. The tools used for this analysis included both Euler (Cart3d [ref. 4]) and 
OVERFLOW ([ref. 5]) and Navier-Stokes (OVERFLOW) solvers to determine the near-field pressure 
distributions and two different wave propagation codes (MDBOOM/MDPLOT [ref. 6] and Zephyrus 
[refs. 7 and 8] / Loudboom) to determine the ground signatures. A brief description of the Zephyrus code 
is provided in Section 11. The results from the Zephyrus code were used to determine if the ground 
signature perceived loudness was below the 85 PLdB goal. During the design phase, however, 
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MDBOOM was used for the ground signature assessment because of its speed and efficiency. During 
design, the two main design goals (85 PLdB and L/D as good as the -076E) were tracked by month. 
Figure 3.5-1 shows the final metric summary chart. In the figure, the upper left plot tracks the near-field 
pressure signature, the plot in the upper right-hand corner tracks the propagated ground signature, the plot 
in the lower left-hand corner tracks the cruise pressure drag and the plot in the lower right-hand corner 
tracks the ground PLdB. The 6007 design was analyzed for the gate review. 
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Figure 3.5-1.  Sonic Boom and Performance Metric Tracking for the Low-Boom Design 

In Figure 3.5-2, the detailed sonic boom analysis using OVERFLOW and Zephyrus is shown for two 
Mach numbers, the design Mach = 1.8 and the off-design Mach = 1.6. In the upper portion of the curve, 
the near-field pressure distribution is shown for several H/L locations. Essentially, stable near-field 
distributions are achieved for H/L locations of 2.0 or more. When an H/L is not shown in a sonic boom 
figure, it is assumed that H/L = 3. In the lower half of Figure 3.5-2, the ground signature is shown for 
both Mach = 1.8 and Mach = 1.6 and for the same H/L variations. For H/L values of 2.0 or more, shaped 
fore and aft ground signatures are achieved for the low-boom concept at both Mach numbers. In addition, 
all ground signatures are below the 85 PLdB goal, with the lowest one at ~81 PLdB. 

The low-boom concept also was examined at off-design CLs at each Mach number to determine 
whether signature-shaping persists to the ground and the perceived loudness is still below the 85 PLdB 
goal. Figure 3.5-3 shows this for Mach = 1.6 and 1.8, at H/L = 3 for three different CL values. Again, 
both the near-field and ground signatures are shown in the figure. From Figure 3.5-3, many off-design 
CLs continue to show fore and aft shaping. For a CL = 0.08 at Mach = 1.8, however, the aft signature is 
starting to approach an N-wave, and ground-perceived loudness is above the 85 PLdB goal. All Mach = 
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1.6 cases show shaped signatures for all CLs considered, and ground-perceived loudness essentially meets 
the 85 PLdB goal. 

Finally, Figure 3.5-4 shows the variation of the sonic boom signature with off-track location for Mach 
1.6 and 1.8 at H/L = 3. The near-field and ground signatures are portrayed in the same way as the 
previous figures. The low-boom concept retains signature-shaping and ground-perceived loudness, to 
some extent, when moving away from under-track. At Mach = 1.8, the shaping persists to approximately 
15 deg off-track. The ground-perceived loudness also is maintained below 85 PLdB up to 10 deg off-
track. At Mach = 1.6, the shaping and ground-perceived loudness remain at the goal or lower for up to 30 
deg off-track. This was a favorably robust result, given that the concept was designed at the Mach = 1.8 
condition. 
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Figure 3.5-2.  The Low-Boom Concept Has Robust Sonic Boom Characteristics at Multiple Mach Numbers 
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Figure 3.5-3.  Low-Boom Concept Signature Characteristics at Off-Design CLs 
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Figure 3.5-4.  The Low-Boom Concept Has Robust Signature Characteristics at Off-Track Locations
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Cruise Aerodynamics 

A longitudinal aerodynamic analysis was conducted on the low-boom concept at the cruise condition 
for Mach = 1.6 and Mach = 1.8. Both Euler (Cart3d) and Navier-Stokes (OVERFLOW) analyses were 
conducted. Figure 3.5-5 summarizes the Navier-Stokes analysis. The upper left plot contains the lift curve 
versus AOA, the upper right plot contains the drag polar (CL versus CD), the lower left plot contains the 
L/D versus AOA and the lower right plot contains the pitching moment (CM versus CL). The pressure 
drag at the Mach = 1.8 design condition is ~86 counts, which is 7 counts above the –076E goal value. At 
the Mach = 1.8 design condition, L/D = 6.2, which is below the design goal of L/D = 7.0. With a 
technology projection to 2025 (and further optimization), the Mach = 1.6 performance can exceed the 
goals of matching the 765-076E levels. Thus, although the Mach = 1.8 aerodynamic performance does 
not meet the goal, the low-boom concept is sufficient for experimental validation testing. Improved drag 
was one reason Boeing proceeded with a second OML, which is discussed in section 3.6. 
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Figure 3.5-5.  Low-Boom Concept Longitudinal Cruise Aerodynamics 
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Fuel Loading 

One concern with low-boom concepts is whether enough fuel can be loaded onto the aircraft to meet 
the range requirement. Most low-boom concepts have very thin airfoil sections and limited space to place 
fuel. The low-boom concept was examined to see where fuel tanks could be placed and whether enough 
fuel could be loaded on the aircraft. Figure 3.5-6 summarizes the fuel tank layout and possible fuel 
loading. Based on this assessment, it appears that enough fuel can be loaded onto the aircraft. 

 

Figure 3.5-6.  Fuel Layout for the Low-Boom Concept 



 

44 

Performance Analysis 

A performance analysis for the low-boom concept was not completed, but based on a comparison with 
a previous analysis for the 765-076E configuration, it is possible to meet the same 2025 performance 
target at Mach = 1.6 with a 3% technology projection. Figure 3.5-7 shows this analysis by comparison. 
From the figure, at Mach = 1.6 and a mid-cruise CL = 0.16, the L/D is 8.5. The status drag (Navier 
Stokes–based) with a notional 3% technology projection for improvements made in design methods 
between 2010 and 2025 yields a L/D = 8.55, which slightly exceeds the 765-076E value. Increased L/D 
performance was another reason Boeing proceeded with a second OML, which is discussed in section 3.6.  

Wing Area 2516 sq. ft.
SLST Thrust 41130 lb
MTOW 180000 lb
Range 3792 nm
Payload 6300 lb
OEW 88521 lb
Block Fuel 73260 lb
Reserve Fuel 13042 lb
Block Time 4.74 hr
Climb Time 23.18 min
ICAC 53097 ft
1st Seg Grad. 0.003
2nd Seg Grad. 0.0255
Approach CL 0.75
V approach @ MLW 150 keas
Max Altitude 55000 ft
Derate/PLR (Sideline) 35 %
Derate @ 1st,2nd Seg ATR) 25 %
Accel to Supersonic 41000 ft

765-076E Sizing @ M=1.60

MACH HPR EAS PS TIME FUEL DIST WEIGHT ROC T-D/D THRUSTWF SFC CL CD L/D NAM PROC
FT KTS HR LB NM LB FPM LB LB/HR 1/HR NM/LB FPM

1.6 51113 349 0.967 0 0 0 168377 0 0.034 19476 18674 0.959 0.1627 0.0188 8.65 0.0491 363
1.6 51844 343 0.973 0.269 4968 246.9 163409 0 0.028 18910 18114 0.958 0.1635 0.0189 8.64 0.0507 300
1.6 52430 338 0.973 0.546 9935 501.2 158442 0 0.028 18386 17629 0.959 0.1631 0.0189 8.62 0.0521 300
1.6 53034 333 0.973 0.831 14903 762.7 153474 0 0.028 17860 17133 0.959 0.1626 0.0189 8.59 0.0536 300
1.6 53651 328 0.973 1.124 19871 1032 148506 0 0.028 17335 16627 0.959 0.1621 0.0189 8.57 0.0552 300
1.6 54288 323 0.973 1.427 24839 1309.6 143538 0 0.028 16809 16114 0.959 0.1615 0.0189 8.54 0.057 300
1.6 54946 318 0.973 1.739 29806 1596.2 138571 0 0.027 16282 15604 0.958 0.1609 0.0189 8.51 0.0588 300
1.6 55000 318 0.953 2.06 34774 1890.3 133603 0 0.049 15900 15393 0.968 0.1556 0.0185 8.4 0.0596 547
1.6 55000 318 0.932 2.384 39742 2188.2 128635 0 0.073 15545 15216 0.979 0.1498 0.0181 8.27 0.0603 824
1.6 55000 318 0.911 2.713 44710 2489.5 123667 0 0.097 15206 15046 0.989 0.144 0.0177 8.13 0.061 1112
1.6 55000 318 0.892 3.045 49677 2794.2 118700 0 0.121 14882 14884 1 0.1382 0.0173 7.98 0.0617 1413
1.6 55000 318 0.873 3.38 54645 3102.1 113732 0 0.145 14573 14729 1.011 0.1324 0.017 7.8 0.0623 1727
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Figure 3.5-7.  Low-Boom Concept Performance Analysis by Comparison With the 765-076E 

 
Cruise Trim and CG 

Challenges for low-boom concepts include cruise trim and CG. Figure 3.5-8 shows the CG envelope 
for the low-boom concept. Analysis showed the 6007 OML cruise CG is not within current fuel tank 
loadability limits. This situation arose because the seed geometry had significant tail lift (V-tail toe-
in/incidence was set to 0 and not designed) and V-tail toe-in/incidence that were not originally design 
variables because of the complexity of the V-tail/support pod grid intersections. In addition, the majority 
of design activity was not executed with a CM constraint, because it was not a requirement for this phase 
of experimental validation. There appears, however, to be no obstacle to designing to a CG constraint in 
the future. Boeing plans to include variables to off-load the tail in follow-on designs discussed in section 
3.6. Thus, although the status cruise CM does not meet the goal for a fully closed aircraft concept, Boeing 
believes that the design is sufficient for experimental validation testing. 
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Figure 3.5-8.  The Low-Boom Concept CG Envelope 

3.6  Second OML Design, Alternate Part Definition 

The experimental validation program was centered on two models: a large model primarily for 
performance validations, with some capability for boom testing; and a smaller 1/3-size model, primarily 
for boom measurements. In addition, the fabrication budget included resources to build several extra 
small parts for each model to obtain sensitivities on boom and drag to verify that the CFD validation 
could cover incremental effects.  

For the large model, two additional outboard wings, an alternate nacelle and an alternate V-tail, were 
designed. One of the alternate outboard wings, along with the V-tail, was a product of using the QEVC3 
concept but changing the wing and tail to minimize drag. The alternate nacelle was a 2D inlet.  

For the small boom model, a different approach was taken. Instead of fabricating a series of alternate 
parts (e.g., a nose, gear fairing, nacelle, and tail), a complete alternate design was chosen. To ensure that 
the second optimization produced a geometry that would be significantly different from that produced by 
the first optimization, design conditions were changed from Mach = 1.8\CL = 0.1039 to Mach = 1.6\CL = 
0.14. In addition, the weighting of objectives was adjusted so that the focus was more on drag and 
pitching moment than the near-field signature shape.  

Table 3.6-1 compares the design criteria of Boom Models 1 and 2. The resulting 8668 design is shown 
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in comparison to the 6007 at M = 1.6 in Figure 3.6-1 and M = 1.8 in Figure 3.6-2. Subsequent refinements 
to the geometry and modifications for wind tunnel model constraints resulted in the 8679 concept. Figure 
3.6-3 compares the 8679 and 8668. Boom Model 2 is the QEVC3-8679.  The surface and centerline 
pressure for Boom Model 2 are shown in Figure 3.6-4. 

Table 3.6-1.  Optimization Parameters 
 Boom Model 1 Optimization Boom Model 2 Optimization 

Starting geometry QEVC seed Optimized for low drag 
Mach 1.8 1.6 
Lift coefficient 0.104 0. 140 
Pitching moment No constraint Constrained to -0.02 

 
 

 

Mach=1.6
CL=0.14

Subcase Mach Alpha CL CD CM Fwd PLdB Aft PLdB PLdB
6007 1.6 3.72 0.140 0.0106 -0.0521 79.99 71.88 80.93
8668 1.6 3.28 0.140 0.0086 -0.0238 77.20 75.49 79.68

6007 1.8 3.28 0.104 0.0089 -0.0341 76.86 70.00 77.57
8668 1.8 2.79 0.104 0.0074 -0.0073 82.07 93.46 94.16

• Final Design, 8668 signature is nearly as good as 6007

• Alternate shape chosen for “variety”

• Drag and pitching moment are much better

• ~20cts improvement at Mach=1.6

Mach=1.6
CL=0.14

Subcase Mach Alpha CL CD CM Fwd PLdB Aft PLdB PLdB
6007 1.6 3.72 0.140 0.0106 -0.0521 79.99 71.88 80.93
8668 1.6 3.28 0.140 0.0086 -0.0238 77.20 75.49 79.68

6007 1.8 3.28 0.104 0.0089 -0.0341 76.86 70.00 77.57
8668 1.8 2.79 0.104 0.0074 -0.0073 82.07 93.46 94.16

• Final Design, 8668 signature is nearly as good as 6007

• Alternate shape chosen for “variety”

• Drag and pitching moment are much better

• ~20cts improvement at Mach=1.6

 

Figure 3.6-1.  8668 Compared to 6007 (Mach = 1.6) 



 

47 

Mach=1.8
CL=0.104

Subcase Mach Alpha CL CD CM Fwd PLDB Aft PLDB PLDB
6007 1.6 3.72 0.140 0.0106 -0.0521 79.99 71.88 80.93
8668 1.6 3.28 0.140 0.0086 -0.0238 77.20 75.49 79.68

6007 1.8 3.28 0.104 0.0089 -0.0341 76.86 70.00 77.57
8668 1.8 2.79 0.104 0.0074 -0.0073 82.07 93.46 94.16

• 8668 signature is significantly worse than 6007

– Need to check off CL conditions since aft 
signature changes significantly with CL

• Drag and pitching moment are much better

Mach=1.8
CL=0.104

Subcase Mach Alpha CL CD CM Fwd PLDB Aft PLDB PLDB
6007 1.6 3.72 0.140 0.0106 -0.0521 79.99 71.88 80.93
8668 1.6 3.28 0.140 0.0086 -0.0238 77.20 75.49 79.68

6007 1.8 3.28 0.104 0.0089 -0.0341 76.86 70.00 77.57
8668 1.8 2.79 0.104 0.0074 -0.0073 82.07 93.46 94.16

• 8668 signature is significantly worse than 6007

– Need to check off CL conditions since aft 
signature changes significantly with CL

• Drag and pitching moment are much better

 

Figure 3.6-2.  8668 Compared to 6007 (Mach = 1.8) 

8668

8679 (8668
+tail thickness
+nac moved inbd)

Mach=1.6
CL=0.14

Subcase Description Alpha CL CD CM
8668 Hand fixed second OML 3.282 0.1400 0.0086 -0.0238

8679
Add tail thickness and move 
nacelle 5" inboard from 8668 3.302 0.1400 0.0088 -0.0236

• Manufacturing concerns resulted in several OML changes

• Move nacelle inboard 5”

• Increased tail tip thickness from 3% to 4.5%

8668

8679 (8668
+tail thickness
+nac moved inbd)

Mach=1.6
CL=0.14

Subcase Description Alpha CL CD CM
8668 Hand fixed second OML 3.282 0.1400 0.0086 -0.0238

8679
Add tail thickness and move 
nacelle 5" inboard from 8668 3.302 0.1400 0.0088 -0.0236

• Manufacturing concerns resulted in several OML changes

• Move nacelle inboard 5”

• Increased tail tip thickness from 3% to 4.5%

 

Figure 3.6-3.  8679 Compared to 8668 (Mach = 1.6) 
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Figure 3.6-4.  Surface Pressure and Flow Field for 8679 Geometry (M = 1.6, CL = 0.14) 

3.7  Additional Boom Optimization Studies After Gate Review 

Several additional optimization studies were conducted after the gate review to determine to what 
degree various aspects of the design affect the resulting low-boom configuration. 

Optimization with No Nacelle 

An optimization similar to Boom Model 2 was conducted with the nacelle removed from the 
geometry. It was found that removing the nacelle from the QEVC seed geometry results in a drag 
reduction of 11 counts. A drag minimization at M = 1.6, CL = 0.14, reduced the drag another 16 counts 
(slightly less than the 18 counts observed with the same optimization with the nacelle). The DOE 
optimization without the nacelle produced a signature very similar to the signature with the nacelle. 
Figures 3.7-1 and 3.7-2 show comparisons of the under- and off-track signatures. The under-track 
signature shows very little difference, whereas the peak compression in the off-track signature shows 
some improvement for the optimization run without the nacelle. The final forces and moments for these 
configurations are summarized in Table 3.7-1, and surface pressure and centerline pressure are shown in 
Figure 3.7-3. 
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Figure 3.7-1.  Optimum Under-Track Signature Comparing Nacelle On (Green)  
With Nacelle Off (Blue) (M = 1.6, CL = 0.14) 

 

Figure 3.7-2.  Optimum Off-Track Signature Comparing Nacelle On (Green) With Nacelle Off (Blue) (M = 1.6, CL 
= 0.14) 
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Table 3.7-1.  Nacelle Off-Design Comparison 

Subcase Description Alpha CL CD CM 
Nacelle 891  Opt point with nacelle 3.294 0.13999 0.00859 -0.0207 
No nacelle 669 Opt point with no nacelle 3.459 0.14000 0.00799 -0.0201 

 

 

Figure 3.7-3.  Surface Pressure and Centerline Pressure for Geometry Optimized  
with no Nacelle (M = 1.6, CL = 0.14) 

Optimization with Wing Thickness Variables 

Two approaches were investigated to determine how much improvement could be obtained by 
including wing thickness variables in an optimization. The first approach was to add thickness variables 
to an optimization. The second approach was to take the best site from the twist and camber optimization 
and modify the upper surface thickness to minimize drag. Neither of these optimizations produced results 
of significance. 

Off-Track Signature Optimization 

The Boom Model 2 optimization was run with equal weighting on under-track signature, off-track 
signature and drag. The final result was a geometry that has lower drag than the target and a good under-
track signature. The peak compression and expansion in the off-track signature, however, is significantly 
higher than the under-track signature, which leads to a ground signature that gets worse when moving 
away from the centerline. To investigate the relationship between the under-track and off-track signatures, 
additional optimization was run with a higher weighting on the off-track objective. Weightings of 2x and 
10x were considered, and the resulting signatures are shown in Figures 3.7-4 and 3.7-5, respectively. 
Table 3.7-2 summarizes the forces for these geometries. Figure 3.7-6 shows the surface pressures for 
these three geometries.   
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Figure 3.7-4.  Under-Track Signatures for Optimum Results with Different Off-Track Weightings  
(M = 1.6, CL = 0.14)     

 

Figure 3.7-5.  45-deg Off-Track Signatures for Optimum Results with Different Off-Track Weightings (M = 1.6, CL 
= 0.14) 
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Table 3.7-2.  Optimization Results for Different Off-Track Weighting (M = 1.6) 

Subcase Description Alpha CL CD CM 
1064 1x off-track weight 3.382 0.139985 0.00866 -0.0203 
8188 2x off-track weight  3.490 0.139983 0.00912 -0.0199 
8260 10x off-track weight  3.437 0.139980 0.01006 -0.0197 

 
 
 

 

Figure 3.7-6.  Surface Pressure Distribution for Different Off-Track Weighting (M = 1.6, CL = 0.14) 
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4.0  LOW-BOOM CONCEPT WIND TUNNEL MODEL PREPARATION 

4.1  QEVC Boom Model 1 

The first of the three models fabricated for experimental validation testing was a 15.75-in-long model 
(0.65% scale) designated Boom Model 1. The model was sized to provide the best compromise of model 
fidelity and ability to measure off-body sonic boom pressure signatures in a large tunnel. Figure 4.1-1 
shows the layout for Boom Model 1, which was mounted with an upper swept strut that connects to an aft 
sting by means of a balance adapter. Figure 4.1-2 shows the overall assembly for Boom Model 1. Both a 
short and a long upper swept strut were manufactured, as well as strut assemblies with and without 
vertical stabilizer surfaces. Forces and moments are resolved with a NASA Ames-furnished 1-inch 
diameter six-component internal balance located within the balance adapter. The model was modular to 
allow for component testing and future modification as low-boom design tools and methods evolve. The 
model was made up of four components: (1) a removable nose, (2) a wing-body, (3) a removable wing-
body-fairing lower surface (also referred to as the gear fairing) and (4) removable left-hand/right-hand 
(LH/RH) integrated nacelle/tail surfaces. Inlet mass flow plugs were also manufactured. Figure 4.1-3 
shows the modular parts, and Table 4.1-1 lists the Boom Model 1 parts.  

15.75”

6.71”

15.75”

15.80”

22.77” 2.46” 7.83”

3.21”

7.29” model break (nose)

7.29” model break (nose)

12.18” model break (nacelle)

1.81”

Balance 
Adapter

27.72” (balance center)

Modular (~.0065 Scale) QEVC Small Boom Model

 

Figure 4.1-1.  Preliminary Boom Model 1 Layout Shown at Gate 1 Review 
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Figure 4.1-2.  Boom Model 1 Assembly Shown at PDR 

 

Table 4.1-1.  Boom Model 1 Modular Parts 
Small Model 

• Boom Model 1 Geometry (W1/B1/GF1/N1/V1) 
− Wing/Body (W1) 
− Nose (B1) 
− Gear Fairing Cover plate (GF1) 
− LH /RH Nacelles (N1) 
− LH/RH Vertical Interface Pods (VP1) 
− LH/RH Verticals (V1) 

• Inlet Plugs for Spillage Effects 
− LH/RH Inlet Plugs (IP1) (SLA) 
− LH/RH Inlet Plugs (IP2) (SLA) 
− LH/RH Inlet Plugs (IP3) (SLA) 

• Cylindrical Balance Fairings (2) 
− Cylindrical Balance Fairing (BS1) 
− Cylindrical Balance Fairing With Fins (BS2) 

• Conical Bal. Adapter Nose Fairing (CF1) 
• Detachable Upper Swept Struts (2) 

− Detachable Upper Swept Strut 1 (VS1) 
− Detachable Upper Swept Strut 2 (VS2) 
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Figure 4.1-3.  Boom Model 1 Modular Parts 

 

 

4.2  QEVC Boom Model 2 

The second model, Boom Model 2, was an alternate low-boom design with the same breakdown and 
general features as Boom Model 1. Table 4.2-1 lists the Boom Model 2 parts. The final fabricated parts 
for Boom Models 1 and 2 are shown in the photograph in Figure 4.2-1.  

Table 4.2-1.  Boom Model 2 Modular Parts 
• Boom Model 2 Geometry (W2/B2/GF2/N2/V2) 

− Wing/Body (W2) 
− Nose (B2) 
− Gear Fairing Cover plate (GF2) 
− LH/RH Nacelles (N2) 
− LH/RH Vertical Interface Pods (VP2) 
− LH/RH Verticals (V2) 
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Figure 4.2-1.  Boom Model 1 and Boom Model 2 and Associated Modular Hardware 
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4.3  QEVC Performance Model 1 

The third model was a larger 43.31-inch-long model that was 1.79% scale. It was called Performance 
Model 1, but was often referred to as the force model. This model was sized to provide the best 
compromise of accurate force and moment assessment, with some reduced capability to measure off-body 
sonic boom pressure signatures in a large wind tunnel. Figure 4.3-1 shows the layout for Performance 
Model 1. It was mounted with an aft sting, with forces and moments resolved with the same Ames-
furnished 1-inch diameter six-component internal balance as the boom models. Figure 4.3-2 shows the 
overall assembly for Performance Model 1. The model was also modular to allow for component testing 
and future modification as low-boom design tools and methods evolve. The model was made up of six 
components: (1) a removable nose, (2) a wing-body, (3) removable outboard wings, (4) a wing-body-
fairing lower surface (also referred to as the gear fairing), (5) nacelles and (6) V-tail surfaces. The 
performance model was made with two additional alternate outboard wings and alternate 2D nacelles, an 
alternate V-tail and inlet mass flow plugs. Figure 4.3-3 shows the modular parts, and Table 4.3-1 lists the 
Performance Model 1 parts. A photograph of the complete performance model and associated parts are 
shown in Figure 4.3-4. 

30.93” (balance center)

43.31”

43.31”

18.49”

36.96” model break (aft deck flap)

33.50” model break (nacelle)

20.05” model break (nose)

20.05”

2.96”

NASA 1”
Diameter 
Balance

1.4”1.57”

9.46”7.49”

Modular (~.0179 Scale) QEVC  Large Force Model 

 

Figure 4.3-1.  Force Model Layout Shown at Gate 1 Review 
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Figure 4.3-2.  Performance Model 1 Assembly 
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Figure 4.3-3.  Performance Model Modular Parts 
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Table 4.3-1.  Performance Model 1 Modular Parts 
Large Model 

• Base Model Geometry (W1B1.1GF1N1AF1VP1V1) 
− Base WB With LH/RH Outboard Wing Tips (W1) 
− Removable Nose (B1.1) 
− Gear Fairing Cover plate (GF1) 
− LH /RH Nacelles (N1) 
− LH/RH Aft Deck Flaps (AF1) 
− LH/RH Vertical Interface Pods (VP1) 
− LH/RH Verticals (V1) 

• Clipped Wing Force Model Geometry 
(W1.2B1.1GF1N1AF1VP1V1) 
− Alt. Outboard Wing Tips (W1.2) 

• Alt Nacelle Force Model Geometry  (W1B1.1GF1N2AF2VP1V1) 
− LH/RH Nacelles (N2) 
− Alt. Aft Deck Flaps (AF2) 

• Alt. Low Drag Model Geometry (W1.1B1.1GF1N1AF1VP1V2) 
− Alt. Outboard Wing Tips (W1.1) 
− LH/RH Verticals (V2) 

• Inlet Plugs for Spillage Effects 
− LH/RH Inlet Plugs (IP1) (SLA) 
− LH/RH Inlet Plugs (IP2) (SLA) 
− LH/RH Inlet Plugs (IP3) (SLA) 
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Figure 4.3-4.  Performance Wind Tunnel Model and Associated Modular Part 
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4.4  Bodies of Revolution 

Three bodies of revolution (BOR) wind tunnel models were fabricated to assess and calibrate the 
pressure rail instrumentation.  These models each had defined near-field pressure signatures which would 
allow the identification of rail interference and wall reflection on the resultant measured signatures.  The 
three BOR models were designated AS1, AS2, and AS3.  The AS1 model was an existing Boeing model 
that has the advantages of simple geometry, a signature of the appropriate amplitude and a long constant 
section to monitor reflections and interferences.  That model has 4 inches of shaped contour with an 80 
PLdB signature.  The AS2 model was a 200% scale version of AS1 to get 8 inches of signature and 
provide a correlation between the 30 and 60 inch offset distances proposed for the test.  The AS3 model 
had an N+2 target signature derived from the development of BM1, was scaled by 50% to match the 8 
inches of signature length and preserved the long constant cross section recovery aft of the model.  Figure 
4.4-1 shows a geometry comparison for the three BOR models.  Photographs of the AS1, AS2, and AS3 
models are shown in Figures 4.4-2, 4.4-3, and 4.4-4, respectively. 
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Figure 4.4-1.  Geometric Comparison Between AS1, AS2, and AS3 
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Figure 4.4-2.  AS1 Model Installed in NASA Ames 9’ x 7’ Wind tunnel 

 

Figure 4.4-3.  AS2 Model Installed in NASA Ames 9’ x 7’ Wind tunnel 

 

Figure 4.4-4.  AS3 Model Installed in NASA Ames 9’ x 7’ Wind tunnel 
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5.0  EVALUATION OF EXISTING NASA PRESSURE RAILS 

5.1  Overview 

One ARRA-funded task of the contract was to evaluate the existing NASA pressure measurement rails 
using existing 2008 NASA Ames 9’ x 7’ supersonic wind tunnel data. The specific deliverable was 
defined as the following: 

“The Contractor shall examine the data generated from recent NASA sonic boom tests 
(reference Section 4) that utilized the NASA sonic boom pressure rail and evaluate whether 
the NASA pressure rail is adequate for the proposed validation tests. The Contractor shall 
deliver a report containing the results and recommendations of the evaluation to NASA. The 
report shall address the overall data quality and criteria, test efficiency, and ease of 
integration with the existing tunnel(s). Government furnished information (GFI) is required 
for this task and shall be provided to the Contractor no later than January 31, 2010. 
Evaluation by the Contractor is not expected to start prior to Contractor receipt of GFI as 
stated above. The Contractor shall complete evaluation efforts within three months of receipt 
of GFI.” 

Off-body pressure measurement methods for sonic booms have been around for more than 50 years, 
and a variety of approaches have been used. Figure 5.1-1 shows some of the most common approaches. In 
addition to the three methods used in the Ames 2008 test (i.e., stationary probe, a wall rail and a mast 
rail), there have been methods utilizing 2D translating probes, plates with pressure belts, 3D translating 
and flying probes and pressure-indicating paint on plates. When selecting a methodology, a long list of 
considerations must be traded in accordance with the test objectives. Some methods offer less 
interference, others high productivity, others quicker installation time and so on. Although a 
comprehensive rating of each of these prior methods is possible and each method likely would have merit 
for some applications, this contract was directed specifically to evaluate the wall rail used in the 2008 
NASA Ames 9’ x 7’ supersonic wind tunnel test.  However, for completeness, the mast rail and the 
probes were also evaluated from that same 2008 wind tunnel test. 

Boeing used the following criteria to evaluate the probe and the rails: 

• Clean tunnel variation. 
• Repeatability. 
• Consistency of reflection factor. 
• Complexity of installation. 
• Flexibility to collect data at various heights. 
• Influence of pressure gradients. 
• Forebody shape. 
• Productivity. 

In the next three sections, each measurement device is evaluated against these criteria. 
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Figure 5.1-1.  Examples of Past Sonic Boom Pressure Measurement Techniques and Factors That Determine Their 
Selection 

 

5.2  Probe 

During the 2008 NASA Ames sonic boom test at the 9’ x 7’ supersonic wind tunnel, single-pressure 
measurement probes were used for several configuration runs. These single-pressure probes were fixed to 
the wind tunnel wall, and the wind tunnel models were translated with a linear actuator past the probes to 
measure the full signature. One pressure probe was mounted on the centerline to capture the under-track 
near-field signature and two probes were mounted off-centerline to capture the off-track near-field 
signature. Figure 5.2-1 shows the probes installed in the 9’ x 7’ wind tunnel. 

The resultant uncertainty developed from a number of repeat runs was ±0.005. This can be seen in the 
uncertainty plots shown in Figure 5.2-2.  



 

65 

 

Figure 5.2-1.  NASA Single Probes Used in the 2008 Sonic Boom Test 

 

 

Figure 5.2-2.  Single Probe Uncertainty Based on Repeat Run Data From 2008 Test 

 

5.3  Wall Rail 

During the 2008 NASA Ames sonic boom test at the 9’ x 7’ supersonic wind tunnel, a wall rail was 
used on many configurations during the test. The wall rail was fixed to the wind tunnel wall, was 5 feet 
long, extended 5.25 inches from the wall and included 385 pressure orifices spaced 1/8-in apart to 
measure the full signature at once. Figure 5.3-1 shows the wall rail installed in the 9’ x 7’ supersonic wind 
tunnel.  
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Figure 5.3-1.  NASA Wall Rail Used in the 2008 Sonic Boom Test 
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Figure 5.3-2.  Wall Rail Uncertainty Based on Short-Term Repeatability From 2008 Test Data 

Figure 5.3-2 shows the uncertainty for the wall rail in terms of short-term repeatability. The short-term 
repeatability uncertainty shown for the wall rail is in terms of a prediction interval. Typically, for each 
plot, the difference in dP/P for each rail static port is compared to a three-run average. The left-hand plots 
show the clean tunnel data, and the right-hand data show the change when a model signature is present. 
The resultant uncertainty of the clean tunnel data is ±0.001, whereas the uncertainty with the model in the 
tunnel is ±0.005. 
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5.4  Mast Rail 

During the 2008 NASA Ames sonic boom test at the 9’ x 7’ supersonic wind tunnel, a mast rail also 
was used. The mast rail was fixed to the wind tunnel wall, was 3 feet long, extended 18 inches from the 
wall and included 160 pressure orifices spaced 1/8-inch apart to measure the full signature at once. Figure 
5.4-1 shows the mast rail installed in the 9’ x 7’ wind tunnel. 

 

Figure 5.4-1.  NASA Mast Rail Used in the 2008 Sonic Boom Test 

Figure 5.4-2 shows the mast rail uncertainty measured in terms of short-term repeatability. Shown here 
are similar short-term repeat data as were shown for the wall rail. The difference in dP/P for each rail 
static port is plotted compared to a three-run average. The resultant uncertainty of the data is ±0.002. 
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Figure 5.4-2.  Mast Rail Uncertainty Based on Short-Term Repeatability From the 2008 Test Data 
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The prior uncertainty charts showed the respective uncertainties of the wall rail and mast rail in a 
quantitative way. Figure 5.4-3 illustrates similar data in a qualitative way and shows the repeatability of 
each rail type. These data are at the cruise lift coefficient.  
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Figure 5.4-3.  Qualitative Comparison of Uncertainty between the Single Probe, Wall Rail, and Mast Rail 

In the upper left-hand figure is a comparison between averaged probe, averaged wall rail and averaged 
mast rail data. The upper right-hand figure shows two repeats of the pressure probe data compared to its 
average. In the lower right-hand figure, similar data (three repeats) are shown for the mast rail. The lower 
left-hand plot has the same data (three repeats) for the wall rail.  

5.5  Results of Evaluation 

The final acceptability evaluation is summarized in Figure 5.5-1. It is believed that the pressure 
measurement instrument used should be one that is good (green) in most areas and no worse than fair 
(yellow) everywhere else. There should be no fails (red). The existing wall rail fails in two areas: (1) 
consistency of reflection factor, and (2) forebody shape (i.e., induced interference). 

Based on this evaluation, it was recommended that NASA design and fabricate a new pressure rail for 
future sonic boom validation testing.  An improved 14” tall blade rail was subsequently fabricated and 
tested in later part of 2010.  

 



 

69 

Evaluation Criteria NASA Probe NASA Wall Rail NASA Mast Rail 
• Clean tunnel variation    
• Repeatability    
• Consistency of reflection factor    
• Complexity of installation    
• Flexibility to collect data at various 

heights 
   

• Influence of pressure gradients    
• Forebody shape    
• Productivity    

  Unacceptable 
  Marginal 
  Acceptable 

Figure 5.5-1.  Final Evaluation 
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6.0  NEW PRESSURE MEASUREMENT RAIL INSTRUMENTATION 

6.1  Overview  

Based on the results of the evaluation of the existing NASA pressure rails, it was decided that a new 
pressure rail was needed.  Boeing was contracted by NASA to design, fabricate and inspect a new 
pressure rail that would minimize the influence of rail interference on the incoming signature, provide a 
consistent reflection factor, was not unduly influenced by pressure gradients, had a simple installation, 
had flexibility to collect data at various heights and maximized test productivity.  Several rail concepts 
were investigated during the design phase, including a 2” tall flat-topped rail (Boeing Concept) and a 14” 
tall blade rail (NASA Concept).  The 14” tall blade rail was subsequently selected for fabrication.  Tri 
Models Incorporated was subcontracted by Boeing to develop a detailed design of the 14” blade rail and 
then fabricate and inspect it.  The rail was complete on Nov 1, 2010, and was shipped to the NASA Ames 
9’ x 7’ wind tunnel for validation.  The rail validation test (Ames Test AS-0220) was conducted from 
November 16, 2010 through December 2, 2010 as part of Lockheed Martin’s statement of work.  The test 
consisted of evaluating the rail against two body-of-revolution models and one NASA winged model 
(NASA Low-Boom Wing-Tail (LBWT) model).  The rail validation test had several objectives. 

• Evaluate suitability of the chosen rail for measuring signatures from models with different 
shapes and sizes.  

• Demonstrate that this rail has improved accuracy over previously-tested pressure rails by 
showing that the shock reflection factor is consistently equal to 1.0 (within 10%) over the 
whole length of the rail. 

• Characterize repeatability and show if it is improved over the previous rail data. 

• Determine best techniques for getting good measurements with the rail; variables are: 

– Model longitudinal position (x) in tunnel (use traverse to vary by ±12 inches). 

– Height (h/L) above the rail (in 9x7 horizontal plane). 

– Rail on forward or aft window blank. 

– Target humidity value. 

– Tolerance on holding humidity. 

– Frequency of reference runs to minimize tunnel flow variations over time, especially 
humidity. 

• Identify/clarify issues associated with using the new rail in the cross flow/up flow environment 
of the 9x7 wind tunnel. 

• Identify improvements of the new pressure rail over previous rails in terms of reducing the 
uncorrectable, adverse effects of the rail on the model shocks due to rail shape and size. 

The rail validation test was very successful in gathering a significant data set to evaluate the 14” blade 
rail.  It verified that the rail had a reflection factor of 1. Generally, the pressure data showed short-term 
repeatability from ±0.0007 to ±0.002 dP/P for the lower heights (<32”) and ±0.001 to ±0.004 dP/P for the 
higher heights (>54”).  This is about the same as the previous wall and mast rails.  Correlation with CFD 
was generally good at the lower H/L’s, although it did not capture all of the features in the wind tunnel 
data.  Finally, humidity was found to have a big influence on the results.  It was not only determined that 
humidity needs to be below 250 ppm, but that it should not vary more than ±3 ppm within a run.  In 
addition, the humidity for the model run should be within ±3 ppm of the humidity for the reference run 
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utilized to reduce the data. 

Although a lot of lessons-learned were acquired from the test, there was an observed disturbing 
variation in the signature with spatial location in the wind tunnel.  It appeared random, but also seemed to 
have a sinusoidal variation with x-location in the tunnel and was more pronounced at larger H/L’s.  In 
addition, there were features in the data that were not captured with the CFD.  An example of this is 
shown in Figure 6.1-1. 

 

 

Figure 6.1-1.  Example of Observed Variation in Near-field Signature with Spatial Location in the Wind Tunnel 
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Based on these results, it appeared that the 14” rail was influencing the measured signature as a result 
of its size or possibly due to flow angularity (later it would be determined not to be the rail, but a number 
of things including flow quality, pressure lag, influence of the wind tunnel primary strut, etc).  Boeing 
decided to use the 2” rail design for their validation test because of their experience with these types of 
rails in other test facilities.  A new 2” rail was designed and fabricated by Tri Models Incorporated.  
Details about this rail are contained in section 7.3. 

6.2  Blade Rail  

The 14” blade rail was designed to attach to the sidewall window blanks at the NASA Ames 9’ x 7’ 
supersonic wind tunnel.  The existing window blanks had a number of holes drilled in them from previous 
experiments, so new ones were fabricated for use with the 14” blade rail.  Figure 6.2-1 shows a detailed 
diagram of the 14” blade rail attached to the new window blanks.  The 14” blade rail was designed so that 
two 66” long pressure instrumented rail sections could be installed in the tunnel spanning both window 
blanks.  However, only one instrumented rail section was fabricated due to cost constraints.  The 14” 
blade rail is detailed in Figure 6.2-2.  It is 90” long with 420 static pressure taps spaced 4 mm apart.  It 
has an 18” leading edge section and a 6” trailing edge closeout section.  It is interchangeable with either 
the front or aft window blank.  A photograph of the 14” blade rail is shown in Figure 6.2-3. 

New GFE Window Blanks

Window Pocket 
Off-Blocks

Trailing Edge Closeout

Leading Edge
Instrumented Rail Section

Flow

New GFE Window Blanks

Window Pocket 
Off-Blocks

Trailing Edge Closeout

Leading Edge
Instrumented Rail Section

Flow

 

Figure 6.2-1.  Installation of the 14” Blade Rail on the NASA Ames 9’ x 7’ Window Blanks 

Key notable attributes of the 14” blade rail included a reflection factor of 1.0 (as a result of the small 
diameter top) and its 14” height, which minimizes the influence of the pressure signature by wall 
reflections for models shorter than approximately 35”at Mach numbers of 1.6.  However, the 14” height 
does remove some H/L capability and the long pressure line lengths due to its size cause some pressure 
lag in the measurements.  
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 Rail details:
– 14” from tunnel wall to tip
– 0.050” radius tip
– 3.5 deg included angle (1.0” base width)
– 66” length

– Pressure taps 4 mm (0.1575”) apart
– ~420 pressure taps

– Leading edge and trailing edge closeout
– Interchangeable with forward and aft 

window blanks

14”

1”

Filler blocks

Window Blank

0.1”

3.5°

2.2”

14”

1”

Filler blocks

Window Blank

0.1”
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2.2”

6”18” 66”

14”

Top View

14”

0.1”
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Front 
View

2.2”

1”
Filler blocks

 Rail details:
– 14” from tunnel wall to tip
– 0.050” radius tip
– 3.5 deg included angle (1.0” base width)
– 66” length

– Pressure taps 4 mm (0.1575”) apart
– ~420 pressure taps

– Leading edge and trailing edge closeout
– Interchangeable with forward and aft 
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14”

1”
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Figure 6.2-2.  The 14” Pressure Instrumented Blade Rail  

 

 

Figure 6.2-3.  The 14” Blade Rail Installed in the NASA Ames 9’ x 7’ Wind Tunnel  
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7.0  VALIDATION WIND TUNNEL TEST  

7.1  Overview 

Compliant with Phase I, WBS 3.5 and 3.6, the planning and conduct of the experimental validation 
wind tunnel test of the QEVC boom and performance models were successfully completed on 22 April 
2011. The validation test, referred to as Ames Test AS-0229, was conducted in the closed-return test 
circuit of the NASA Ames 9’ x 7’ supersonic wind tunnel complex at Moffett Field, California.  This 
tunnel was chosen for its large, variable-density test section and its capability to provide extremely dry 
freestream flow conditions. The facility has also been used extensively in recent years for conducting 
other sonic boom explorations. An illustration of the facility layout is provided in Figure 7.1-1. 

The test campaign, which began on 11 April and concluded on 22 April, was preceded by an 
extremely valuable series of monthly test-planning meetings held at the Ames test facility during the first 
quarter of 2011. Attended by Boeing, facility and customer representatives, the meetings were held to 
ensure that the intended test objectives, productivity and data quality expectations would be successfully 
met. Because these meetings were held concurrently with the preparation of the wind tunnel model and 
new ancillary hardware, issues associated with the interface of this new hardware with the wind tunnel 
were addressed and resolved in real time, resulting in a successful on-time integration of the test 
hardware. 

 

Some Noteworthy Facility Attributes 

• There are no screens or honeycomb upstream of nozzle 
• The distance from the circuit elbow and nozzle is short 
• The distance between the nozzle throat and test section is short 
• The nozzle is asymmetric 
• The test section has solid walls 

Figure 7.1-1.  NASA Ames 9’ x 7’ Supersonic Wind Tunnel Facility Layout 
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7.2  Test Objectives and Test Plan 

The overarching purpose of the test was to experimentally validate the low sonic boom and 
performance characteristics of the QEVC (N+2 class) supersonic vehicle configuration that were 
established with CFD design and prediction tools. To accomplish this, the following test objectives were 
established. 

• Validate and calibrate the operation of the new pressure rail using three Boeing-provided bodies-
of-revolution models. 

• Obtain pressure signatures from the boom and performance models. 
• Obtain force data from the boom and performance models. 
• Validate CFD design and prediction tools. 
• Validate the productivity and data quality attributes of the NASA Ames 9’ x 7’ supersonic wind 

tunnel facility with regard to sonic boom testing. 

The test was scheduled for 160 occupancy hours, over 2 weeks, on a two-shift- (first and third) per-
day operation. Actual test metrics are provided in section 7.4. The “as-tested” test plan is shown in Table 
7.2-1.   
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Table 7.2-1.  As-Run Test Plan   

22:30 11:30 0:30 1:30 2:30 3:30 4:30 5:30 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30

Mon. Fri

11 Mon

12 Tue

13 Wed

14 Thu

15 Fri

18 Mon

19 Tues

20 Wed W1/B1.1/GF1/N2/V1  Series 24
Alternate Nacelle
PM config #5
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

21 Thu W1.1/B1.1/N1/GF1/V1  Series 29
Clipped Tip full config
PM config #12
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

22 Fri

W1.1/B1.1/GF1  Series 28
Clipped Tip wing/body
PM config #10
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

AS1  Series 31
body of rev. calibration model
config #1b
undertrack, off track BOOM)
Varying Machs, Pressures

AS3 Series 11
body of revolution calibration 
model
config #1c repeat
(H=30 in, upflow, Forces
AS2 (M=1.6)Series 13
body of rev. calibration model
config #1b
(H=60in/1525mm, upflow, 
Forces
undertrack  off track BOOM)

W1/B1/GF1//VS2  Series 7
Vert V1 & N1 Off
BM1 config #7
(H=30in, upflow, Forces
undertrack, off track BOOM)

W2/B2/N2/GF2/V2/VS2  Series 
8
Full Configuration 2
BM2 config #9
(H=30in, upflow, Forces

W1/B1/N1/GF1/V1/VS2 Series 9
Full Configuration VS2
BM1 config #4 repeat
(H=30in, upflow, Forces
undertrack, off track BOOM)

W1/B1/N1/GF1/V1/VS1  Series 4
Full Configuration VS1

BM1 config #2
(H=30in, upflow, Forces

undertrack, off track BOOM)

AS3  Series 3
body of rev. calibration model
config #1c
(H=30 in, upflow, Forces
undertrack, off track BOOM)
W1/B1/GF1/V1/VS2 Series 6
Nac N1 Off
BM1 config #5
(H=30in, upflow, Forces
undertrack, off track BOOM)

AS2  Series 2
body of rev. calibration model
config #1c
(H=30 in, upflow, Forces
undertrack, off track BOOM)

AS1 Series 1
body of rev. calibration model

config #1a
(H=30 in, upflow, Forces

undertrack, off track BOOM)

AM

Install rail, leak & port check

PM

W1/B1/N1/GF1/V1/VS2 Series 
5
Full Configuration VS2
BM1 config #4
(H=30in, upflow, Forces

PM AM

AS2 (M=1.8)  Series 13
body of rev. calibration model
config #1b
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

Third Shift:  10:30pm - 6:30am First Shift:  6:30am - 2:30pm
Prep Room 10 shifts

CF  Series 10
Cone
(H=30)

W1/B1/N1/GF1/V1/VS2   Series 19
Full Configuration VS2
BM1 config #4 repeat

(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

Shift to Large Model Shift to Large Model 

Add spacer: Deflection calibration of
balance+stings and Models ( check NF, PM ) 

CF  Series 16
Cone
(H=60in/1525mm, upflow, 
Forces
undertrack BOOM)

W2/B2/N2/GF2/V2/VS2   Series 18
Full Configuration 2

BM2 config #9
(H=60in/1525mm, upflow, Forces

undertrack, off track BOOM)

AS1 Series 12
body of rev. calibration model
config #1a
(H=60in/1525mm, upflow, 
Forces
undertrack  off track BOOM)

W1/B1.1/GF1   Series 20
Vert V1 & N1 Off
PM config #1
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

W1/B1.1/N1/IP2/GF1/V1  Series 30
Inlet Plug spillage
PM config #14
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

PM1_W1.3B1.1GF1N1V3  Series 25
low drag  full confic
PM config #9
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

AS1  Series 32
body of rev. calibration model
config #1b
undertrack, off track BOOM)
Wall tape effect, multiple data point acq.

W1/B1.1/N1/GF1/V1  Series 21
Full Configuration
PM config #3
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

W1/B1.1/GF1/N1  Series 22
V-tail  Off
PM config #4
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)
W1/B1.1/GF1  Series 27
Vert V1 & N1 Off
PM config #1-repeat
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

W1/B1.1/GF1/V1  Series 23
Nac N1 Off, V-tail on
PM config #2
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

W1.3/B1.1/GF1  Series 26
low drag  wing-body
PM config #7
(H=60in/1525mm, upflow, Forces
undertrack, off track BOOM)

AS3  Series 14
body of rev. calibration model
config #1b
(H=60in/1525mm, upflow, 
Forces

d t k  ff t k BOOM)

W1/B1/N1/GF1/V1/VS2 Series 
15
Full Configuration
BM1 config #4
(H=60in/1525mm, upflow, Forces

d t k  ff t k BOOM)

W1/B1/GF1//VS2  Series 17
Vert V1 & N1 Off
BM1 config #7
(H=60in/1525mm, upflow, 
Forces

d t k  ff t k BOOM)

AS1  Series 33
Cone Fairing

undertrack, off track BOOM)
reference runs, multiple data point acq.

+ 1 day
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7.3  Facility Hardware and Instrumentation 

Pressure Rail 

A new sonic boom pressure rail was fabricated for the AS-0229 test. The criteria considered in its 
design were minimal, clean-tunnel variation due to its presence in the tunnel test section, measurement 
repeatability, consistency of reflection factor, complexity of installation, future flexibility to collect data 
at various heights, its influence on pressure gradients, its forebody shape and productivity. Previous test 
results indicated that all of these criteria were either met or exceeded. The end product (the rail shown in 
fig. 7.3-1) was 96 inches long, 2 inches high and 1.5 inches wide, with a wedge-shaped forebody and 
closeout. The static pressure belt used for sonic boom signature measurement was 72 inches long, 
beginning at a point 18 inches aft of the rail nose, and consisted of 458 pressure orifices spaced 0.1575 
inch apart, each with an internal diameter of 0.028 inch. Other dimensions of interest are shown in the 
figure. The modular design of the rail allows for potential future increases in rail height and pressure-
surface width if desired. 

TS = -104.15

TS = -74.029 TS = -62.029 TS = -51.029

TS = -8.178

TS = -39.026

TS = -104.15

TS = -74.029 TS = -62.029 TS = -51.029

TS = -8.178

TS = -39.026
  

 

Figure 7.3-1.  2-in Sonic Boom Pressure Rail for AS-0229 

The pressure rail was installed on the 9’ x 7’ north tunnel wall aft window blank for the entire AS-
0229 test. Existing pockets in the window blank provided the interface to the two rail mounting pads. 
Pressure tubes from the 458 pressure orifices were routed from the rail through sealed passages in the 
window blank rail pockets to eight Ames-provided, 64-port PSI modules located just outside of the test 
section wall. An illustration and a photograph of the rail installation in the test section are shown in 
Figures 7.3-2 and 7.3-3, respectively. 
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Figure 7.3-2.  Installation of 2-in Sonic Boom Pressure Rail on North Wall Aft Window Blank 

 

 

Figure 7.3-3.  Photograph of the 2-in Sonic Boom Pressure Rail Installed in the  
NASA Ames 9’ x 7’ Test Section 
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Model Support Hardware 

A new 28-inch-long sting and a 40-inch-long sting spacer were also provided for the AS-0229 test to 
accommodate the planned longitudinal and height positioning of the model in the test section relative to 
the pressure rail. A dimensional sketch of this hardware is shown in Figure 7.3-4. Figure 7.3-5 shows how 
these components integrated with the model and pressure rail in the test section. The sting was fabricated 
to mount to either the NASA-provided roll mechanism or to the forward end of the new spacer and to be 
compatible with the chosen balance. Both sting-alone and sting/spacer support sting configurations were 
tested. 

   

Design Criteria: Sting-spacer assembly to be designed to accommodate model loads equal to the maximum 
capacity of the Mk XIV balance, with a safety factor of 3.0

NASA Task 1” MK14 
Balance

Sting-Spacer Assembly

NASA Roll 
Mechanism

28” 40”

3.20”

1.25”

1.25” 1.35”

3.20”

1.25”

1.25” 1.35”

0.5” ID cable passage

0.75” ID cable passage

40”

2.875”

3.20”

40”

2.875”

40”

2.875”

3.20”

0.75” ID cable passage

Mat’l: Aermet 100

Mat’l: 13-8 SS

P/T, wire channel (in 
model yaw plane)

 

Figure 7.3-4.  Sting and Sting Spacer Hardware 

  

 

Figure 7.3-5.  Installed Sting and Sting Spacer Hardware 
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Other model support hardware provided by NASA Ames for the AS-0229 test included their existing 
modified SR-57 sting adaptor, the “small model” roll mechanism with motion control system and a 1-in 
MK XIV C (Mk 14C) task balance (described below). 

Instrumentation 

The six-component, 1-inch diameter MK XIV C task balance was provided by Ames to measure 
model forces and moments. The force balance gage capacities were N1/N2 = 400 lb; S1/S2 = 200 lb; RM 
= 250 in-lb; and AF = 100 lb. The balance was calibrated by Triumph in March 2008 and its calibration 
verified using checkloading prior to model installation. No backup balance compatible with the QEVC 
models was available for the test; however, a backup was never needed.   

Eight 5-psid 64-port ESP scanner modules were provided by Ames to measure the sonic boom rail 
pressures. The modules were de-ranged to 1.7 psid to improve the measurement resolution of the 
expected small sonic boom pressure signatures. A 15-psid, 64-port ESP scanner module located in the 
tunnel arc sector was also provided by Ames to measure the three on-board cavity pressures located at the 
forward end of the model sting (1 inch forward of the aft edge of the model). 

A fouling circuit was installed at the forward end of the sting to detect model fouling. A thermocouple 
was also installed at the forward end of the strut at the balance interface to measure balance temperature 
at its back end. An attempt to place one at the forward end of the balance (on the model) was unsuccessful 
due to the wire continually becoming cut at the model-balance interface. 
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7.4  Test Performance and Productivity 

Model Buildup 

Before model installation in the test section, the balance, sting hardware and models were built up and 
checked out in a model preparation room (MPR) located in another building. Activities in the MPR 
included: 

• Check-loading the balance installed on the sting with and without the 40-in spacer. Loads were 
applied to all six balance gages to verify the health of the balance and to determine the sting-
bending characteristics used to calculate model AOA for the performance model in the tunnel. 

• Characterizing the boom model deflections for both the short and long upper swept strut 
installations. Loads were applied to loading dimples on one of the installed boom models to 
determine the sting-bending characteristics used to calculate model AOA for the models in the 
tunnel. 

• Acquiring “single-point” normal and side force check-loads for the balance/sting assembly for 
comparison with the same loads acquired in the test section (for troubleshooting purposes if 
necessary). 

• Acquiring “single-point” normal force/pitching moment check-loads on the boom model for 
comparison in the test section (for troubleshooting purposes if necessary). 

• Acquiring a “single-point” normal force check-load on the performance model for comparison in 
the test section (for troubleshooting purposes if necessary). 

• Acquiring natural frequency characteristics for the boom model installed on the short and long 
struts. These data would be considered if excessive model dynamics were observed in the tunnel. 
However, actual model dynamics experienced during the test were manageable.  

• Building up the starting configuration in preparation for installation. 

Summary of Model Installations 

NASA Ames tunnel personnel were responsible for the installation and checkout of all balance and 
support system hardware in the tunnel, while Boeing engineers were responsible for the preparation, 
installation and configuration changes of all models on the balance during the test. The starting 
configuration for the AS-0229 test was the AS1 Body of Revolution (BOR) model installed on the sting 
with no sting spacer to begin the nominal H = 30 inch (above-rail) evaluations. This was the first of three 
BOR models that were used to validate and calibrate the new pressure rail for sonic boom measurement. 
Boom Model 1 was first installed on the short (VS1) strut and then the long (VS2) strut to assess model-
support system dynamics. Upon observing that the model dynamics for the long-strut installation were 
manageable, the decision was made to use that strut for the remainder of boom-model testing. The longer 
strut mitigated the contamination of the support hardware on the aft boom pressure signature. Four Boom 
Model 1 configurations and one Boom Model 2 configuration were installed and tested. A cone-fairing 
installation (for flow diagnostics) rounded out the H = 30 inch testing on the sting-only support system.   

Models evaluated at the nominal H = 60 inches-above-rail height, using both the sting and spacer, 
were the AS1, AS2, and AS3 BOR models; the Boom Model 1 (2 configurations) and Boom Model 2 (1 
configuration) models; the Performance Model 1 (10 configurations, following an initial lengthy one-shift 
installation); and the cone fairing. The AS1 model was reinstalled for diagnostic purposes at the end of 
the test. This configuration remained in the test section for follow-on NASA-Ames-funded testing that 
was performed after the conclusion of the AS-0229 test.  
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Photographs of the BM1 and PM1 wind tunnel models installed in the NASA Ames 9’ x 7’ wind 
tunnel are shown in Figures 7.4-1 and 7.4-2, respectively. 

 

Figure 7.4-1.  BM1 Model with VS2 Strut Installed in the NASA Ames 9’ x 7’ Wind Tunnel 

 

Figure 7.4-2.  Sting Supported PM1 Model Installed in the NASA Ames 9’ x 7’ Wind Tunnel   
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Test Productivity 

Test metrics, including facility downtime, were monitored and documented carefully and thoroughly 
throughout the AS-0229 test. This task was facilitated by having the Boeing test manager sit in close 
proximity to the tunnel operations crew, such that information and status were acquired and shared in real 
time. Access to the Ames test director and engineer logs also greatly aided this task. The categories 
associated with tunnel occupancy that were tracked included tunnel state (fan on/off and conditioning), 
model installation/removal and change times, and downtime (computation, instrumentation, operations, 
and test/data). These productivity records were documented in an Excel file called the Occ Log (ref. 25). 
The results from the Occ Log are summarized in tabular and graphical form in Figure 7.4-3 for 
convenience. 

Productivity was high, especially considering the need for extensive drying time of the tunnel circuit 
to achieve the required low humidity levels. This can be inferred by comparison of the runs acquired per 
occupancy hour (6.2) vs. fan-on occupancy hour (15.4), considering lengthy model installation times but 
short model changes. Once on condition, the facility demonstrated an excellent run rate. Downtime was 
only ~8%, mostly attributable to operational and computing issues. 

Test Conditions and Data Acquisition 

The following nominal test conditions were established before the start of the test. 

Mach  = 1.6 and 1.8. 

Alpha  = -2 to +7 deg. 

Beta  = -2 to +4 deg. 

Phi  = 0, 15, 30, 45, 90, and 180 deg. 

Pt (psf)  = 1450. 

q (psf)  = 600 (Mach 1.6); 570 (Mach 1.8). 

Re/ft (106) = 2.87 (Mach 1.6); 2.71 (Mach 1.8). 

Humidity  = 200 to 250 ppm; ±3 ppm between reference and data runs. 

The following data acquisition constants were established before the start of the test. 

Model/pitch settling time = 0.5 sec.  

Samples per test point = 30. 

Sampling time (averaged) = 2 sec. 

Max pitch rate = 3 deg/sec. 

Average pitch rate  = 0.5 deg/sec. 
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The following data accuracy tolerances were established before the start of the test. 

    Required Setting 

Mach number  ±0.002  ±0.002. 

Total pressure  ±1 psf  ±1.5 psf  (may not be attainable due to HP air addition). 

Alpha   ±0.05 deg ±0.05 deg (accuracy, Knuckle Sleeve Angle Source).  

Beta   ±0.05 deg ±0.05 deg (accuracy, Knuckle Sleeve Angle Source).  

Roll   ±0.1 deg ±0.1 deg. 

Balance   ±0.25% Full Scale (FS). 

PSI static pressures <0.10% FS (expected); <0.05% FS (typical).  

Run Summary 

A run summary that includes the nominal model setup information, wind tunnel conditions and run 
information (series, run number and data type) is provided in Table 7.4-1. The summary is reflective of 
the very comprehensive test matrix that was established for this test. The types of data runs that were 
acquired are categorized as shown below. 

“Inv” -  Model inverted for assessment of flow angularity in the pitch plane. 

“Beta” -  Model sideslip for assessment of flow angularity in the yaw plane. 

“force/press” - Model upright pitch sweep; model F&M (force and moment), flow angularity, sonic 
boom pressure signatures. 

 “Reference” - Model up and away from pressure rail; serves as a tare for sonic boom pressure 
signature data. 

 “Z sweep” - Height variation above pressure rail. 

“Roll sweep” - Assessment of off-track sonic boom pressure signature data. 

Test Documentation 

In addition to the aforementioned Occ Log, the Boeing test manager maintained a run log (ref. 26) that 
documented the as-run details and test conditions throughout the test and a test notes log (ref. 27) that 
served as a diary for the test, containing notes, observations, and progress of the test.  
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TEST METRICS
    hr      %

Chargeable Fan-On 62.33 40.12
Chargeable Fan Off 44.60 28.71
Model Change 32.68 21.04
Install 15.75 10.14
Remove 0.00 0.00
Total Occupancy 155.37 100.00

Non-Occupancy hr %
Lunch 0.00 0.00
Computing 3.68 30.11
Design 0.00 0.00
Instr 0.92 7.49
Ops 6.70 54.77
Shop 0.00 0.00
Test/Data 0.93 7.63
Total 12.23 100.00

Test Total (hr) 167.60
Total Series 29
Total Data Runs 961
Data Runs/Occ hr 6.19
Data Runs/Fan-On hr 15.42
Data Runs/Total hr 5.73
Total Occ/Test Total 0.927

7.30

0.55
4.00
0.00
0.56

% Total
0.00
2.20
0.00

0.00

% Total
37.19
26.61
19.50

92.70

9.40
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Figure 7.4-3.  Ames AS0229 Test Productivity  
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Table 7.4-1.  As-Run Summary   

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80
Rail Validation

AS1 Config #1a 1 AS1 inv MKXIV 2.8 a1 TS0 180 30 74 94
Beta MKXIV 2.8 b1 TS0 0,90 30 75,76 95,96

1 Reference MKXIV 2.8 6 TS0 0 87.5

73,77,79,
81,83,86,
88,90,92

93,97,99,
101,103,106,
108,110,112

force/press MKXIV 2.8 a1 TS0 0 30
78,80,82,
87,89,91

98,100,102,
107,109,111

Zsweep MKXIV 2.8 a2 TS0 0 24-36 84,85 104,105
AS2 Config #1b 2 AS2 inv MKXIV 2.8 a1 TS0 180 30 116 136

Beta MKXIV 2.8 b1 TS0 0,90 30 117,118 137, 138

2 Reference MKXIV 2.8 6 TS0 0 87.5

115, 119,121, 
123, 125, 128, 
130, 132, 134

139, 141, 143, 
145, 148, 151, 

153, 155

force/press MKXIV 2.8 a1 TS0 0 30
120, 122, 124, 
129, 131, 133

140, 142, 144, 
150, 152, 154

Zsweep MKXIV 2.8 a2 TS0 0 24-36 126, 127 147, 149
AS3 Config #1c 3 AS3 inv MKXIV 2.8 a1 TS0 180 30 158 178

Beta MKXIV 2.8 b1 TS0 0,90 30 159, 160 179, 180

3 Reference MKXIV 2.8 6 TS0 0 87.5

157, 161, 163, 
165, 167, 170, 
172, 174, 176

177, 181, 183, 
185, 187, 190, 
192, 194, 196

force/press MKXIV 2.8 a1 TS0 0 30
162, 164, 166, 
171, 173, 175, 

182, 184, 186, 
191, 193, 195

Zsweep MKXIV 2.8 a2 TS0 0 24-36 168, 169 188, 189

Mach No
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Table 7.4-1.  As-Run Summary (Continued) 

Boom Model 1 - Pressure & Force
BM1 Config#2 4 BM1_W1 B1 GF1 N1 V1 VS1 inv MKXIV 2.8 a3 TS0 180 30 204,255 236

Beta MKXIV 2.8 b1 TS0 0 30 205,256 238
Beta MKXIV 2.8 b1 TS0 90 30 206,257 237

4 Reference MKXIV 2.8 6 TS0 0 83.5

202, 207, 209, 
211, 213, 214, 
216, 221, 224, 

226, 254

229,231,233, 
235,239,244, 

246,249,251, 253

force/press MKXIV 2.8 a4 TS0 0 30
208,210,212
215,223,225

230,232,234,
245,250,252

Roll sweep MKXIV 2.8 a5 TS0 0-45 30
259,260,
261,262

240,241,
242,243

Zsweep MKXIV 2.8 a6 TS0 0 24-36 218,219 247,248
BM1 Config#4 5 BM1_W1 B1 GF1 N1 V1 VS2 inv MKXIV 2.8 a3 TS0 180 30 264 283

5 Reference MKXIV 2.8 6 TS0 0 85.7
265, 268,270,

274,279
284, 287, 289, 

293, 297

force/press MKXIV 2.8 a4 TS0 0 30
266,267,269, 
280,281,282

285, 286, 288, 
298, 299, 300

Roll sweep MKXIV 2.8 a5 TS0 0-45 30 271, 272, 273 290, 291, 292
Zsweep MKXIV 2.8 a6 TS0 0 24-36 276,277,278 294, 295, 296

BM1 Config#5 6 BM1_W1 B1 GF1 V1 VS2 
Reference MKXIV 2.8 6 TS0 0 85.7

302, 305, 309, 
313, 317

321, 324, 326,  
330, 334 

6 force/press MKXIV 2.8 a4 TS0 0 30
303, 304, 306, 
318, 319, 320

322, 323, 325, 
335, 336, 337, 

Roll sweep MKXIV 2.8 a5 TS0 0-45 30 310, 311, 312 327, 328, 329
Zsweep MKXIV 2.8 a6 TS0 0 24-36 314, 315, 316 331, 332, 333

BM1 Config#7 7 BM1_W1 B1 GF1 VS2 Reference MKXIV 2.8 6 TS0 0 83.5 348, 351, 353, 357 361, 364, 366, 370
7 force/press MKXIV 2.8 a4 TS0 0 30 349, 350, 352 362, 363, 365

Roll sweep MKXIV 2.8 a5 TS0 0-45 30 354, 355, 356 367, 368, 369

Zsweep MKXIV 2.8 a6 TS0 0
24-36,
42,48 358, 359, 360 371, 372, 373

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80

Mach No
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Table 7.4-1.  As-Run Summary (Continued) 

Boom Model 2 - Pressure & Force

BM2 Config#9 8 BM2_W2 B2 GF2 N2 V2 VS2 Reference MKXIV 2.8 r1 TS0 0 85.7 382, 385, 387,391 397, 400, 402, 406
8 force/press MKXIV 2.8 a4 TS0 0 30 383, 384, 386 398, 399, 401

Roll sweep MKXIV 2.8 a5 TS0 0-45 30 388, 389, 390 403, 404, 405

Zsweep MKXIV 2.8 a6 TS0 0
24-36,
42,48 394, 395, 396 407, 408, 409

Repeats

BM1 Config#4 5 BM1_W1 B1 GF1 N1 V1 VS2 Reference MKXIV 2.8 r1 TS0 0 85.7 415,418,420, 424 428, 431,433, 437
9 force/press MKXIV 2.8 a4 TS0 0 30 416, 417,419 429,430, 432

Roll sweep MKXIV 2.8 a5 TS0 0-45 30 421, 422, 423 434, 435, 436

Zsweep MKXIV 2.8 a6 TS0 0
24-36,
42,48 425, 426, 427 438, 439, 440

8 deg Cone Fairing 3 CF Reference MKXIV 2.8 r1 TS0 0 87.5

10 Zsweep MKXIV 2.8 0 TS0 0
18-36,
42,48 442,443,444 445,446,447

Zsweep MKXIV 2.8 3.2 TS0 0
18-36,
42,48 451,452,453 448,449,450

AS3 Config #1c 3 AS3 Reference MKXIV 2.8 r1 TS0 0 87.5 459 463

11 Zsweep MKXIV 2.8 a6 TS0 0
24-36,
42,48 460, 461, 462 464,465,466

Add spacer

AS1 Config #1a 1 AS1 Reference MKXIV 2.8 r1 TS0 0 90
483, 485, 487, 
489, 491, 493

496, 498, 500, 
502, 504, 506

12 Zsweep MKXIV 2.8 a6 TS0 0 54-66
484, 486, 488, 
490, 492, 494

497, 499, 501, 
503, 505, 507

Zsweep-no 
ref runs MKXIV 2.8 a6 TS0 0 54-66 509, 510, 511 514, 515, 516, 517

AS1 Config #1b 2 AS2 inv MKXIV 2.8 a1 TS0 -180 60 524, 525 544, 545
inv MKXIV 2.8 a1 TS0 -180 30 528, 529 548, 549

13 Beta MKXIV 2.8 a2 TS0 90 60 526, 527 546, 547

Reference MKXIV 2.8 r1 TS0 0 87

523, 530, 532, 
534, 536, 538, 

540, 542

543,
553,555,557,
559,561,563

Zsweep MKXIV 2.8 a6 TS0 0 54-66
531, 533, 535, 
537, 539, 541

554,556,558,
560,562,564

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80

Mach No
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Table 7.4-1.  As-Run Summary (Continued) 

AS1 Config #1c 3 AS3 14 Reference MKXIV 2.8 r1 TS0 0 87
571,573,575,

577,579,581,583
584,586,588,

590,592,594,596

Zsweep MKXIV 2.8 a6 TS0 0 54-66
572,574,576
578,580,582

585,587,589,
591,593,595

BM1 Config#4 5 BM1_W1 B1 GF1 N1 V1 VS2 Reference MKXIV 2.8 r1 TS0 0 87 602,608,610,614
621, 628, 630, 

634, 
inv MKXIV 2.8 a9 TS0 -180 60 605 625
inv MKXIV 2.8 a9 TS0 -180 30 619  638

15 Beta MKXIV 2.8 b1 TS0 0 60 603 622
Beta MKXIV 2.8 b2 TS0 90 60 604 624

force/press MKXIV 2.8 a3 TS0 0 60 606, 607,609 626,627,629
force/press MKXIV 2.8 a3 TS0 0 30 620 639
Roll sweep MKXIV 2.8 a5 TS0 0-45 60 611,612,613 631,632,633

Zsweep MKXIV 2.8 a6 TS0 0 54-66 615,616,618 635,636,637
8 deg Cone Fairing 3 CF Reference MKXIV 2.8 r1 TS0 0 87.5 644,647 654

16 Zsweep MKXIV 2.8 0 TS0 0 54-66 645,648,649,650 655,656,657
Zsweep MKXIV 2.8 3.2 TS0 0 54-66 651,652,653 658,659,660

BM1 Config#7 BM1_W1 B1 GF1 VS2 Reference MKXIV 2.8 r1 TS0 0 87 669, 672, 674, 678 682, 685, 687, 691
10 17 force/press MKXIV 2.8 a3 TS0 0 60 670, 671, 673 683, 684, 686

Roll sweep MKXIV 2.8 a5 TS0 0-45 60 675, 676, 677 688, 689, 690
Zsweep MKXIV 2.8 a6 TS0 0 54-66 679, 680, 681 692, 693, 694

BM2 Config#9 BM2_W2 B2 GF2 N2 V2 VS2 Reference MKXIV 2.8 r1 TS0 0 87 700, 704, 708 714, 718, 722
8 18 force/press MKXIV 2.8 a3 TS0 0 60 701, 702, 703 715, 716, 717

Roll sweep MKXIV 2.8 a5 TS0 0-45 60 705, 706, 707 719, 720, 721
Zsweep MKXIV 2.8 a6 TS0 0 54-66 711, 712, 713 723, 724, 725

Repeats
BM1 Config#4 5 BM1_W1 B1 GF1 N1 V1 VS2 19 Reference MKXIV 2.8 r1 TS0 0 90 731, 735 737, 741

force/press MKXIV 2.8 a3 TS0 0 60 732, 734, 736 739, 740, 742

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80

Mach No
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Table 7.4-1.  As-Run Summary (Continued) 

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80

Mach No

New Boom Model Pressure & Force
PM1 Config#1 PM1_W1B1.1GF1 inv MKXIV 2.8 a1 TS1 180 60 763 791

stream MKXIV 2.8 a2 TS1 0 60 764 792
Beta MKXIV 2.8 a2 TS1 0 60 760, 761 789
Beta MKXIV 2.8 a2 TS1 90 60 762, 766 790

20 Reference MKXIV 2.8 r1 TS1 0 90

758, 767, 769, 
771, 773, 778, 

780, 783, 785, 787

788, 793, 795, 
797, 799, 806, 
809, 811, 813

force/press MKXIV 2.8 a12,a14 TS1 0 60
768, 770, 772, 
779, 784, 786

794, 796, 798, 
805, 810, 812

Roll sweep MKXIV 2.8 a13 TS1 0-45 60 774, 775, 776, 777 800, 801, 802, 803
Zsweep MKXIV 2.8 a15 TS1 0 54-66 781, 782 807, 808

PM1 Config#3 PM1_W1B1.1GF1N1V1 Reference MKXIV 2.8 r1 TS1 0 90

819, 821, 823, 
825, 830, 832, 
835, 837, 839

840, 842, 844, 
846, 851, 853, 
856, 858, 860

21 force/press MKXIV 2.8 a12,a14 TS1 0 60
820, 822, 824, 
831, 836, 838

841, 843, 845, 
852, 857, 859

Roll sweep MKXIV 2.8 a13 TS1 0-45 60 826, 827, 828, 829 847, 848, 849, 850
Zsweep MKXIV 2.8 a15 TS1 0 54-66 833, 834 854, 855

PM1 Config#4 PM1_W1B1.1GF1N1 Reference MKXIV 2.8 r1 TS1 0 90

866,868,870,872,8
77,879,882,884,88

6
887,889,891,893,8

98,901

22 force/press MKXIV 2.8 a12,a14 TS1 0 60
867,869,871,878,8

83,885 888,890,892

Roll sweep MKXIV 2.8 a13 TS1 0-45 60 873,874,875,876 894,895,896,897
Zsweep MKXIV 2.8 a15 TS1 0 54-66 880,881 899,900

PM1 Config#2 PM1_W1B1.1GF1V1 Reference MKXIV 2.8 r1 TS1 0 90
906, 908, 910 912, 

917, 920
921, 923,925, 927, 

935
23 force/press MKXIV 2.8 a12,a14 TS1 0 60 907,909, 911 922, 924, 926

Roll sweep MKXIV 2.8 a13 TS1 0-45 60 913, 914, 915 928, 929, 930, 931
Zsweep MKXIV 2.8 a15 TS1 0 54-66 918, 919 933, 934
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Table 7.4-1.  As-Run Summary (Continued) 

PM1 Config#5 PM1_W1B1.1GF1N2V1 Reference MKXIV 2.8 r1 TS1 0 90
942, 944, 946, 
948, 953, 956

957, 959, 961, 
963, 968, 971

24 force/press MKXIV 2.8 a3 TS1 0 60 943, 945, 947 958, 960, 962

Roll sweep MKXIV 2.8 a5 TS1 0-45 60 949, 950, 951, 952 964, 965, 966, 967
Zsweep MKXIV 2.8 3.24,3.67 TS1 0 54-66 954, 955 969, 970

PM1 Config#9 PM1_W1.3B1.1GF1N1V3 Reference MKXIV 2.8 r1 TS1 0 90
979, 981, 983, 
985, 990, 993

994, 996, 998, 
1000, 1005, 1008

25 force/press MKXIV 2.8 a3 TS1 0 60 980, 982, 984 995, 997, 999

Roll sweep MKXIV 2.8 a5 TS1 0-45 60 986, 987, 988, 989
1001, 1002, 1003, 

1004
Zsweep MKXIV 2.8 a6 TS1 0 54-66 991, 992 1006, 1007

PM1 Config#7 PM1_W1.3B1.1GF1 Reference MKXIV 2.8 r1 TS1 0 90
1014, 1016, 1018, 
1020, 1025, 1028

1029, 1031, 1033, 
1035, 1040, 1043

26 force/press MKXIV 2.8 a3 TS1 0 60 1015, 1017, 1019 1030, 1032, 1034

Roll sweep MKXIV 2.8 a5 TS1 0-45 60
1021, 1022, 1023, 

1024
1036, 1037, 1038, 

1039
Zsweep MKXIV 2.8 a6 TS1 0 54-66 1026, 1027 1041, 1042

PM1 Config#1 PM1_W1B1.1GF1 Reference MKXIV 2.8 r1 TS1 0 90
1049, 1051, 1053, 
1055, 1060, 1063

1064, 1066, 1068, 
1070, 1075, 1078

27 force/press MKXIV 2.8 a3 TS1 0 60 1050, 1052, 1054 1065, 1067, 1069

Roll sweep MKXIV 2.8 a5 TS1 0-45 60
1056, 1057, 1058, 

1059
1071, 1072, 1073, 

1074
Zsweep MKXIV 2.8 a6 TS1 0 54-66 1061, 1062 1076, 1077

PM1 Config#10 PM1_W1.2B1.1GF1 Reference MKXIV 2.8 r1 TS1 0 90 1083 1093, 1094

28 force/press MKXIV 2.8 a3 TS1 0 60 1084, 1085, 1086 1095, 1096, 1097

Roll sweep MKXIV 2.8 a5 TS1 0-45 60
1087, 1088, 1089, 

1090
1098, 1099, 1100, 

1101
Zsweep MKXIV 2.8 a6 TS1 0 54-66 1091, 1092 1102, 1103

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80

Mach No
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Table 7.4-1.  As-Run Summary (Continued) 

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80

Mach No

PM1 Config#12 PM1_W1.2B1.1GF1N1V1 Reference MKXIV 2.8 r1 TS1 0 90 1110 1120
29 force/press MKXIV 2.8 a3 TS1 0 60 1111,1112,1113 1121,1122,1123

Roll sweep MKXIV 2.8 a5 TS1 0-45 60
1114,1115, 1116,  

1117
1124,1125,1126,1

1227
Zsweep MKXIV 2.8 a6 TS1 0 54-66 1118,1119 1128,1129

PM1 Config#14 PM1_W1B1.1GF1N1IP2V1 Reference MKXIV 2.8 r1 TS1 0 90 1140 1148

30 force/press MKXIV 2.8 a3 TS1 0 60 1141, 1142, 1143 1149, 1150, 1151

Roll sweep MKXIV 2.8 a5 TS1 0-45 60
1144, 1145, 1146, 

1147
1152, 1153, 1154, 

1155
AS1 Config #1a AS1 31 Reference MKXIV 2.8 r1 TS1 0 90

Zsweep MKXIV 2.8 a6 TS1 0 54-66 1179, 1180, 1181 1182, 1183, 1184

1.50 1.70 1.90 2.00
1162 1166 1170 1174, 1175

1163, 1164, 
1165

1167, 1168, 
1169

1171, 1172, 
1173

1176, 1177, 
1178

Mach

Series 31 cont’d
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Table 7.4-1.  As-Run Summary (Continued) 

  

CFD Code
WT

Code Model Config Series Data Bal Re Alpha Trip
Roll

Angle Height 1.60 1.80

Mach No

AS1 Config #1a AS1 32 Reference MKXIV 2.8 r1 TS1 0 90 1189 1193

Zsweep MKXIV 2.8 0 TS1 0 54-66 1190, 1191, 1192 1194,1195,1196
Reference MKXIV 2.8 0 TS1 0 86 1202 1198*
time dep MKXIV 2.8 0 TS1 0 54 1203 1199*
time dep MKXIV 2.8 0 TS1 0 60 1204 1200*
time dep MKXIV 2.8 0 TS1 0 66 1205 1201*

Reference MKXIV 2.8 0 TS1 0 86 1202
Reference MKXIV 2.8 0 TS1 0 54 1203
Reference MKXIV 2.8 0 TS1 0 60 1204
Reference MKXIV 2.8 r1 TS1 0 66 1205

8 deg Cone Fairing CF 33 Reference MKXIV 2.8 r1 TS1 0 86 1215 1226
time dep MKXIV 2.8 0 TS1 0 54 1216 1227
time dep MKXIV 2.8 0 TS1 0 56 1217 1228
time dep MKXIV 2.8 0 TS1 0 58 1218 1229
time dep MKXIV 2.8 0 TS1 0 60 1219 1230
time dep MKXIV 2.8 0 TS1 0 62 1220 1231
time dep MKXIV 2.8 0 TS1 0 64 1221 1232
time dep MKXIV 2.8 0 TS1 0 66 1222 1233
time dep MKXIV 2.8 0 TS1 0 72 1223 1234
time dep MKXIV 2.8 0 TS1 0 75 1224 1235
time dep MKXIV 2.8 r1 TS1 0 86.8 1225 1236

PT2106 reference MKXIV 2.8 r1 TS1 0 86.8 1236 1237
time dep MKXIV 2.8 0 TS1 0 60 1240 1238
time dep MKXIV 2.8 r1 TS1 0 86.8 1225 1236

*2 second data points x 30
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7.5  Data Quality and Test Results 

Pressure Data Signatures and Repeatability 

Short-term repeatability of the pressure signatures was assessed during the test. A “snapshot” of the 
repeatability is presented herein for a representative configuration of each type of model tested. For each 
configuration, data comparisons are provided for the two nominal model heights above the rail (30 and 60 
in, when available) and for the two Mach conditions tested (1.60 and 1.80). In general, dP/P overpressure 
repeatability for the BOR and boom models is within ±0.002 for the 30-in rail heights and within ±0.001 
for the 60-in heights. The performance model repeatability data, only available at the H = 60-in nominal 
position, is within ±0.002 for both Mach conditions tested. Refer to Reference 28 for the complete 
repeatability assessments performed for all test configurations. 

Figures 7.5-1 and 7.5-2 show the typical “dP/P” pressure repeatability for the BOR configurations 
(AS1 shown) for M = 1.60 and 1.80, respectively. These results are similar for the other two BOR 
models. 

 
Figures 7.5-3 and 7.5-4 show the typical pressure repeatability for the boom model configurations 

(Boom Model 1 [BM1], Configuration 4 shown) for M = 1.60 and 1.80, respectively. 
  
Figures 7.5-5 and 7.5-6 show the typical pressure repeatability for the performance model 

(Performance Model 1 [PM1], Configuration 4 shown) for M = 1.60 and 1.80, respectively. 
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Figure 7.5-1.  Typical BOR Pressure Data Repeatability, M = 1.60  

(a)  H = 30 
i  

(b)  H = 60 
i  AS1 

BM1 Config#1a:
Series 1:
BOR Config#1a: 

AS1 
BM1 Config#1a:
Series 1:
BOR Config#1a: 
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Figure 7.5-2.  Typical BOR Pressure Data Repeatability, M = 1.80  

(a)  H = 30 
i  

(b)  H = 60 
i  

AS1 
BM1 Config#1a:
Series 1:
BOR Config#1a: 

AS1 
BM1 Config#1a:
Series 1:
BOR Config#1a: 
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BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5:

 

 

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15:

 

Figure 7.5-3.  Typical Boom Model Pressure Data Repeatability, M = 1.60  

(b)  H = 60 
i  

(a)  H = 30 
i  
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BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5:

 

   

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15:

 

Figure 7.5-4.  Typical Boom Model Pressure Data Repeatability, M = 1.80 

(a)  H = 30 
i  

(b)  H = 60 
i  
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PM1_W1 B1 GF1 N1 V1
PM1 Config#3 :
Series 21:

PM1_W1 B1 GF1 N1 V1
PM1 Config#3 :
Series 21:

 

Figure 7.5-5.  Typical Performance Model Pressure Data Repeatability, M = 1.60 

(b)  H = 60 
i  

Not Run 

(a)  H = 30 
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PM1_W1 B1 GF1 N1 V1
PM1 Config#3 :
Series 21:

PM1_W1 B1 GF1 N1 V1
PM1 Config#3 :
Series 21:

 

Figure 7.5-6.  Typical Performance Model Pressure Data Repeatability, M = 1.80 

(a)  H = 30 

(b)  H = 60 
i  

Not Run 
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Reference Run (“Up and Away”) Pressure Data Repeatability 

A “snapshot” of the consistency of the reference run data used to “tare” the dP/P sonic boom 
signatures is provided herein for the same BOR and BM configurations discussed above. These reference 
runs were acquired frequently during a constant Mach run series by moving the model far away from the 
pressure rail to provide a rail signature void of any model influence. The acquired reference runs were 
averaged to create the tare correction for the run series. For each configuration, data comparisons are 
provided for the two nominal model heights above the rail (30 and 60 in, when available) and for the two 
Mach conditions tested (1.60 and 1.80). In general, the dP/P overpressure scatter for the reference runs is 
between ±0.001 and ±0.002 for both the 30-in and 60-in rail height run series, consistent with the rail 
pressure signature data repeatability.   

Figures 7.5-7 and 7.5-8 show the typical “dP/P” reference run repeatability for the BOR configurations 
(AS1 shown) for M = 1.60 and 1.80, respectively. These results are similar for the other two BOR 
models. 

Figures 7.5-9 and 7.5-10 show the typical “dP/P” reference run repeatability for the Boom model  
configurations (BM1, Configuration 4 shown) for M = 1.60 and 1.80, respectively. 
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Figure 7.5-7.  Typical BOR Reference Run Pressure Data Repeatability, M = 1.60, H = ~86”

(a)  For H = 30 data 
 

(b)  For H = 60 data 
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Figure 7.5-8.  Typical BOR Reference Run Pressure Data Repeatability, M = 1.80, H = ~86” 

(a)  For H = 30 data 
 

(b)  For H = 60 data 
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Figure 7.5-9.  Typical Boom Model Reference Run Pressure Data Repeatability, M = 1.60, H = ~86” 

(a)  For H = 30 data 
 

(b)  For H = 60 data 
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Figure 7.5-10.  Typical Boom Model Reference Run Pressure Data Repeatability, M = 1.80, H = ~86”

(a)  For H = 30 data 
 

(b)  For H = 60 data 
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Pressure Data Alpha Variation 

The effect of alpha (angle-of-attack) variation was assessed during the test. A “snapshot” of these 
comparisons is presented herein for the same configurations as those addressed above for the overpressure 
evaluations for consistency. For each configuration, data comparisons are provided for the two nominal 
model heights above the rail (30 and 60 in, when available) and for the two Mach conditions tested (1.60 
and 1.80). Refer to Reference 28 for the complete repeatability assessments performed for all test 
configurations. 

Figures 7.5-11 and 7.5-12 show the typical “dP/P” pressure variation with alpha for the BOR 
configurations (AS1 shown) for M = 1.60 and 1.80, respectively. 

Figures 7.5-13 and 7.5-14 show the typical pressure variation with alpha for the boom model 
configurations (BM1, Configuration 4 shown) for M = 1.60 and 1.80, respectively.  

Figures 7.5-15 and 7.5-16 show the typical pressure variation with alpha for the performance model 
(PM1, Configuration 4 shown) for M = 1.60 and 1.80, respectively. 
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Figure 7.5-11.  Typical BOR Pressure Data Variation with Angle of Attack, M = 1.60 

(a)  H = 30 
i  

(b)  H = 60 
i  
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Figure 7.5-12.  Typical BOR Pressure Data Variation with Angle of Attack, M = 1.80

(a)  H = 30 
i  

(b)  H = 60 
i  
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Figure 7.5-13.  Typical Boom Model Pressure Data Variation with Angle of Attack, M = 1.60 

(a)  H = 30 
i  

(b)  H = 60 
i  
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Figure 7.5-14.  Typical BM Pressure Data Variation with Angle of Attack, M = 1.80

(a)  H = 30 
i  

(b)  H = 60 
i  
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Figure 7.5-15.  Typical Performance Model Pressure Data Variation with Angle of Attack, M = 1.60 

(a)  H = 30 
i  

(b)  H = 60 
i  

Not Run 
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Figure 7.5-16.  Typical Performance Model Pressure Data Variation with Angle of Attack, M = 1.80 

(a)  H = 30 
i  

(b)  H = 60 
i  

Not Run 
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Force and Moment (F&M) Data and Repeatability 

Force and moment data quality and repeatability was assessed for all model configurations. A 
“snapshot” of these repeatability comparisons is presented herein for the same configurations as those 
addressed above for the overpressure evaluations for consistency. The entire set of repeatability 
assessments are provided in Reference 28. The provided figures show the drag polar, lift, and moment 
curves for the nominal model heights of 30 and 60 inches above the rail and for the two Mach conditions 
tested (1.60 and 1.80) for each model type. The lower plot in each figure shows the 95% confidence 
interval based on all available data points and curve fit. 

Figures 7.5-17 and 7.5-18 show the F&M data repeatability for the BOR configurations (AS1 shown) 
for M = 1.60 and 1.80, respectively. These results are consistent with the other two BOR models. The 
data scatter is quite good considering the lower loads measured by the balance for these configurations. 

Figures 7.5-19 and 7.5-20 show the F&M data repeatability for the boom model configurations (BM1, 
Configuration 4 shown) for M = 1.60 and 1.80, respectively. Drag repeatability is shown to be within ±2 
drag counts for both within-series and over the test. The lower loads measured by the balance for the 
boom model configuration should be considered in these assessments. 

Figures 7.5-21 and 7.5-22 show the F&M data repeatability for the performance model (PM1, 
Configuration 4 shown) for M = 1.60 and 1.80, respectively. Drag repeatability is shown to be within 
±0.25 drag counts for the within-series comparisons and ±1 count over the test (i.e., series-to-series). 
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Figure 7.5-17.  Typical BOR F&M Data Quality, M = 1.60 

(a)  H = 30 

(b)  H = 60 
i  

Not Assessed 

 AS1 
BM1 Config#1a:
Series 1:
BOR Config#1a: 
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Figure 7.5-18.  Typical BOR F&M Data Quality, M = 1.80 

 

(a)  H = 30 

(b)  H = 60 
i  

Not Assessed 

 AS1 
BM1 Config#1a:
Series 1:
BOR Config#1a: 
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Figure 7.5-19.  Typical BM F&M Data Repeatability, M = 1.60 

(a)  H = 30 

(b)  H = 60 
i  

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5 & 9:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5 & 9:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5 & 9:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15 & 19:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15 & 19:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15 & 19:
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Figure 7.5-20.  Typical BM F&M Data Repeatability, M = 1.80 

(a)  H = 30 

(b)  H = 60 
i  

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5 & 9:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5 & 9:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 5 & 9:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15 & 19:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15 & 19:

BM1_W1 B1 GF1 N1 V1 VS2 
BM1 Config#4 :
Series 15 & 19:
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Figure 7.5-21.  Typical PM F&M Data Repeatability, M = 1.60

(a)  H = 30 

(b)  H = 60 
i  

Not Run 

PM1_W1 B1 GF1
PM1 Config#1 :
Series 20 and 27:

PM1_W1 B1 GF1
PM1 Config#1 :
Series 20 and 27:
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Figure 7.5-22.  Typical PM F&M Data Repeatability, M = 1.80 

(a)  H = 30 

(b)  H = 60 
i  

Not Run 

PM1_W1 B1 GF1
PM1 Config#1 :
Series 20 and 27:

PM1_W1 B1 GF1
PM1 Config#1 :
Series 20 and 27:
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Force Data Variation With Height   

The effect of model height above the rail on the force and moment data was assessed. For these runs, 
the model was moved in the ± “z-direction” from the noted nominal model position while it remained at a 
constant angle of attack. A “snapshot” of height variation is presented herein for the same boom and 
performance model configurations as discussed in the previous sections. As can be seen in the figures, 
there is a notable effect of model position on the F&M data. 

Figures 7.5-23 and 7.5-24 show the effect of the model height on the F&M data for the boom model 
configuration (BM1, Configuration 4 shown) for M = 1.60 and 1.80, respectively. There is a noticeable 
(~11 counts) positive drag shift with model height at the nominal 30-inch position for both Mach 
numbers. This positive drag shift trend is also observed in the 60-inch Mach 1.80 data but the trend 
reverses at Mach 1.80 at the 30-in model position. There is also a positive trend in side force (~0.005) 
consistent with both Mach numbers. The pitching moment trend reverses from positive at M = 1.60 to 
negative at M = 1.80. It is perceived that these effects are attributable to an absence of flow uniformity in 
the test section. 

Figures 7.5-25 and 7.5-26 show the effect of the model height on the F&M data for the performance 
model configurations (PM1, Configuration 1 shown) for M = 1.60 and 1.80, respectively. There is little 
effect of model height on the lift, drag, or pitching moment at either Mach numbers. However, there still 
remains the positive trend in side force, ~0.005 at M = 1.60, that doubles in magnitude at M = 1.80. 



 

121 

 

 

 

Figure 7.5-23.  Typical Boom Model F&M Height Variation, M = 1.60

(a)  H = 30 

(b)  H = 60 
i  
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Figure 7.5-24.  Typical Boom Model F&M Height Variation, M = 1.80

(a)  H = 30 

(b)  H = 60 
i  
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Figure 7.5-25.  Typical Performance Model F&M Height Variation, M = 1.60 

(a)  H = 30 

(b)  H = 60 
i  

Not Run 
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Figure 7.5-26.  Typical Performance Model F&M Height Variation, M = 1.80

(a)  H = 30 

(b)  H = 60 
i  

Not Run 
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7.6  Wind Tunnel Test Summary and Conclusions 

Through excellent teamwork and extensive pretest planning and preparation, the AS0229 N+2 
Experimental Validation test was deemed very successful. The NASA Ames 9’ x 7’ supersonic wind 
tunnel test facility offered “world-class” productivity, with more than 1230 force and pressure runs 
acquired throughout a 20-shift entry. A total of 19 configurations were evaluated at various locations in 
the tunnel with more than 33 wind-on series.  

Following a thorough, systematic calibration of the new 2” alternate pressure rail fabricated for the test 
using three calibration bodies (bodies of revolution), it was concluded that the rail met all desired Boeing 
criteria and provided commercial-level productivity for sonic boom testing. The rail was readily installed 
and its 458 pressures all remained healthy throughout the test. Although flow quality issues had been 
discovered in the NASA Ames 9’ x 7’ supersonic wind tunnel facility (e.g., sinusoidal pressure variation 
with strut location) that may have influenced the pressure rail evaluations, with proper corrections the rail 
should allow experimental validation of N+2 concepts.* Clean-tunnel variations and repeatability with 
body of revolution data are within ±0.001 to ±0.002. Furthermore, there does not seem to be any 
interference issues with the alternate pressure rail.  

Data quality was very good and within the accuracy/uncertainty of the instrumentation. Model 
dynamics were not a problem for any of the models tested, although precautions had been taken (e.g., 
additional boom model sting parts) before the test to potentially mitigate any effects had they arisen. 
There was no evidence of strong signal-to-rail/tunnel wall interferences, nor was there any evidence of 
strong shock/shock interference. Short- and long-term force and pressure repeatability were good. In 
addition, no strong time-dependency effects were observed. 

It was observed that strut position can affect the reference run pressures. Model overall size and angle 
of attack also affect the pressures above and beyond the boom signal. Because similar effects have been 
seen previously on the 2-, 5.25-, 14- and 18-inch rails, it is reasonable to expect that these features span 
the test section and are not strictly wall-to-wall/boundary layer-dependent. For the test methods used in 
this test, the individual signatures at a specified axial and lateral (from wall) position in the tunnel must be 
viewed as having a signal with a bias and precision error built-in. That error was often on the same order 
as the signal. A “standard” correction (using a single reference run obtained in a specific manner) was not 
a sufficient tare for the pressure rail, given the facility capabilities and characteristics. Future tests should 
consider randomizing the bias, using spatial averaging to improve the data (i.e., use model movement), 
creating correlations (more instrumentation upstream in vanes), providing flow conditioning in front of 
the rail or aft of the model/strut, and, perhaps, changing how the model is positioned.* Additional test-
methods development work is required to more fully capitalize on the total capability of the 9’ x 7’ 
facility with regard to sonic boom testing, and additional work is needed to reduce the overall uncertainty 
of the experimental datasets used for validation. 

* Note: After the validation test, additional wind tunnel investigation of the 2” alternate and 14” blade rail were conducted.  It was found that 
spatial averaging in the axial direction significantly improves the data quality.  It was also determined that the rails had up to ~6 seconds of 
pressure lag due to the long line lengths in the rail instrumentation.  The 14” blade rail provided for a consistent reflection factor of 1 and no 
tunnel wall reflections for model lengths less than ~35 inches at a Mach number of 1.6.  The 2” alternate rail, due to its shorter height, does have 
a tunnel wall reflection for model lengths greater than ~5 inches at a Mach number of 1.6.  Based on Boeing experience, testing in tunnels with 
porous walls may remove this issue. However, with proper corrections these reflections can be removed from the data in any tunnel.    The 
preferred rail for future testing depends upon the size of the model.  For small sonic boom models the 14 inch blade rail appears to be the best 
choice, especially for minimal corrections to the data.  For models larger than 35 inches at Mach 1.6, the preferred choice may be the 2” alternate 
rail, especially if the interest is in the aft signature on a model with propulsion affects. In this situation both rails require corrections, but the H/L 
can be maximized with the 2” alternate rail. 
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8.0  CFD AND VALIDATION ANALYSIS 

8.1  Overview 

The AS-0229 NASA Ames 9’ x 7’ supersonic wind tunnel sonic boom and performance test 
performed in April 2011 provided a substantial database for CFD calibration. Data were acquired at M = 
1.6 and M = 1.8 at heights of 24 to 36 inches and 54 to 66 inches from a wall-mounted pressure rail. 
Forces and moments of the model configurations were acquired by a full six-component force balance. 
Test models included three bodies of revolution, 5 configurations of a 15-inch-long boom model and 10 
configurations of a 44-inch-long performance model. Figure 8.1-1 provides illustrations of the models and 
the corresponding test parameters.  
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Note: Configurations highlighted in blue are those used for validation of the Boeing Sonic Boom Tool Suite. 

 

BM1_W1 B1 GF1 N1 V1 
VS1 BM1 Config#2:
Series 4:

BM1_W1 B1 GF1 N1 V1 
VS2 BM1 Config#4 :
Series 5:

BM1_W1 B1 GF1 V1 VS2 
BM1 Config#5 :
Series 6:

BM1_W1 B1 GF1 VS2 
BM1 Config#7 : 
Series 7: 

BM2_W2 B2 GF2 N2 V2 
VS2 
BM2 Config#9 :
Series 8:

BM2_W2 B2 GF2 N2 V2 
VS2 
BM2 Config#9 :
Series 8:

PM1_W1 B1 GF1
PM1 Config#1 :
Series 20:

PM1_W1 B1 GF1 N1 V1
PM1 Config#3 :
Series 21:

PM1_W1 B1 GF1 N1
PM1 Config#4 :
Series 22:

PM1_W1 B1 GF1 N1
PM1 Config#4 :
Series 22:

PM1_W1 B1 GF1 V1
PM1 Config#2 :
Series 23:

PM1_W1 B1 GF1 V1
PM1 Config#2 :
Series 23:

PM1_W1 B1 N2 GF1 V1
PM1 Config#5 :
Series 24:

PM1_W1 B1 N2 GF1 V1
PM1 Config#5 :
Series 24:

PM1_W1.3 B1 GF1 N1 
V3
PM1 Config#9 :
Series 25:

PM1_W1.3 B1 GF1 N1 
V3
PM1 Config#9 :
Series 25:

PM1_W1.3 B1 GF1 
PM1 Config#7 :
Series 26:

PM1_W1.3 B1 GF1 
PM1 Config#7 :
Series 26:

PM1_W1.2 B1 GF1
PM1 Config#10 :
Series 28:

PM1_W1.2 B1 GF1
PM1 Config#10 :
Series 28:

PM1_W1.2 B1 GF1 N1 
V1
PM1 Config#12 :
Series 29:

PM1_W1.2 B1 GF1 N1 
V1
PM1 Config#12 :
Series 29:

PM1_W1 B1 GF1 N1 IP2 
V1
PM1 Config#14 :
Series 30:

PM1_W1 B1 GF1 N1 IP2 
V1
PM1 Config#14 :
Series 30:

AS1 
BM1 Config#1a:
Series 1:

AS2
BM1 Config#1b:
Series 2:

AS3 
BM1 Config#1c:
Series 3:

3 calibration bodies: Data available at 
M=1.6 & 1.8, 24-36in and 54-66in from rail

5 Boom Model configurations:  Data at M=1.6 
& 1.8, 24-36in and 54-66 in from rail

10 Performance Model configurations:  
Data at M=1.6 & 1.8, 54-66 in from rail

 

Figure 8.1-1.  Available NASA Ames 9’ x 7’ Supersonic Wind Tunnel AS-0229 Test Configurations
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8.2  Summary of CFD Cases 

Pre-test and post-test OVERFLOW Euler and Navier Stokes analyses were run on 10 of the tested 
configurations (see the highlighted configurations in Figure 8.1-1), predominantly at the wind tunnel 
Reynolds number. Cases for all boom model configurations were run with and without the upper swept 
strut. Tables 8.2-1 through 8.2-3 define attributes of each of the CFD cases run for the body of revolution, 
boom and performance models, respectively. Each checked box in the tables indicates an available 
solution. The solutions for the performance model configurations were obtained with both a cylindrical 
wake and a sharp step sting. Additional analyses were undertaken to quantify the effects of model support 
hardware, aeroelastics and wind tunnel Reynolds numbers (WT Re) on the data. As expected, the wind 
tunnel test environment (modification for model support, WT Re) significantly alters the signatures. 
Overall, the correlation with test data was good and well within the accuracy/uncertainty of the 
experimental data. 

 



 

129 
 

Table 8.2-1.  CFD Cases for BOR Models   

AS1, Configuration 1a, CFD Analysis 

  
   

 
  

 
 

 
 

 
 

 

Configuration # 1a 1.60 0.00 X X X X X X X X
AS1 1.60 1.00 X X X X X X X X

1.60 2.00 X X X X X X X X
1.60 3.00 X X X X X X X X

Series #1 1.60 4.00 X X X X X X X X
1.60 5.00 X X X X X X X X
1.60 0.120
1.60 0.140
1.60 0.160
1.80 0.00 X X X X X X X X
1.80 1.00 X X X X X X X X
1.80 2.00 X X X X X X X X
1.80 3.00 X X X X X X X X
1.80 4.00 X X X X X X X X
1.80 5.00 X X X X X X X X
1.80 0.080
1.80 0.100
1.80 0.120

   

 

  

 

BOR MODEL CASES Mach Alpha CL
Euler 
F&M

NS 
F&M

H=30 in
EU DP/P

H=60 in
EUDP/P

H=90 in
EU DP/P

H=30 in
NS DP/P

H=60 in
NS DP/P

H=90 in
NS DP/P

   

 

   

 

  

 

 

AS2, Configuration 1b, CFD Analysis 

  
   

 
  

 
 

 
 

 
 

 

   

 

Configuration # 1b 1.60 0.00 X X X X X X X X
AS2 1.60 1.00 X X X X

1.60 2.00 X X X X
1.60 3.00 X X X X

Series #2 1.60 4.00 X X X X
1.60 5.00 X X X X
1.60 0.120
1.60 0.140
1.60 0.160
1.80 0.00 X X X X X X X X
1.80 1.00 X X X X
1.80 2.00 X X X X
1.80 3.00 X X X X
1.80 4.00 X X X X
1.80 5.00 X X X X
1.80 0.080
1.80 0.100
1.80 0.120

  1 60 0 00 X X X X X X X X

 

BOR MODEL CASES Mach Alpha CL
Euler 
F&M

NS 
F&M

H=30 in
EU DP/P

H=60 in
EUDP/P

H=90 in
EU DP/P

H=30 in
NS DP/P

H=60 in
NS DP/P

H=90 in
NS DP/P

   

 

   

 

  

 

 

AS3, Configuration 1c, CFD Analysis 

  
   

 
  

 
 

 
 

 
 

 

   

 

   

 

Configuration # 1c 1.60 0.00 X X X X X X X X
AS3 1.60 1.00 X X X X X

1.60 2.00 X X X X X
1.60 3.00 X X X X X

Series #1 1.60 4.00 X X X X X
1.60 5.00 X X X X X
1.60 0.120
1.60 0.140
1.60 0.160
1.80 0.00 X X X X X X X X
1.80 1.00 X X X X X
1.80 2.00 X X X X X
1.80 3.00 X X X X X
1.80 4.00 X X X X X
1.80 5.00 X X X X X
1.80 0.080
1.80 0.100
1.80 0.120

BOR MODEL CASES Mach Alpha CL
Euler 
F&M

NS 
F&M

H=30 in
EU DP/P

H=60 in
EUDP/P

H=90 in
EU DP/P

H=30 in
NS DP/P

H=60 in
NS DP/P

H=90 in
NS DP/P
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Table 8.2-2.  CFD Cases for BM Models 

 

BM1, Configuration 2, CFD Analysis 

 

 

 

BM1, Configuration 4, CFD Analysis 

 

 

 

BM1, Configuration 4, AE = -2 CFD Analysis 
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Table 8.2-2.  CFD Cases for BM Models (Continued) 

 

BM1, Configuration 4, AE = -4 CFD Analysis 

 

 

 

BM1, Configuration 5, CFD Analysis 

 

 

 

BM1, Configuration 6, CFD Analysis 
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Table 8.2-2.  CFD Cases for BM Models (Continued) 

 

BM1, Configuration 7, CFD Analysis 

 

 

 

BM2, Configuration 9, CFD Analysis 

 

 

 

BM2, Configuration 10, CFD Analysis 
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Table 8.2-2.  CFD Cases for BM Models (Continued) 

BM2, Configuration 12, CFD Analysis 

 

Table 8.2-3.  CFD Cases for PM Models 

PM1, Configuration 1, CFD Analysis 

 

PM1, Configuration 3, CFD Analysis 
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Table 8.2-3.  CFD Cases for PM Models (Continued) 

PM1, Configuration 3, with Aeroelastics CFD Analysis 

 

PM1, Configuration 3, with Closed Aft-Body CFD Analysis 
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8.3  Body of Revolution CFD vs. Test Pressure Signature Comparisons 

Pressure Signatures 

Comparisons of the CFD results with the Ames 9’ x 7’ supersonic wind tunnel AS-0229 test data for 
each of the BOR model configurations at alpha = 0 deg are provided in this section. The CFD results 
assume an isolated model corrected with a 30% amplification factor to account for the effect of the flat-
top reflective nature of the rail. 

Figures 8.3-1 and 8.3-2 compare the “dP/P” pressure signatures from the CFD OVERFLOW solutions 
and the corresponding wind tunnel test data for the AS1 body of revolution configuration for M = 1.60 
and 1.80, respectively, and at heights (of nose) of 24 and 58 inches above the rail. In addition to the 
amplification factor, the CFD data were extracted at 30 and 60 inches off-body and corrected for 
amplitude by a factor of 30/24 and 60/58, respectively. 

 
Figures 8.3-3 and 8.3-4 compare the “dP/P” pressure signatures from the CFD OVERFLOW solutions 

and the corresponding wind tunnel test data for the AS2 body of revolution configuration for M = 1.60 
and 1.80, respectively, and at heights (of nose) of 24 and 56 inches above the rail. In addition to the 
amplification factor, the CFD data were extracted at 30 and 60 inches off-body and corrected for 
amplitude by a factor of 30/24 and 60/56, respectively. 

 
Figures 8.3-5 and 8.3-6 compare the “dP/P” pressure signatures from the CFD OVERFLOW solutions 

and the corresponding wind tunnel test data for the AS3 body of revolution configuration for M = 1.60 
and 1.80, respectively, and at heights (of nose) of 24 and 56 (for M = 1.60) or 58 (for M = 1.80) inches 
above the rail. In addition to the amplification factor, the CFD data were extracted at 30 and 60 inches 
off-body and corrected for amplitude by a factor of 30/24 and 60/56 (or 60/58), respectively. 
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Figure 8.3-1.  AS1 Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.60  

(b)  H = 58 
i  

(a)  H = 24 
i  
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Figure 8.3-2.  AS1 Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.80  

(b)  H = 58 
i  

(a)  H = 24 
i  
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Figure 8.3-3.  AS2 Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.60  

(b)  H = 56 
i  

(a)  H = 24 
i  
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Figure 8.3-4.  AS2 Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.80  

(b)  H = 56 
i  

(a)  H = 24 
i  
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Figure 8.3-5.  AS3 Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.60  

(b)  H = 56 
i  

(a)  H = 24 
i  
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Figure 8.3-6.  AS3 Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.80  

(b)  H = 58 
i  

(a)  H = 24 
i  
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8.4  Boom Model CFD vs. Test Pressure Signature and F&M Comparisons 

Pressure Signatures 

Comparisons of the CFD results with the NASA Ames 9’ x 7’ supersonic wind tunnel AS-0229 
pressure signature test data for boom models BM1, Configuration 4 and BM2, Configuration 9 at alpha = 
3.6 deg are provided in this section. The CFD results assume an isolated model corrected with a 30% 
amplification factor to account for the effect of the flat-top reflective nature of the rail. In addition to the 
amplification factor, CFD data were extracted at 30 and 60 inches off-body and corrected for amplitude 
by a factor of 30/24 and 60/56, respectively. See Reference 30 for the complete validation results. 

Figures 8.4-1 and 8.4-2 compare the “dP/P” pressure signatures from the CFD OVERFLOW solutions 
and the corresponding wind tunnel test data for BM1, Configuration 4 for M = 1.60 and 1.80, 
respectively, and at heights (of nose) of 24 and 56 inches above the rail. 

 
Figures 8.4-3 and 8.4-4 compare the “dP/P” pressure signatures from the CFD OVERFLOW solutions 

and the corresponding wind tunnel test data for BM2, Configuration 9 for M = 1.60 and 1.80, 
respectively, and at heights (of nose) of 24 and 56 inches above the rail. 
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Figure 8.4-1.  BM1, Configuration 4,  
Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.60  

(b)  H = 56 
i  

(a)  H = 24 
i  
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Figure 8.4-2.  BM1, Configuration 4,  
Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.80  

(b)  H = 56 
i  

(a)  H = 24 
i  
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Figure 8.4-3.  BM2, Configuration 9,  
Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.60  

(b)  H = 56 
i  

(a)  H = 24 
i  
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Figure 8.4-4.  BM2, Configuration 9,  
Pressure Signature Comparison of OVERFLOW vs. Test, M = 1.80  

(b)  H = 56 
i  

(a)  H = 24 
i  
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Forces and Moments 

Comparisons of the CFD results with the NASA Ames 9’ x 7’ supersonic wind tunnel AS-0229 force 
and moment test data for boom models BM1, Configuration 4 and BM2, Configuration 9 are provided in 
this section. The provided figures show the drag polar, lift, and moment curves for the nominal model 
height of 30 inches above the rail and for the two Mach conditions tested (1.60 and 1.80) for each model 
type.  

Figures 8.4-5 and 8.4-6 compare the force and moment characteristics from the CFD OVERFLOW 
solutions and the corresponding wind tunnel test data for BM1, Configuration 4 for M = 1.60 and 1.80, 
respectively, at H = 30 inches. 

 
Figures 8.4-7 and 8.4-8 compare the force and moment characteristics from the CFD OVERFLOW 

solutions and the corresponding wind tunnel test data for BM2, Configuration 9 for M = 1.60 and 1.80, 
respectively, at H = 30 inches. 

 

 

Figure 8.4-5.  BM1, Configuration 4, F&M Comparison of OVERFLOW vs. Test, M = 1.60  
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Figure 8.4-6.  BM1, Configuration 4, F&M Comparison of OVERFLOW vs. Test, M = 1.80 
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Figure 8.4-8.  BM2, Configuration 9, F&M Comparison of OVERFLOW vs. Test, M = 1.80  

 

Incremental Forces and Moments 

Comparisons between OVERFLOW isolated model CFD and wind tunnel force and pressure 
increments at a height of 30 inches are provided in this section. The configuration increment is between 
BM1, Configuration 4 and BM2, Configuration 9 and is shown at both Mach 1.6 and Mach 1.8.  

Figure 8.4-9 compares the pressure and F&M increments between the CFD OVERFLOW solutions 
and the corresponding wind tunnel test data. The CFD data have been corrected with a 60% amplification 
factor to account for the effect of the flat-top reflective nature of the rail. The top plots show the 
increment in the pressure signature between the two configurations, whereas the bottom plots show the 
force increments in lift, drag, and pitching moment between BM1 and BM2. 

 
Figures 8.4-10 and 8.4-11 compare the pressure and F&M increments between the OVERFLOW 

isolated model CFD and wind tunnel force and pressure increments at Mach 1.6 and 1.8, respectively. 
The results shown are for a height of 30 in. The configuration increment is between BM1, Configuration 
4 and BM2, Configuration 9. The CFD data have been corrected with a 60% amplification factor to 
account for the effect of the flat-top reflective nature of the rail. The top left plots in each figure show the 
CFD and wind tunnel pressure results for the two configurations, whereas the top right plots show the 
increment in the pressure signature. The bottom plots show the force increments in lift, drag, and pitching 
moment between BM1 and BM2. 
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Delta=BM1#4 – BM2#9 (Full config comparison)
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Figure 8.4-9.  BM1, Configuration 4 to BM2, Configuration 9, Pressure and F&M Increments—Comparison of OVERFLOW vs. Test 
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Delta=BM1#4 – BM2#9 (Full config comparison)
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Figure 8.4-10.  BM1, Configuration 4 to BM2, Configuration 9, Pressure and F&M Increments, M = 1.60,  
Comparison of OVERFLOW vs. Test 
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Delta=BM1#4 – BM2#9 (Full config comparison)

-0.030

-0.020

-0.010

0.000

0.010

0.020

0.030

0 2 4 6 8 10 12 14 16 18 20

de
lta

 D
P/

P

X (in)

BM1 CFG4 vs BM2 CFG9 - Mach 1.8, CL 0.06

CFD increment

WT increment

0

1

2

3

4

5

6

0.060 0.070 0.080 0.090

Al
ph

a 
(d

eg
)

ΔCL

0

1

2

3

4

5

6

-0.010 -0.005 0.000 0.005 0.010

Al
ph

a 
(d

eg
)

ΔCD

0

1

2

3

4

5

6

-0.100 -0.050 0.000 0.050
Al

ph
a 

(d
eg

)

ΔCM

0

1

2

3

4

5

6

0.060 0.070 0.080 0.090

Al
ph

a 
(d

eg
)

ΔCL

0

1

2

3

4

5

6

-0.010 -0.005 0.000 0.005 0.010

Al
ph

a 
(d

eg
)

ΔCD

0

1

2

3

4

5

6

-0.100 -0.050 0.000 0.050
Al

ph
a 

(d
eg

)

ΔCM

-0.040

-0.030

-0.020

-0.010

0.000

0.010

0.020

0.030

0 2 4 6 8 10 12 14 16 18 20

DP
/P

X (in)

BM1 CFG4 vs BM2 CFG9 - Mach 1.8, CL 0.06

BM1 CFG4 CFD
BM2 CFG9 CFD
BM1 CFG4 WT
BM2 CFG9 WT

 

Figure 8.4-11.  BM1, Configuration 4 to BM2, Configuration 9, Pressure and F&M Increments, M = 1.80,  
Comparison of OVERFLOW vs. Test 
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Configuration Effects 

Comparisons between OVERFLOW isolated model CFD and wind tunnel pressures for three Boom 
Model 1 configurations at both Mach 1.6 and Mach 1.8 at a height of 30 inches are presented in Figure 
8.4-12. The configurations shown are full configuration (Configuration 4), nacelle off (Configuration 5), 
and nacelle/tail off (Configuration 7). The plots on the left show wind tunnel results and the plots on the 
right show CFD results. The CFD was run using Euler and does not have an amplification factor applied.  
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*CFD results are Euler and have NO reflection factor  

Figure 8.4-12.  BM1 Configuration Effects—Comparison of OVERFLOW vs. Test 
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Variation with Alpha 

Comparisons between OVERFLOW isolated model CFD and wind tunnel pressures at both Mach 1.6 
and Mach 1.8 at various angles of attack are presented in Figures 8.4-13, 8.4-14, and 8.4-15 for boom 
models BM1, Configuration 4; BM1, Configuration 5; and BM1, Configuration 7, respectively. The 
results shown are for a height of 30 in. In each figure, the plots on the left show the wind tunnel results 
and the plots on the right show the CFD results. The CFD was run using Euler and does not have an 
amplification factor applied. 
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Figure 8.4-13.  BM1, Configuration 4, Alpha Variation—Comparison of OVERFLOW vs. Test 
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*CFD results are Euler and have NO reflection factor  

Figure 8.4-14.  BM1, Configuration 5, Alpha Variation—Comparison of OVERFLOW vs. Test 
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*CFD results are Euler and have NO reflection factor  

Figure 8.4-15.  BM1, Configuration 7, Alpha Variation—Comparison of OVERFLOW vs. Test 
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8.5  Performance Model CFD vs. Test Pressure Signature and F&M Comparisons 

Pressure Signatures 

Comparisons of the CFD results with the NASA Ames 9’ x 7’ supersonic wind tunnel AS-0229 
pressure signature test data are provided at alpha = 3.3 deg and for both Mach 1.60 and 1.80 in Figures 
8.5-1 and 8.5-2 for the performance models PM1, Configuration 1 and PM1, Configuration 3, 
respectively. The CFD results assume an isolated model corrected with an 80% amplification factor to 
account for the effect of the flat-top reflective nature of the rail. The CFD cases are run with the aft-body 
extended aft but with no attempt to model the step down to the sting or the tape for the base pressures. 
dP/P values are calculated using the nearest reference run. 

Pressure Signatures—Aft-Body Effects 

Comparisons of the CFD results with the NASA Ames 9’ x 7’ supersonic wind tunnel AS-0229 
pressure signature test data are provided in Figure 8.5-3 for PM1, Configuration 3 at Mach 1.6 and 1.8 
with a nose height of 60 inches and an alpha of approximately 3.3 deg. The OVERFLOW isolated model 
data are corrected with an 80% amplification factor to account for the effect of the flat-top reflective 
nature of the rail. Shown in the figure are CFD solutions with the aft-body run two ways: (1) the aft-body 
extended aft with no attempt to model the step down to the sting or the tape for the base pressures and (b) 
an attempt to model what was tested (step from body to sting and tape). dP/P values are calculated using 
the nearest reference run. 
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Figure 8.5-1.  PM1, Configuration 1, Pressure Signature Comparison of OVERFLOW vs. Test,  
H = 60  
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Figure 8.5-2.  PM1, Configuration 3, Pressure Signature Comparison of OVERFLOW vs. Test,  
H = 60  
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Figure 8.5-3.  PM1, Configuration 3, Pressure Signature Comparison of OVERFLOW vs. Test,  
H = 60  
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Forces and Moments 

Comparisons of the CFD results with the NASA Ames 9’ x 7’ supersonic wind tunnel AS-0229 force 
and moment test data for performance models PM1, Configuration 1 and PM1, Configuration 3 are 
provided in this section. The provided figures show the drag polar, lift, and moment curves for the 
nominal model height of 60 inches above the rail and for the two Mach conditions tested (1.60 and 1.80) 
for each model type. A correction for trip and transition has been applied to the CFD data. 

Figures 8.5-4 and 8.5-5 compare the force and moment characteristics from the CFD OVERFLOW 
solutions and the corresponding wind tunnel test data for the PM1, Configuration 1 performance model 
for M = 1.60 and 1.80, respectively, at H = 60 in. 

 
Figures 8.5-6 and 8.5-7 compare the force and moment characteristics from the CFD OVERFLOW 

solutions and the corresponding wind tunnel test data for the PM1, Configuration 3 performance model 
for M = 1.60 and 1.80, respectively, at H = 60 in. 
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Figure 8.5-4.  PM1, Configuration 1, F&M Comparison of OVERFLOW vs. Test, M = 1.60  
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Figure 8.5-5.  PM1, Configuration 1, F&M Comparison of OVERFLOW vs. Test, M = 1.80 
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Figure 8.5-6.  PM1, Configuration 3, F&M Comparison of OVERFLOW vs. Test, M = 1.60  
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Figure 8.5-7.  PM1, Configuration 3, F&M Comparison of OVERFLOW vs. Test, M = 1.80 

Incremental Forces and Moments 

Comparisons between OVERFLOW isolated model CFD and wind tunnel force and pressure 
increments at a height of 60 inches are provided in this section. The configuration increment is between 
PM1, Configuration 1 (wing/body) and PM1, Configuration 3 (full configuration) and is shown at both 
Mach 1.6 and Mach 1.8.  

Figure 8.5-8 compares the pressure and F&M increments between the CFD OVERFLOW solutions 
and the corresponding wind tunnel test data. The CFD data have been corrected with an 80% 
amplification factor to account for the effect of the flat-top reflective nature of the rail. The top plots show 
the increment in the pressure signature between the two configurations. The bottom plots show the force 
increments in lift, drag, and pitching moment between Configuration 1 and Configuration 3. The CFD 
was run with the aft-body extended aft with no attempt to model the step down to the sting or the tape for 
the base pressures. 

Figures 8.5-9 and 8.5-10 compare the pressure and F&M increments between the OVERFLOW 
isolated model CFD and wind tunnel force and pressure increments at Mach 1.6 and 1.8, respectively. The 
results are shown for a height of 60 inches. The configuration increment is between PM1, Configuration 3 
(full configuration) and PM1, Configuration 1 (wing/body). The CFD data have been corrected with a 
60% amplification factor to account for the effect of the flat-top reflective nature of the rail. The top left 
plot shows the CFD and wind tunnel pressure results for the two configurations, whereas the top right plot 
shows the increment in the pressure signature. The bottom plots show the force increments in lift, drag, 
and pitching moment between Configuration 3 and Configuration 1. The CFD was run with the aft-body 
extended aft but with no attempt to model the step down to the sting or the tape for the base pressures.  
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Delta=PM1 cfg #3 – PM1 cfg #1 (Full Config – Wing/body)
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Figure 8.5-8.  PM1, Configuration 1 to PM1, Configuration 3, Pressure and F&M Increments—Comparison of OVERFLOW vs. Test 
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Delta=PM1 cfg #3 – PM1 cfg #1 (Full Config – Wing/body)
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Figure 8.5-9.  PM1, Configuration 1 to PM1, Configuration 3, Pressure and F&M Increments, M = 1.60  
Comparison of OVERFLOW vs. Test 
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Delta=PM1 cfg #3 – PM1 cfg #1 (Full Config – Wing/body)
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Figure 8.5-10.  PM1, Configuration 1 to PM1, Configuration 3, Pressure and F&M Increments, M = 1.80  
Comparison of OVERFLOW vs. Test 
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8.6  Additional Tare and Interference Assessments 

CFD-Based Reynolds Number Corrections for Boom Model  

Figures 8.6-1 and 8.6-2 show the CFD-predicted effect on pressures and forces for the BM1, 
Configuration 4 geometry at M = 1.6 and 1.8, respectively, as a result of Reynolds number variations. The 
upper left plot shows the pressure variation of an Euler analysis (an approximation for flight Re) versus 
wind tunnel Reynolds number (~2.8 million/ft). The dP/P signals are 30 inches off-body at model scale 
and 4615 inches full scale. The upper right-hand plot shows the delta between the two (Euler/Flt-WtRe). 
The lower plot shows the delta in forces. 

Figure 8.6-3 combines the CFD predicted pressure and forces deltas for BM1, Configuration 4 
geometry at M = 1.6 and M = 1.8 into a single illustration for comparison. 

CFD-Based Reynolds Number Corrections for Performance Model  

Figures 8.6-4 and 8.6-5 show the CFD-predicted effect on pressures and forces for the PM1 
Configuration 3 geometry at M = 1.6 and 1.8, respectively, as a result of Reynolds number variations. The 
upper left plot shows the pressure variation of an Euler analysis (an approximation for flight Re) versus 
wind tunnel Reynolds number (~2.8 million/ft). The dP/P signals are 60 inches off-body at model scale 
and 3357 inches full scale. The upper right-hand plot shows the delta between the two (Euler/Flt-WtRe). 
The lower plot shows the delta in forces. 

Figure 8.6-6 combines the CFD predicted pressure and forces deltas for BM1, Configuration 4 
geometry at M = 1.6 and M = 1.8 onto a single illustration for comparison. 

CFD-Based Upper Swept Strut Corrections for Boom Model  

The upper plots in Figure 8.6-7 show a CFD-based pressure comparison at M = 1.6 and 1.8 between 
the BM1, Configuration 4 geometry modeled with the upper swept strut (wind tunnel hardware) and with 
the full-scale concept aircraft with a closed aft-body. The lower plots in the figure show the increment 
between the closed aft-body and the wind tunnel upper swept strut configurations. The dP/P signals are 60 
inches off-body at model scale and 4615 inches full scale. 

CFD-Based Flared Aft-Body Correction for Performance Model  

The upper plots in Figure 8.6-8 show a CFD-based pressure comparison at M = 1.6 and 1.8 between 
the PM1, Configuration 3 geometry (flared aft-body) with the step sting modeled and the full-scale 
concept aircraft with a closed aft-body. The lower plots show the increment between the closed aft-body 
and the wind tunnel flared aft-body with the step sting modeled. The dP/P signals are 60 inches off-body 
at model scale and 3357 inches full scale. 

All CFD-Based Corrections for Boom Model  

Figure 8.6-9 shows a comparison at M = 1.6 and 1.8 at an alpha of approximately 3.5 deg between the 
BM1, Configuration 4 geometry (flared aft-body) test data, CFD, and test data with corrections for 
Reynolds number and the upper swept strut tare and interference. 
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Delta-Re=ConfigurationFlt - Configuration Wt-re
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Figure 8.6-1.  CFD-Based Reynolds Number Correction for BM1, Configuration 4, M = 1.60 



 

171 
 

Delta-Re=ConfigurationFlt - Configuration Wt-re

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0 500 1000 1500 2000 2500 3000

de
lta

 D
P/

P

X STA

BM1 CFG4 - Mach 1.8, Alpha =3.24

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0 500 1000 1500 2000 2500 3000

DP
/P

X STA

BM1 CFG4 - Mach 1.8, Alpha=3.24

Flight Re

WT Re

0

1

2

3

4

5

6

0.000 0.005 0.010 0.015

Al
ph

a 
(d

eg
)

ΔCL

0

1

2

3

4

5

6

0.0020 0.0022 0.0024 0.0026

Al
ph

a 
(d

eg
)

ΔCDp

0

1

2

3

4

5

6

-0.030 -0.020 -0.010 0.000
Al

ph
a 

(d
eg

)
ΔCM

0

1

2

3

4

5

6

0.000 0.005 0.010 0.015

Al
ph

a 
(d

eg
)

ΔCL

0

1

2

3

4

5

6

0.0020 0.0022 0.0024 0.0026

Al
ph

a 
(d

eg
)

ΔCDp

0

1

2

3

4

5

6

-0.030 -0.020 -0.010 0.000
Al

ph
a 

(d
eg

)
ΔCM  

 

Figure 8.6-2.  CFD-Based Reynolds Number Correction for BM1, Configuration 4, M = 1.80 
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Delta-Re=ConfigurationFlt - Configuration Wt-re
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Figure 8.6-3.  CFD-Based Reynolds Number Correction for BM1, Configuration 4, M = 1.60 and 1.80 
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Delta-Re=ConfigurationFlt - Configuration Wt-re
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Figure 8.6-4.  CFD-Based Reynolds Number Correction for PM1, Configuration 3, M = 1.60 



 

174 
 

Delta-Re=ConfigurationFlt - Configuration Wt-re
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Figure 8.6-5.  CFD-Based Reynolds Number Correction for PM1, Configuration 3, M = 1.80 



 

175 
 

Delta-Re=ConfigurationFlt - Configuration Wt-re
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Figure 8.6-6.  CFD-Based Reynolds Number Correction for PM1, Configuration 3, M = 1.60 and 1.80 
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Figure 8.6-7.  CFD-Based Upper Swept Strut Correction for BM1, Configuration 4, M = 1.60 and 1.80 
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Figure 8.6-8.  CFD-Based Upper Swept Strut Correction for BM1, Configuration 4, M = 1.60 and 1.80 
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Notes: 

“Product Airplane” is signature of isolated model with no mounting hardware, scaled by x1.5. 

“Test to Flight corrected” has RE and strut increments applied. 

 

Figure 8.6-9.  Experimental Results with CFD-Based Corrections Applied for BM1, Configuration 4, M = 1.60 and 1.80 
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8.7  CFD Validation Summary and Conclusions 

The CFD to AS0229 test results validate the predictive capability to assess signatures and performance 
of an N+2 generation transport aircraft. This validation demonstrates the capability of the low-boom-
design to achieve an overland sonic boom of <85 PLdB, with progress toward the longer term goal of 65 
to 70 PLdB. The support system tare and interference and wind tunnel Reynolds number effects of the 
ground-based testing were significant and thus complicate the interpretation of results.  It is recommended 
that additional work in this area be considered.   

OVERFLOW analyses were run on 10 of the configurations tested (as well as two that were not tested 
due to time constraints). In most cases, both Euler and Navier-Stokes solutions at the wind tunnel test 
Reynolds number were obtained. For all boom models, the configurations were run with and without the 
upper swept strut. For the performance model configurations, solutions were obtained with both a 
cylindrical wake and a sharp step sting. As expected, the wind tunnel test environment (modification for 
model support, WT Re) significantly alters the signatures. Overall, the correlation with test data was good 
and within the accuracy/uncertainty of the experimental data. 

In-depth off-body pressure comparisons were made between CFD and test data for the 10 
configurations. When the rail pressure data is filtered to consider only data with minimal perceived tunnel 
flow non-uniformity, pressure comparisons with CFD are reasonable.  There was no evidence of strong 
shock/shock interference or unexpected rail interference effects seen in the CFD-to-test comparisons.  
However, there was some evidence of wind tunnel wall shock reflections in the 2” alternate rail 
measurements.  Corrections must be applied to the test results to remove these tunnel wall shock 
reflections.   

The force and moment CFD-to-experiment correlation for the performance model is good and within 
acceptable uncertainty. As-predicted sonic boom levels were achieved (boom model results), as were 
predicted levels of L/D (performance model results). 

All of the CFD correlation work utilized the as-designed lofts for each of the wind tunnel models.  
Although the CFD-to-experiment correlations were good, improved correlations might be possible using 
as-built and as-tested (as-built with deflections).  However, this type of analysis was beyond the scope 
and funding of the phase I contract. 
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9.0  RECOMMENDATIONS AND FUTURE WORK 

Recommendations 

The following recommendations are made. 

• Further testing at the NASA Ames 9’ x 7’ supersonic wind tunnel facility requires additional 
diagnostic testing to better characterize the wind tunnel and develop test methods to avoid issues 
(tunnel flow non-uniformity) seen during the AS0229 test.**  This may help further identify the 
source of the sinusoidal flow variation observed during the AS0229 test. 

• Additional testing at alternate facilities, such as the NASA Ames 11-ft, NASA Glenn 8- by 6-ft,  
and NASA Glenn 10-ft, should be investigated to see if the results obtained at the NASA Ames 9’ 
x 7’ supersonic wind tunnel are related to the experimental set-up or the facility.  

• CFD-to-test correlation would benefit from more scrutiny in the area of the terminal 
recompression. 
− Test data show recompression past freestream whereas CFD does not. 
− Model fidelity tolerance effect should be checked (i.e. as-built and as-tested). 

• When appropriate test data are available for comparison, CFD validations should include off-
track signatures.  The AS0229 test gathered off-track near-field signature data, but because of the 
way in which the data was gathered it was un-usable in any of the CFD-to-test correlation work.  
Further work is needed in off-track test techniques to fix this problem. 

• For minimum post-test corrections, it is recommended that the 14” blade rail be utilized for small 
models (model lengths < 35 inches for Mach 1.6 testing) in future testing.  For larger models 
(model lengths greater > 35 inches for Mach 1.6 testing) the 2” alternate rail may be the preferred 
choice because it maximizes the H/L.  However, data corrections will be required to remove the 
tunnel wall reflected shock from the data.  In fact, all of the rails require some level of data 
corrections depending upon the size of the model and the test objectives. 

 

 

 

 

 
 
 
 
 
 

** Note: After the validation test, additional wind tunnel investigation in the NASA Ames 9’ x 7’ supersonic wind tunnel of the 2” alternate 
and 14” blade rail were conducted (Tests 97-231 and 97-250).  It was found that spatial averaging in the axial direction significantly improves the 
data quality and essentially removes much of the tunnel non-uniformities.  It was also determined that the rails had up to ~6 seconds of pressure 
lag due to the long line lengths in the rail instrumentation.   
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10.0  SUMMARY AND CONCLUSION 

During Phase I, all objectives established at the beginning of the project were met. A low-boom 
concept that meets the main goals of the project was developed. The characteristics (i.e., sonic boom, 
aerodynamics, performance, trim, and CG) of this concept were evaluated and presented at Gate Review 
1. The low-boom concept successfully passed the review, and performance (i.e., large force and moment) 
and sonic boom wind tunnel models were designed and fabricated for testing in the NASA Ames 9’ x 7’ 
supersonic wind tunnel. 

The models were tested in the NASA Ames 9’ x 7’ supersonic wind tunnel during the AS-0229 test in 
April 2011. The results from that test validated the low-boom design and correlated well with pretest CFD 
data. However, the test did uncover flow quality issues in the wind tunnel that merit further investigation. 

Existing NASA sonic boom pressure measurement rails were evaluated, and recommendations were 
made to build two new rails. The first, the NASA 14” Blade Rail design, was tested in November 2010 
and the second, the Boeing 2” Alternate Rail design, was tested during the April 2011 low-boom 
validation test. Both new rails showed improved performance compared with the previous NASA rails. 
The best rail for future testing depends upon the test objectives and the size of the model.  For small 
sonic-boom models the 14” blade rail requires the least amount of post test corrections.  However, the 2” 
Alternate Rail may be the best choice for larger model testing, because it maximizes the achievable H/L.  
Both rails for the larger model will require more corrections to remove unwanted tunnel wall reflections. 

The low-boom concept achieved and, in some cases, exceeded all sonic boom goals for the project. 
The low-boom concept was designed at Mach = 1.8 and achieved a shaped front and aft sonic boom 
signature. The front portion of the under-track signature is sinusoidal in shape, and the aft portion of the 
signature has a flat-top shape. The under-track signature has a ground-perceived loudness of 81 PLdB, 
which exceeds the goal of 85 PLdB. The low-boom concept also retains its low-boom characteristics at 
off-design conditions of Mach and CL and at some off-track locations. 

The second-priority goal for the project was to meet or exceed the same level of aerodynamic 
performance as the 765-076E configuration developed under the N+2 Supersonic Systems Study. 
Although this goal was not achieved, it was noted that with a notional 3% technology projection by the 
year 2025, this configuration would indeed meet the performance goals of the project.  

Several areas in addition to the sonic boom and performance were also assessed. These included fuel 
loading, stability, trim, and center-of-gravity. It was determined that sufficient space could be found in the 
configuration to load enough fuel to meet the mission. The low-boom concept is statically stable at cruise. 
However, the concept cruise CG was not within current fuel tank loadability limits and, therefore, the trim 
for the low-boom concept design did not close. 

With these issues in mind, a second sonic boom concept was developed with the objective of 
improved L/D and off-track performance. This second sonic boom concept focused on a Mach = 1.6 
cruise condition, and the pitching moment was constrained to improve the trim. The resulting concept had 
improved performance with essentially the same sonic boom and was able to achieve the lower pitching 
moment for improved trim. This second configuration had significantly different shaping and, with its 
different implementation of design objectives, resulted in a concept worthy of validation. Thus a second 
sonic boom model was designed and fabricated for testing in the NASA Ames 9’ x 7’ supersonic wind 
tunnel. 
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The ultimate purpose of this project was to validate in a wind tunnel environment the tools and 
processes required to achieve low-boom aerodynamically-efficient concepts. This goal was successfully 
achieved. The main design objective was to develop a low-boom configuration optimized for minimum 
sonic boom levels and maximum performance efficiency. The resulting low-boom concepts were never 
meant to be closed aircraft designs. The project assessed several design disciplines and noted some 
shortcomings in the concepts. Additionally, there were many areas not addressed, including structures and 
aeroelastics. These future challenges will have to be overcome once low-boom design methods are fully 
validated and matured. 

In conclusion, the wind tunnel test results show that the designed low-boom configuration is indeed 
low-boom with both front and aft near-field shaping that matches pretest predictions. However, not all 
test data were consistent and some measured signatures did not match as well as desired. It is conjectured 
that these anomalous results stem from the NASA Ames 9’ x 7’ facility flow quality issues. These 
anomalous results were sinusoidal and seem to be tied to the movement of the wind tunnel strut. Further 
study is required to determine the source of these flow issues, and testing at alternate wind tunnel 
facilities may help determine a solution to these problems. 

Phase II of the project will focus on the effect of propulsion on the low-boom design. 
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11.0  NOMENCLATURE 

Term Description 

2D Two-Dimensional 

3D Three-Dimensional 

765-076E Boeing N+ 2 System Study baseline concepts 

AOA Angle-of-Attack 

ARC Ames Research Center 

ARRA American Recovery and Reinvestment Act 

BCA Boeing Commercial Airplanes 

BOR Body of Revolution 

BR&T Boeing Research and Technology 

CA Axial Force Coefficient 

Cart3d A high-fidelity inviscid analysis package for conceptual and preliminary 
aerodynamic design 

CD Drag Coefficient 

CFD Computational Fluid Dynamics 

CG Center of Gravity 

CL Lift Coefficient 

CM Pitching Moment Coefficient 

CN Normal Force Coefficient 

COTR Contracting Officer’s Technical Representative 

Count 1 count of drag is CD = 0.0001 

CR Contractor Report 

DFRC Dryden Flight Research Center 

dP/P (P-Pinf)/Pinf 

DPOVP AVG_Y Averaged (P-Pinf)/Pinf with the reference pressure run removed 

DPOVPU AVG_Y Averaged (P-Pinf)/Pinf with the reference pressure run not removed 

F&M Force and Moment 

FAA Federal Aviation Administration 

FAP Fundamental Aeronautics Program 

FAR Federal Aviation Regulation 

FS Full Scale 

GFI Government-Furnished Information 

GRC Glenn Research Center 
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H Height 

H/L Height/Length 

HB Huntington Beach, California 

L/D Lift-to-Drag ratio 

LH/RH Left Hand/Right Hand 

LaRC Langley Research Center 

MDA Multidisciplinary Analysis 

MDBOOM A Boeing linear wave propagation code 

MDO Multidisciplinary Optimization 

MDOPT A Multidisciplinary Design OPTimization system 

MDPLOT A Boeing noise metrics calculation tool used with MDBOOM 

MPR Model Preparation Room 

NASA National Aeronautics and Space Administration 

nmi Nautical Mile 

NPSS Numerical Propulsion System Simulation 

NRA NASA Research Announcement 

OML Outer Mold-Line 

OVERFLOW The OVERset grid FLOW solver. This code solves the Reynolds-Averaged 
Navier-Stokes equations 

PDR Preliminary Design Review 

Placeholder Nacelle Representative nacelle used on validation concept.  A refined nacelle (inlet and 
nozzle) will be designed in phase II of the project. 

PLdB Perceived Loudness in decibels 

QEVC Quiet Experimental Validation Concept 

S&C Stability and Control 

SEEB Seebass and George minimum sonic boom theory (equivalent area body of 
revolution) 

SFC Specific Fuel Consumption 

SSBD Shaped Sonic Boom Demonstrator 

t/c Thickness to Chord ratio 

TIM Technical Interchange Meeting 

TRANAIR Nonlinear, full-potential equation code developed to analyze compressible flow 
over arbitrary complex configurations at subsonic, transonic, or supersonic 
freestream Mach numbers 

UPWT Unitary Plan Wind Tunnel 

V-tail Vertical Tail 
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W/B/N/V Wing/Body/Nacelle/Vertical 

WBS Work Breakdown Structure 

WT Re Wind Tunnel Reynolds Number 

x/L Axial location/Length 

Zephyrus Boeing sonic boom propagation computer code that predicts the expected sonic 
boom waveform at ground level and incorporates as many physical effects as 
possible 
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