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Abstract

Developing stable and robust high-order finite difference schemes requires mathe-
matical formalism and appropriate methods of analysis. In this work, nonlinear en-
tropy stability is used to derive provably stable high-order finite difference methods
with formal boundary closures for conservation laws. Particular emphasis is placed
on the entropy stability of the compressible Navier-Stokes equations. A newly de-
rived entropy stable weighted essentially non-oscillatory finite difference method is
used to simulate problems with shocks and a conservative, entropy stable, narrow-
stencil finite difference approach is used to approximate viscous terms.
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1 Introduction

The state of numerical solutions to nonlinear conservation laws is far from complete.
While it is commonplace to use high-order numerical methods to calculate efficient
and accurate solutions for smooth problems, solutions of problems with shocks are
considerably more difficult to simulate. Solution methods for these problems are
typically high-order adaptive [1, 2] or hybrid [3] schemes or highly dissipative low-
order methods. Many methods have been devised that attempt to balance accuracy,
added dissipation, and efficiency. Most of these methods are designed using linear
analysis of linearized equations that do not admit the formation of shocks and thus
do not correctly account for the character of the underlying nonlinear problem.
Additionally, stability proofs that rely on linear analysis are dependent on the reso-
lution and do not guarantee stability for under-resolved regions. To overcome these
limitations, we seek numerical methods that are based on nonlinear analysis.

Any numerical method applied to problems that admit shocks should provably
recover the weak solution of the conservation law upon convergence [4]. It should
be further proven that the weak solution recovered is the physically realizable en-
tropy solution [4, 5]. The second condition is an uncommon property in high-order
methods. Recent advancements in this area for the compressible Euler equations
facilitate incorporation of these properties into high-order formulations. Tadmor
constructed entropy consistent second-order finite volume schemes that conserve
discrete entropy [5,6], while LeFloch and Rode [7] extended these schemes to high-
order periodic domains. These schemes have been made computationally tractable
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for the Navier-Stokes equations through the work of Ismail and Roe [8]. A method-
ology for constructing entropy stable schemes satisfying a cell entropy inequality and
capable of simulating flows with shocks in periodic domains has been developed by
Fjordholm et al. [9] Herein, an alternative approach is developed based on a finite-
domain entropy stability proof, which yields entropy stable methods with formal
boundary closures.

In this work, we have constructed high-order entropy stable finite difference
schemes for finite domains by first developing a formal set of conditions based on a
generalized summation-by-parts property. The entropy consistent scheme for conser-
vation laws developed by Tadmor [6] is extended to high-order with formal boundary
closures. Based on this new entropy consistent scheme, we develop an entropy sta-
ble correction for dissipative numerical methods such as weighted essentially non-
oscillatory (WENO) for simulating problems with shocks. Additionally, we have
derived a narrow-stencil, high-order viscous operator for approximating the viscous
terms in a provably entropy stable manner.

Using the methodology developed herein, we demonstrate the robustness and
accuracy of the resulting entropy stable WENO operators using Burgers equation
and the Euler equations. We also show how schemes developed using linear stability
can fail in the presence of a shock by comparing the newly developed entropy stable
schemes with the energy stable WENO scheme of Fisher et al. [10].

Results of the present work warrant investigation into the extension of the cur-
rent entropy-stable numerical methods into generalized curvilinear coordinates.

The organization of this document is as follows. The theory of entropy analysis
for finite difference methods is detailed in Section 2. Conditions and corresponding
methods for satisfying entropy stability on finite domains using arbitrarily high-
order accurate finite difference methods are developed in Section 3. The application
of these methods to Burgers equation and the compressible Euler and Navier-Stokes
equations is illustrated in Section 4. Finally, the accuracy and robustness of the
resulting high-order schemes are demonstrated in Section 5, and conclusions are
discussed in Section 6.

2 Methodology

In this section, we introduce the theory of entropy stability and define the necessary
finite difference nomenclature for conservation laws.

2.1 Nonlinear Conservation Laws and the Entropy Condition

The most general form of the one-dimensional inviscid conservation law on a bounded
domain is the integral form,

d

dt

xR∫
xL

q dx+ f(q)|xRxL = 0, x ∈ [xL, xR], t ∈ [0,∞), (2.1)
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where q denotes a scalar or vector of conserved variables, f is the nonlinear flux
function, and the domain bounds have been assumed fixed. As noted by Lax [11],
solutions satisfying the integral form in 2.1 are generalized or weak solutions of the
conservation law and do not need to be smooth or even continuous. For smooth
problems, the strong differential form of the conservation law can be written as

qt + f(q)x = 0, x ∈ [xL, xR], t ∈ [0,∞). (2.2)

The solution to 2.2, referred to as a strong solution, is smooth and unique but may
not exist for all time if the physical solution becomes discontinuous. The strong
solution also satisfies 2.1.

Piecewise continuous solutions to the integral form of the conservation law must
satisfy the strong form on either side of a discontinuity. Additionally, the Rankine
Hugoniot relation holds across discontinuities [11],

[f(q)]
Γ+
d

Γ−d
− dΓd

dt
[q]

Γ+
d

Γ−d
= 0, (2.3)

where Γd denotes the discontinuity location and dΓd
dt denotes the propagation speed

of the discontinuity. These characteristics are derived directly from the integral
form.

Note that weak solutions in general may not be unique [11, 12], and that only
the physically realizable entropy solution is of interest. This solution is described
through a limiting process of a regularized conservation law that admits a strong
solution for all time, qε(x, t), satisfying [12]

qεt + f(qε)x = ε
(
f (v)(qε, qεx)

)
x
, (2.4)

where ε > 0. The viscous term on the right side of 2.4 serves as an entropy dis-
sipative regularization (defined below) [12], making all discontinuities theoretically
resolvable. The entropy solution satisfies

q(x, t) = lim
ε→0

qε(x, t). (2.5)

The entropy solution is so named because it satisfies the entropy condition, which
for gas dynamics becomes a statement of the second law of thermodynamics. The
general mathematical definition of entropy is a nonlinear scalar function, S(q), with
a corresponding entropy flux, F (q), defined by the differential relation [13]

Sqfq = Fq. (2.6)

The mathematical entropy is convex, meaning that the Hessian is positive definite,

ζTSqqζ > 0, ∀ζ 6= 0, (2.7)

and yields a one-to-one mapping from conservation variables, q, to entropy variables,
wT = Sq. Premultiplying the regularized conservation law in 2.4 by the entropy
variables yields the entropy equation,

Sqq
ε
t + Sqf(qε)x = Sεt + F εx = εSqf

(v)
x . (2.8)

4



The viscous terms in 2.8 can be rewritten as

εSqf
(v)
x = εwT f (v)

x = ε
(
wT f (v)

)
x
− εwTx f (v), (2.9)

and because an entropy dissipative regularization [12] requires that

wTx f
(v) ≥ 0, ∀w. (2.10)

then, an entropy dissipative regularization ensures that entropy is always dissipated
by the viscous terms. Substituting the definition in 2.10 into 2.9 yields

ε
(
wT f (v)

)
x
≥ εwT

(
f (v)

)
x
. (2.11)

This relation is substituted into 2.8 to find the local entropy inequality [11],

Sεt + F εx ≤ ε
(
wT f (v)

)
x
. (2.12)

The entropy condition for the conservation law is found by integrating 2.12 over
space and taking the limit ε→ 0,

d

dt

xR∫
xL

S dx+ F |xRxL ≤ 0. (2.13)

If the weak solution satisfies 2.13, then it is the entropy solution consistent with the
definition in 2.5. It is important to note that the mathematical entropy has the op-
posite sign from thermodynamic entropy in gas dynamics. Thus, the mathematical
entropy across a shock decreases instead of increases. This nomenclature is used
consistently throughout this document.

2.2 Entropy Analysis

The application of continuous entropy analysis was used above in the derivation
of the entropy condition. Some additional formal definitions are useful to further
specify the mathematical characteristics of the entropy.

As stated in Section 2.1, the mathematical entropy is a nonlinear function of the
conservation variables, S(q), with a corresponding nonlinear entropy flux, F (q). A
set of entropy variables, w, with a one-to-one mapping to the conservation variables,
q, is defined based on this entropy. The entropy variables have some remarkable
properties. Because of the one-to-one mapping, the conservative variables can be
written as a function of the entropy variables, q(w). Thus, the strong form of the
conservation law can be rewritten as,

qwwt + fqqwwx = 0. (2.14)

Both qw and fw = fqqw are symmetric matrices [13], so the conservation law is a
symmetric hyperbolic system when written in terms of entropy variables.
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In the development of the entropy condition, we assumed that the regularization
terms were entropy dissipative, satisfying

wTx f
(v) ≥ 0, ∀w.

Following Hauke et al. [14] this is shown by casting the viscous flux in a quasi-linear
form,

f (v) = c(q, x)qx, (2.15)

where c(q, x) may be a scalar constant, a variable matrix that depends on spatial
location, or nonlinear in the conservation variable. An entropy function can be
chosen such that the viscous coefficients are symmetric and positive semi-definite,

f (v) = ĉwx, ĉ = c(q, x)qw, ζT ĉζT ≥ 0,∀ζ. (2.16)

It is clear that if this transformation holds, then

wTx f
(v) = wTx ĉwx ≥ 0, ∀w, (2.17)

and the viscous regularization is indeed entropy dissipative. Other authors [6,13,14]
have noted that an entropy that makes the hyperbolic matrices symmetric will not
necessarily make the diffusive coefficient matrix symmetric. Therefore, the space
of possible entropy functions for a parabolic or incompletely parabolic system is
reduced compared to the hyperbolic problem. This consideration is important when
defining the entropy condition for a given problem. Herein we restrict our definition
of entropy stability to entropy functions that satisfy a specific viscous regularization
even when evaluating the stability for problems in the limit of zero viscosity.

For nonzero viscosity, the continuous entropy decay rate is found by substituting
2.16 into 2.8 and integrating over space,

d

dt

xR∫
xL

S dx =
[
εwT f (v) − F

]xR
xL
− ε

xR∫
xL

wTx ĉwx dx. (2.18)

The last integral term is positive semi-definite and thus the entropy will only increase
in the domain through the boundaries. The goal of the numerical methods designed
in this paper will be to mimic 2.18 at the semi-discrete level.

Harten [13] describes that the symmetry of the matrices, qw and fw, indicates
that the conservation variables, q, and flux, f , are Jacobians of scalar functions with
respect to the entropy variables,

qT = ϕw, fT = ψw, (2.19)

where the nonlinear function, ϕ, is called the potential and ψ is called the potential
flux [6]. These nonlinear functions satisfy

ϕ = wT q − S, ψ = wT f − F. (2.20)

Just as the entropy function is convex with respect to the conservative variables
(Sqq is positive definite), the potential function is convex with respect to the entropy
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variables. We note that the one-to-one mapping admits an alternate form of the
flux based on the entropy variables, g(w) = f(q).

The entropy and corresponding entropy flux are often referred to as an entropy–
entropy flux pair, (S, F ). Similarly, the potential and the corresponding potential
flux are referred to as a potential–potential flux pair, (ϕ,ψ) [6]. The symmetry
properties and the definition of the potential flux are used in the stability analyses
in the rest of this work.

Entropy analysis is valid for nonlinear equations and discontinuous solutions.
It is therefore more generally applicable than linear energy analysis and gives a
stronger stability estimate. We now turn our attention to the mathematical for-
malism required in spatial discretizations in order to mimic the continuous entropy
properties at the semi-discrete level.

2.3 Spatial Discretization

Most finite difference approximations rely on a uniform discretization of the domain
in each direction. Typically this uniform discretization is conducted in a compu-
tational space, and then a transformation to a nonuniform physical space permits
greater flexibility in approximating solutions with varying scales. In this work,
we limit our attention to Cartesian domains and extend the results to curvilinear
multi-block domains in the future.

An important element in the approach taken here is the use of complementary
grids. These grids allow the finite difference operations to be written as simple flux
differences, analogous to the approach of the finite volume method. In a previous
paper [15], we showed that this telescopic flux difference form yields a generalized
summation-by-parts (SBP) property that is used to show that the weak solution to
2.1 is recovered when the solution converges.

2.3.1 Complementary Grids

The domain Ω = [xL, xR] is divided into (N−1) uniform segments withN equispaced
endpoints denoted by x,

x = (x1, x2, . . . , xN )T , xi = xL +
i− 1

N − 1
(xR − xL) , i = 1, 2, . . . N. (2.21)

Since the approximate solution is constructed at these points, they are referred to as
solution points. It is useful to define a set of intermediate points prescribing bound-
ing control volumes about each solution point. These (N + 1) points are referred
to as flux points as they are similar in nature to the control volume edges employed
in the finite volume method. The distribution of the flux points depends on the
discretization operator. In standard second-order finite difference methods, the flux
points are located half way between adjacent solution points. For higher-order fi-
nite differences, the flux points are located half way between solution points in the
domain interior, but the spacing between flux points abruptly becomes nonuniform
as the boundaries are approached to satisfy the summation-by-parts condition (ex-
plained below). The spacing between the flux points is incorporated into the finite
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difference operator using the norm, P, where the diagonal elements of P are equal
to the spacing between flux points,

x̄ = (x̄0, x̄1, . . . x̄N )T , x̄0 = x1, x̄N = xN ,

x̄i − x̄i−1 = P(i)(i), i = 1, 2, . . . , N.
(2.22)

In operator notation, this is equivalent to

∆x̄ = P1 (2.23)

where

1 = (1, 1, . . . , 1)T ,

is a vector with N elements and

∆ =


−1 1 0 0 0 0
0 −1 1 0 0 0

0 0
. . .

. . . 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 , (2.24)

is an N×(N+1) matrix that calculates the undivided difference of the two adjacent
flux points evaluated at the solution point. Note that in 2.22, the first and last flux
points are the same as the first and last solution points. This consistency is needed
to define unique operators. The discretization is illustrated in Figure 1.

x1 x2 x3 x4 xi xi+1 xNxN−1xN−2xN−3

x̄0
x̄1 x̄2 x̄3 x̄4 x̄i

x̄N
x̄N−1x̄N−2x̄N−3x̄N−4

f̄i

fi−1 fi fi+1 fi+2

ui−1 ui ui+1 ui+2

Figure 1. The one-dimensional discretization for finite differences is illustrated.
Solution points are denoted by • and flux points are denoted by ×.

The approximate solution on the grid is denoted by

u(t) = (u1(t), u2(t), . . . , uN (t))T , ui(t) = uh(xi, t) i = 1, 2, . . . , N, (2.25)

where q(x, t) has been reserved to denote exact solutions, and uh(x, t) denotes ap-
proximate solutions. Quantities located at flux points are denoted with an overbar.

Finite difference methods approximately satisfy the governing equation at the
solution points, x. Difference methods based solely on the solutions points are
considered next. These methods are then manipulated into simple flux differenc-
ing methods that use interpolated data at intermediate flux points. Recasting the
methods in this way facilitates implementation as well as conservation properties.
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2.3.2 First Derivative Approximation

We utilize first derivative approximations that satisfy the summation-by-parts (SBP)
condition, which means that the derivative approximation mimics integration-by-
parts,

xR∫
xL

φux dx = φu|xRxL −
xR∫
xL

φxudx. (2.26)

This mimetic property is achieved by constructing the first derivative approximation,
Dφ, with an operator in the form

D = P−1Q, P = PT , ζTPζ > 0, ζ 6= 0,

QT = B −Q, B = diag (−1, 0, . . . , 0, 1) .
(2.27)

The function of the diagonal matrix P is to incorporate the local grid spacing into
the derivative definition. The nearly skew-symmetric matrix, Q, is an undivided
differencing operator where all rows sum to zero and the first and last column
sum to −1 and 1, respectively. The difference operator, D, approximates the first
derivative as

φx(x) = Dφ+ Tp 2p p, (2.28)

where Tp 2p p is the truncation error of the approximation. The nomenclature 2p
refers to the interior accuracy and p refers to the accuracy at the left and right
boundaries. Note that this truncation error (Tp 2p p) is optimal if D is constrained to
the diagonal norm case on a uniform grid and still satisfies the SBP property [16].
Integration in the approximation space is conducted using an inner product with
the integration weights contained in the norm P,

xR∫
xL

φux dx ≈ φTPDu, φ = (φ(x1), φ(x2), . . . , φ(xN ))T . (2.29)

Using the definition in 2.27, the SBP property is demonstrated,

φTPP−1Qu = φT
(
B −QT

)
u = φNuN − φ1u1 − φTDTPu. (2.30)

The specific operator used in this work is shown in Appendix A.1.

2.3.3 Variable Coefficient Second Derivative Approximation

The viscous approximations for regularized conservation laws, written in general as

(ϑ(x)vx(x))x = D2(ϑ)v + T (v)
p 2p p, (2.31)

must also satisfy the SBP condition. Integration by parts yields

xR∫
xL

φ (ϑvx)x dx = φϑvx|xRxL −
xR∫
xL

φxϑvx dx. (2.32)
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It is trivial to show that two applications of the first derivative operator satisfy
the SBP condition. In practice, this is not advisable, as the approximation using
two first derivative operations requires a much wider stencil (is less efficient), is less
accurate, and leads to only neutrally stable approximations [17–19]. Instead the
viscous operator is defined as

D2(ϑ) = P−1 (−M(ϑ) + B[ϑ]D) , M(ϑ) =M(ϑ)T , [ϑ] = diag (ϑ(x)) ,

ζTM(ϑ)ζ ≥ 0, ζT [ϑ]ζ ≥ 0, ∀ζ.
(2.33)

The inner product with the P-norm yields

φTPP−1 (−M(ϑ) + B[ϑ]D) v = φTB[ϑ]Du− φTM(ϑ)v. (2.34)

It is clear that the boundary terms are mimicked from the continuous case, but
based on the definition in 2.33 it is unclear that

xR∫
xL

φxϑvx dx ≈ φTM(ϑ)v.

The easiest way to show this is to restrict the definition in 2.33 to what Mattsson [19]
calls compatible operators,

M(ϑ) = DTP[ϑ]D +R(ϑ), R(ϑ) = R(ϑ)T , ζTR(ϑ)ζ ≥ 0, ∀ζ, (2.35)

where R(ϑ) is called the remainder matrix and scales with the grid spacing at
the same order as the truncation error of the second derivative operator. This
shows the relationship between applying two first derivative operators (called a
wide stencil approximation) and directly applying the second derivative. R(ϑ) is
chosen such that the wider stencil terms in DTPD vanish, but the approximation
of the second derivative still holds. This is detailed below. The SBP condition is
then demonstrated by

φTPD2(ϑ)v = φTB[ϑ]Dv − φTDTP[ϑ]Dv − φTR(ϑ)v. (2.36)

The last term is small and decreases quickly with increasing resolution. Therefore,
the SBP property for the viscous term mimics integration by parts at the designed
order of accuracy.

To calculate the remainder matrix, we alter slightly the approach taken by Matts-
son [19],

R(ϑ) =

nr∑
k=1

N T
k [̃ϑ]kNk, ζ̃

T
[ϑ̃]ζ̃ ≥ 0, ∀ζ̃, (2.37)

where Nk are rectangular operators for higher derivatives and [ϑ̃]k are diagonal
matrices with a convex combination of the variable coefficients. The major difference
between this approach and the approach originally proposed by Mattsson is the use
of rectangular matrices, which simplifies the derivation somewhat. The derivation
of the matrices for fourth-order is shown in Appendix A.2.
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2.3.4 Telescopic Flux Form

All flux gradient operations in this work are recast into a telescopic flux form,

fx(u) = P−1∆f + Tp 2p p. (2.38)

This demonstrates the utility of the complementary grid as described in Section
2.3.1. We show in a previous paper [15] that various conservative and accurate flux
gradients can be constructed in this manner with formal boundary closures based
entirely on the SBP operator, Q. This is extended to a general formula for entropy
consistent finite differences in Section 3.4. When Q satisfies the SBP condition, the
endpoint fluxes are always consistent,

f̄0 = f(u1), f̄N = f(uN ). (2.39)

This telescopic flux form admits a generalized SBP property. The typical SBP
operator in 2.27 transfers the action of the discrete derivative onto a test function
with an equivalent order of approximation. The telescopic flux form combined with
the flux consistency condition results in a more generalized relation,

φTPP−1∆f = φT (B̃ − ∆̃)f = f(uN )φN − f(u1)φ1 − φ∆̃f , (2.40)

where

∆̃ =


0 −1 0 0 0 0
0 1 −1 0 0 0

0 0
. . .

. . . 0 0
0 0 0 1 −1 0
0 0 0 0 1 0

 , B̃ =


−1 0 0 0 0 0
0 0 0 0 0 0

0 0
. . .

. . . 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 ,

and
1

δx
φT ∆̃ = φTx +O(N−1).

This is equivalent to the commonly used explanation of summation-by-parts in in-
dicial form,

N∑
i=1

φi
(
f̄i − f̄i−1

)
= f(uN )φN − f(u1)φ1 −

N−1∑
i=1

f̄i (φi+1 − φi) . (2.41)

The action of the derivative is still moved onto the test function but at first order
accuracy. This generalized property is important for satisfying the weak form, as
shown in Section 2.4.

The variable coefficient viscous operators described in Section 2.3.3 can be con-
structed to satisfy

(ϑvx(x))x ≈ P−1 (−M(ϑ) + B[ϑ]D) v = P−1∆f
(v)
. (2.42)

This is shown by construction in Appendix A.2.1.
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Remark. The flux form is not commonly used in finite difference implementa-
tions, except by those that use WENO or hybrid WENO with central differencing.
It is unnecessary to implement a scheme in this way, but it is important to be able
to show that a scheme can be cast in this form. This was a critical step toward
proving that different finite difference forms can be constructed to satisfy the Lax
Wendroff theorem [15]. Furthermore, it is shown in Section 4.2.3 that sometimes the
flux form is necessary to describe a difference operator when no simple differential
form exists.

2.3.5 Semi-Discretization

The finite difference approximations described above are used to change the system
of partial differential equations into a set of coupled ordinary differential equations.
The result is the semi-discrete equation,

ut + P−1∆f = P−1∆f
(v)

+ P−1gb, (2.43)

where gb contains the enforcement of boundary conditions, detailed in our previous
work [15] and other references [20–24]. The algorithmic form,

(ui)t =

(
f̄

(v)
i − f̄ (v)

i−1

)
−
(
f̄i − f̄i−1

)
+ (gb)i

P(i)(i)
, i = 1, 2, . . . , N, (2.44)

is used in all applications in this work and illustrates how the complementary grids
interact. Gradients are specified only using simple differences of interpolated fluxes
at the flux points.

2.4 Satisfying the Weak Form

We showed in a previous paper [15] how the telescopic flux form described above
can be used to guarantee that the weak solution is recovered when the solution
converges. Two additional conditions are required [25]: All fluxes in f must have
compact support,

f̄j = f̄j (uj−`+1, uj−`+2, . . . , uj+`−1, uj+`) , j = 0, 1, . . . , N, (2.45)

where ` ≥ 0 is a finite integer independent of N ; and f must be consistent with the
flux in the Rankine Hugoniot relation,

f̄j (q, q, . . . , q, q) = f(q). (2.46)

In other words, as the resolution increases, the flux stencil width must remain con-
stant, and the functional form of the flux must match the functional form of the
conservation law flux.
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2.5 Temporal Integration

In all simulations used herein, the low-storage, five-stage, fourth-order, Runge Kutta
scheme of Carpenter and Kennedy [26] is used to advance the semi-discretization in
time. It is noted that this scheme does not satisfy the strong stability preserving
(SSP) property [27]. In the problems of interest for the current work, schemes that
did satisfy the SSP property exhibited the same robustness and stability as the low-
storage scheme, so the extra cost associated with these methods was unnecessary.
However, SSP Runge Kutta time integration and an appropriate limit on the time
step are required for the formal proof to hold in time.

3 Entropy Stable Finite Differences

In this work, we seek spatial flux divergence approximations using the finite dif-
ference method that mimic the continuous entropy condition at the semi-discrete
level. This is accomplished through a semi-discrete entropy analysis to determine
the conditions on the telescopic flux form required to satisfy the mimetic property.

3.1 Semi-Discrete Entropy Analysis

The goal of the semi-discrete entropy analysis is to show that the semi-discrete
entropy mimics a continuous entropy estimate such as that given in equation 2.18.
The nonlinear analysis begins by contracting the entropy variables wT with the semi-
discrete equation 2.43. The resulting global equation that governs the semi-discrete
decay of entropy is given by

wTPut + wT∆f = wT∆f
(v)

+ wTgb, (3.1)

where
w =

(
w(u1)T , w(u2)T , . . . , w(uN )T

)T
,

is the vector of entropy variables. The time derivative is easily manipulated into a
mimetic form by using a diagonal norm SBP operator (which commutes with any
arbitrary diagonal matrix) and the pointwise definition of entropy

wTi (ui)t = (Si)t, ∀i.

The resulting expression is
wTPut = 1TPSt.

Using this result, equation 3.1 is recast as

d

dt
1TPS = −wT∆

(
f − f

(v)
)

+ wTgb. (3.2)

This equation and mimetic arguments for semi-discrete entropy consistency will

yield sufficient conditions for f , f
(v)

, and gb. The derivation of entropy consistent
inviscid and viscous terms, however is considerably more involved than that required
for the time term.
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3.2 Inviscid Flux Conditions

3.2.1 Entropy Consistent Fluxes

By definition, an entropy-consistent inviscid semi-discretization satisfies the expres-
sion

wTPut + F (uN )− F (u1) =
d

dt
1TPS + F (uN )− F (u1) = wTgb. (3.3)

Comparing this expression with inviscid portion of equation 3.2 immediately reveals
that the inviscid flux terms are entropy consistent if they satisfy

wT∆f = F (uN )− F (u1) = 1T∆F. (3.4)

It is difficult to enforce the global entropy consistency condition in 3.4 at the flux
points. To circumvent this problem, Tadmor [6] developed a more restrictive condi-
tion that yields a local condition on the flux for the global entropy consistency. We
generalize this condition in the current work for higher approximation orders and
finite domains.

Substituting the definition for generalized summation-by-parts in Section 2.3.4,
∆ = B̃ − ∆̃, into the global entropy consistency condition in 3.4 yields

wT B̃f −wT ∆̃f − 1T B̃F + 1T ∆̃F = wT B̃f − 1T B̃F−wT ∆̃f = 0. (3.5)

The boundary terms in 3.5 can be reorganized as

wT B̃f − 1T B̃F = (wTNfN − FN )− (wT1 f1 − F1) = ψN − ψ1 = ψ̃
T B̃1̄,

where ψ1 and ψN represent the potential flux defined in 2.20, and ψ̃ is a vector of
potential fluxes, discussed below. Defining [f ] as a diagonal (N+1)×(N+1) matrix
containing the elements of f , 3.4 further simplifies to(

ψ̃
T B̃ −wT ∆̃[f ]

)
1̄ = 0.

Substituting the equality ψ̃
T B̃1̄ = ψ̃

T
∆̃1̄ into the left side of the equation yields(

ψ̃
T

∆̃−wT ∆̃[f ]
)

1̄ = 0. (3.6)

This is satisfied by the vector sufficient condition,

ψ̃
T

∆̃ = wT ∆̃[f ], ψ̃1 = ψ1, ψ̃N = ψN , (3.7)

and subsequently by the local sufficient conditions

(wi+1 − wi)T f̄i = ψ̃i+1 − ψ̃i, i = 1, 2, . . . , N − 1. (3.8)

A flux that satisfies this condition given in equation 3.8 is denoted f
(S)

.
Note that Tadmor arrives at the condition ψ̃ = ψ because of an assumption

on the form of F [6]. In the generalized condition derived in equation 3.7, it is
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unnecessary to define ψ̃ in the domain interior. Indeed, it is not even unique because
of the arbitrary assumptions used to relate the matrices in the domain’s interior.
We shall see next that this generality is important for high-order methods, because
the consistent entropy flux does not satisfy Tadmor’s original form [7].

The following theorems are two important contribution of this work. They prove
that high-order entropy consistent fluxes can be constructed from linear combina-
tions of two-point entropy consistent fluxes. This results follows immediately from
the structural properties of diagonal norm SBP operators, because they all admit
the generalized SBP given in section 2.3.4.

Theorem 3.1. A two-point entropy consistent flux can be extended to high order
with formal boundary closures using the form

f̄
(S)
i =

N∑
k=i+1

i∑
`=1

2q(`,k)f̄S (u`, uk) , 1 ≤ i ≤ N − 1, (3.9)

when the two-point non-dissipative function from Tadmor [6] is used

f̄S (uk, u`) =

1∫
0

g (w(uk) + ξ (w(u`)− w(uk))) dξ, g(w(u)) = f(u). (3.10)

The coefficient q(k,`) corresponds to the (k, `) row and column in Q, respectively.

Proof. To show the accuracy of approximation, we express the flux difference as

f̄
(S)
i − f̄ (S)

i−1 =
N∑

k=i+1

i∑
`=1

2q(`,k)f̄S (u`, uk)−
N∑
k=i

i−1∑
`=1

2q(`,k)f̄S (u`, uk) , 2 ≤ i ≤ N − 1.

The stencils of each flux contain considerable overlap, which is apparent if we rewrite
the difference as

f̄
(S)
i − f̄ (S)

i−1 =
N∑

k=i+1

i−1∑
`=1

2q(`,k)f̄S (u`, uk) +
N∑

k=i+1

2q(i,k)f̄S (ui, uk)

−
N∑

k=i+1

i−1∑
`=1

2q(`,k)f̄S (u`, uk)−
i−1∑
`=1

2q(`,i)f̄S (u`, ui) ,

=

N∑
k=i+1

2q(i,k)f̄S (ui, uk)−
i−1∑
`=1

2q(`,i)f̄S (u`, ui) ,

2 ≤ i ≤ N − 1.

(3.11)

Noting that q(i,j) = b(i,j) − q(j,i) and that f̄S(uk, u`) = f̄S(u`, uk), 3.11 is rewritten
as

f̄
(S)
i − f̄ (S)

i−1 =
N∑
j=1

2q(i,j)f̄S(ui, uj), 2 ≤ i ≤ N − 1. (3.12)
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By the same argument, the left boundary flux difference is

f̄
(S)
1 − f̄ (S)

0 =

N∑
k=2

2q(1,k)f̄S (u1, uk)− f(u1) =

N∑
k=1

2q(1,k)f̄S (u1, uk) ,

and the right boundary difference is

f̄
(S)
N − f̄ (S)

N−1 = f(uN )−
N−1∑
`=1

2q(`,N)f̄S (u`, uN ) =
N∑
k=1

2q(N,k)f̄S (uN , uk) .

Combining the expressions for the boundary points with 3.12, the flux difference at
all solution points is expressed as

f̄
(S)
i − f̄ (S)

i−1 =

N∑
j=1

2q(i,j)f̄S(ui, uj), 1 ≤ i ≤ N. (3.13)

This form facilitates an analysis by Taylor series at every solution point. The accu-
racy constraints of Q satisfy

N∑
k=1

qik(k − i)`
`!

=
P(i)(i)

δx
δ1`, ` = 0, 1, . . . , d, (3.14)

where d = 2p in the domain interior and d = p at the boundaries. To proceed
further, we need to rewrite the flux function in 3.10 as a Taylor series expansion
about ξ = 0 [5],

g (w(ui) + ξ (w(uj)− w(ui))) =
∞∑
k=0

1

k!

∂kg

∂wk

∣∣∣∣
wi

(wj − wi)kξk.

The integration now proceeds simply,

f̄S(ui, uj) =

1∫
0

∞∑
k=0

1

k!

∂kg

∂wk

∣∣∣∣
wi

(wj − wi)kξk dξ

=

∞∑
k=0

1

k!

∂kg

∂wk

∣∣∣∣
wi

(wj − wi)k
1∫

0

ξk dξ

=

∞∑
k=0

1

k!

∂kg

∂wk

∣∣∣∣
wi

(wj − wi)k
1

k + 1
,

(3.15)

and simplifies to

f̄S(ui, uj) = g(wi) +

∞∑
k=1

1

(k + 1)!

∂kg

∂wk

∣∣∣∣
wi

(wj − wi)k. (3.16)
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We now perform a second Taylor expansion about wi,

f̄S(ui, uj) = g(wi) +
∞∑
k=1

1

(k + 1)!

∂kg

∂wk

∣∣∣∣
wi

[ ∞∑
`=1

(δx)`(j − i)`
`!

∂`w

∂x`

∣∣∣∣
xi

]k
. (3.17)

This expression for the flux is substituted into 3.13,

f̄
(S)
i − f̄ (S)

i−1 =
N∑
j=1

2qij

g(wi) +
∞∑
k=1

1

(k + 1)!

∂kg

∂wk

∣∣∣∣
wi

[ ∞∑
`=1

(δx)`(j − i)`
`!

∂`w

∂x`

∣∣∣∣
xi

]k .
The first term vanishes because all rows of Q sum to zero. We then split k = 1 from
the remaining terms in the sum,

f̄
(S)
i − f̄ (S)

i−1 =
N∑
j=1

∞∑
`=1

∂g

∂w

∣∣∣∣
wi

(δx)`qij(j − i)`
`!

∂`w

∂x`

∣∣∣∣
xi

+
N∑
j=1

∞∑
k=2

2qij
(k + 1)!

∂kg

∂wk

∣∣∣∣
wi

[ ∞∑
`=1

(δx)`(j − i)`
`!

∂`w

∂x`

∣∣∣∣
xi

]k
.

(3.18)

Using 3.14, the first term is rewritten as

N∑
j=1

∞∑
`=1

∂g

∂w

∣∣∣∣
wi

(δx)`qij(j − i)`
`!

∂`w

∂x`

∣∣∣∣
xi

=
∂g

∂w

∣∣∣∣
wi

∂w

∂x

∣∣∣∣
xi

P(i)(i) +O
(

(δx)d+1
)
,

which will yield a design-order accurate approximation of gx = fx at xi. We now
must show that the remaining sum term in 3.18 is design-order small. To handle
the series raised to a power, we recursively apply the identity,( ∞∑

k=1

akx
k

)( ∞∑
k=1

bkx
k

)
=

 ∞∑
`1=1

a`1x
`1

 ∞∑
`2=1

b`2x
`2

 =

∞∑
`1=1

∞∑
`2=1

a`1b`2x
(`1+`2),

such that the expansion to the power k can be rewritten as[ ∞∑
`=1

(δx)`(j − i)`
`!

∂`w

∂x`

∣∣∣∣
xi

]k
=

∞∑
`1=1

· · ·
∞∑
`k=1

(
k∏

m=1

∂`mw

∂x`m

)
(δx)

∑
`m(j − i)

∑
`m

(
∑
`m)!

.

Using
k∑

m=1

`m > 1, ∀k ≥ 2,

we can apply the accuracy constraints 3.14 to the second sum term in 3.18,

N∑
j=1

∞∑
k=2

2qij
(k + 1)!

∂kg

∂wk

∣∣∣∣
wi

[ ∞∑
`=1

(δx)`(j − i)`
`!

∂`w

∂x`

∣∣∣∣
xi

]k
= O

(
(δx)d+1

)
.
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Thus we have shown that using 3.9,

f̄
(S)
i − f̄ (S)

i−1

P(i)(i)
= fx +O

(
(δx)d

)
. (3.19)

Theorem 3.2. A two-point high-order entropy consistent flux satisfying 3.8 with
formal boundary closures can be constructed using 3.9,

f̄
(S)
i =

N∑
k=i+1

i∑
`=1

2q(`,k)f̄S (u`, uk) , 1 ≤ i ≤ N − 1,

where fS(u`, uk) is any two-point non-dissipative function that satisfies the entropy
consistency condition

(w` − wk)T f̄S (u`, uk) = ψ` − ψk. (3.20)

The high-order entropy consistent flux satisfies an additional local entropy consis-
tency property,

WP−1∆f
(S)

= P−1∆F = Fx(u) + Td, (3.21)

or equivalently,

wTi

(
f̄

(S)
i − f̄ (S)

i−1

)
=
(
F̄i − F̄i−1

)
, 1 ≤ i ≤ N, (3.22)

where

F̄i =
N∑

k=i+1

i∑
`=1

q(`,k)

[
(w` + wk)

T f̄S (u`, uk)− (ψ` + ψk)
]
, 1 ≤ i ≤ N − 1. (3.23)

Proof. Using 3.13, the inner product of the entropy variables with the flux difference
can be expressed as

wT∆f
(S)

=
N∑
i=1

N∑
j=1

2q(i,j)w
T
i f̄S(ui, uj)

=

N∑
i=1

N∑
j=1

(
q(i,j) + b(i,j) − q(j,i)

)
wTi f̄S(ui, uj).

(3.24)

Using the structure of B and recognizing that the summation indices are arbitrary,
and thus, q(j,i)wi = q(i,j)wj , we rewrite 3.24 as

wT∆f
(S)

= wTNfN − wT1 f1 +
N∑
i=1

N∑
j=1

q(i,j)(wi − wj)T f̄S(ui, uj). (3.25)
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Tadmor [5] proved that

(w` − wk)T
1∫

0

g (w(uk) + ξ (w(u`)− w(uk))) dξ = ψ` − ψk, (3.26)

but more generally we can show that any flux satisfying 3.20 can be used to simplify
3.25 to

wT∆f
(S)

= wTNfN − wT1 f1 +
N∑
i=1

N∑
j=1

q(i,j) (ψi − ψj)

= wTNfN − wT1 f1 +
N∑
i=1

ψi

N∑
j=1

q(i,j) −
N∑
i=1

N∑
j=1

q(i,j)ψj

= FN + ψN − F1 − ψ1 −
N∑
i=1

N∑
j=1

q(i,j)ψj = FN − F1,

where we have used wT f = F +ψ. To the authors’ knowledge, this proof of entropy
consistency for high-order finite difference methods on bounded domains is new.

The accuracy proof of the local entropy consistency property 3.21 follows imme-
diately from the accuracy proof of the flux difference 3.19,

wTi

(
f̄

(S)
i − f̄ (S)

i−1

)
P(i)(i)

= wTi

(
fx(ui) +O

(
(δx)d

))
= Fx(ui) +O

(
(δx)d

)
,

1 ≤ i ≤ N.
(3.27)

To show that 3.9 satisfies the local entropy consistency property 3.22, we start by
writing the entropy flux difference,

F̄i − F̄i−1 =

N∑
k=i+1

i∑
`=1

q(`,k)

[
(w` + wk)

T f̄S (u`, uk)− (ψ` + ψk)
]

−
N∑
k=i

i−1∑
`=1

q(`,k)

[
(w` + wk)

T f̄S (u`, uk)− (ψ` + ψk)
]
,

2 ≤ i ≤ N − 1.

(3.28)

Following the procedure in 3.11 to get 3.13, we similarly get the simplified form of
the entropy flux difference

F̄i − F̄i−1 =
N∑
j=1

q(i,j)

[
(wi + wj)

T f̄S (ui, uj)− (ψi + ψj)
]
, 1 ≤ i ≤ N. (3.29)

To show the consistency, we premultiply 3.13 by wTi ,

wTi

(
f̄

(S)
i − f̄ (S)

i−1

)
=

N∑
j=1

2q(i,j)w
T
i f̄S(ui, uj), 1 ≤ i ≤ N. (3.30)
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Adding and subtracting
N∑
j=1

q(i,j)w
T
j f̄S(ui, uj)

and using 3.20, we can rewrite the difference as

wTi

(
f̄

(S)
i − f̄ (S)

i−1

)
=

N∑
j=1

q(i,j)

[
(wi + wj)

T f̄S(ui, uj) + (wi − wj)T f̄S(ui, uj)
]

=
N∑
j=1

q(i,j)

[
(wi + wj)

T f̄S(ui, uj) + (ψi − ψj)
]
.

We now simply add

−ψi
N∑
j=1

2q(i,j) = 0

to get the flux difference formula consistent with 3.29,

wTi

(
f̄

(S)
i − f̄ (S)

i−1

)
=

N∑
j=1

q(i,j)

[
(wi + wj)f̄S (ui, uj)− (ψi + ψj)

]
= Fi − Fi−1,

1 ≤ i ≤ N.

Using Theorems 3.1 and 3.2, we are guaranteed that the extension of the two-
point flux, 3.9, is a high-order accurate entropy consistent discretization of the
conservation law.

Remark. The entropy consistency proof is satisfied for all two-point fluxes that
satisfy 3.20. The accuracy proof has only been proven for fluxes in the integral
form 3.10. We are at this point unable to show that any flux satisfying 3.20 will be
design-order accurate, so such fluxes should be validated for accuracy independent
of Theorem 3.1.

3.2.2 Entropy Stability

For entropy stability an analogous condition to 3.3 is

wTPut + F (uN )− F (u1) ≤ wTgb. (3.31)

We again substitute the semi-discrete conservation law into 3.31 and show that the
entropy stable inviscid fluxes must satisfy

wT∆f ≥ 1T∆F. (3.32)

Using the result for the entropy consistent flux in 3.4, this condition can be rewritten
as

wT∆f ≥ wT∆f
(S)
.
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Substituting the generalized summation-by-parts property,

wT (B̃ − ∆̃)(f
(S) − f) = wT ∆̃(f − f

(S)
) = wT ∆̃([f ]− [f

(S)
])1̄ ≤ 0, (3.33)

the sufficient local condition for entropy stability is

wT ∆̃[f ] ≤ wT ∆̃[f
(S)

], (3.34)

or in indicial form,

(wi+1 − wi)T (f̄i − f̄ (S)
i ) ≤ 0, i = 1, 2, . . . , N − 1. (3.35)

The development of this condition relied heavily on the formalism introduced in
Section 2.3. The generalized SBP property made it possible to extend the entropy
stability condition to finite domains.

Remark. The entropy stability condition is based on the global property 3.32. It
has not been proved to provide a pointwise entropy stability property at this point.

The entropy stability condition in 3.35 can be used to find entropy stable con-
ditions for any type of telescopic flux operator. It only informs the upper limit of
dissipation from a flux operator such that the entropy condition is satisfied. It does
not inform how to add sufficient dissipation such that a non-oscillatory solution is
obtained. In this work, we use the WENO finite difference method to construct
dissipation and use the condition 3.35 to ensure that the discretization is entropy
stable. This is detailed in the following section.

3.3 Entropy Stable WENO Finite Differences

It is well known that non-dissipative numerical methods cannot be used to simu-
late shocks. The primary reason for this is that shocks dissipate energy and non-
dissipative numerical methods have no mechanism to mimic this. To simulate prob-
lems with shocks, dissipation needs to be added to the numerical method. There
are a variety of mechanisms to achieve this, but in this work WENO finite difference
methods are used. The implementation uses unique formal boundary closures from
Fisher et al. [10] that satisfy the SBP condition. Stencil biasing mechanics follow two
papers by Yamaleev and Carpenter [28, 29]. The details of the generally applicable
correction procedure are detailed below. The full implementation details including
the WENO stencil biasing algorithm throughout the domain are available in Fisher
et al. [10] and Carpenter et al. [30] for (2-4-2) and (3-6-3) operators, respectively. 1

The first step to construct a WENO finite difference operator is to cast the
difference operator in flux form,

Qf = ∆f .

These fluxes that recover the non-dissipative first derivative approximation are called
target fluxes. The target fluxes are broken into a sum of fluxes on smaller stencils

1The nomenclature (2-4-2) signifies that boundaries/interior stencils are second- and fourth-
order accurate, respectively. The resulting operators are globally third- and fourth-order accurate,
respectively.
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of width, p, called candidate stencils,

f̄j =

ns∑
k=1

d̄kj f̄
Sk
j , j = 1, 2, . . . , N − 1, (3.36)

where ns is the number of candidate stencils needed to describe the target flux,
f̄Skj are the candidate fluxes, and d̄kj are the target weights that recover the target
flux. The candidate stencil width is held constant for all fluxes in the domain. For
example, fourth-order operators use p = 2, and sixth-order operators use p = 3.
Figure 2 shows the fourth-order case. The number of candidate stencils needed to
describe the fluxes f̄j can vary, as the target fluxes do not all have the same stencil
size when approaching the boundary. The functional form of the candidate stencils
depends on the distribution of the flux points, and thus is fully described by the
norm, P, and the desired order of accuracy.

S3S2S1 S4 S5

f̄i

ui ui+1 ui+2 ui+3ui−1ui−2

Figure 2. The stencil for a WENO scheme with p = 2 and ns = 5 candidate stencils
is shown.

WENO works by preventing the interpolated fluxes, f̄j , from using data across
discontinuities. This is done by replacing the target weights, d̄kj with nonlinear
weights,

ω̄kj =
ᾱkj∑
`

ᾱ`j
, ᾱj

k = d̄kj

(
1 +

τ̄j

β̄kj + ε̄j

)
, k = 1, . . . , ns. (3.37)

The functional form of the nonlinear weights relies on the scaling parameter, ε̄, and
dual stencil-biasing parameters, τ̄ and β̄. τ̄ is a measure of the smoothness over the
full stencil,

τ̄j =

nτ∑
i=1

(
∂2p−1u(x̄j)

∂x2p−1
(δx)2p−1

)2

, nτ = ns − p. (3.38)

β̄ is a measure of the smoothness over each individual candidate stencil,

β̄kj =

p−1∑
`=1

(δx)2`

(
∂`ϕkj (x̄j)

∂x`

)2

, (3.39)

where ϕkj (x) is the unique order (p − 1) polynomial fit of the solution over the
candidate stencil, Sk. The flux of the WENO scheme is calculated using the formula

f̄
(W )
j =

ns∑
k=1

ω̄kj f̄
Sk
j , j = 1, 2, . . . , N − 1. (3.40)
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The stencil biasing procedure ensures that stencils containing discontinuities result
in high relative values of β̄ and are assigned negligible weights. The WENO flux
becomes an interpolation that incorporates only smooth data. Away from disconti-
nuities, the flux collapses to the target flux. Near discontinuities, the flux transforms
into an upwind operator. Note that the flux consistency condition on the first and
last flux point in 2.39 is enforced.

The WENO method as described has no provable stability properties. We em-
ploy a limiting procedure to ensure that it satisfies entropy stability. From 3.35, we
require that

(wi+1 − wi)T
(
f̄

(SSW )
i − f̄ (S)

i

)
≤ 0, (3.41)

where f (SSW ) is the entropy stable WENO flux and f (S) is the entropy consistent
flux. The limiter that guarantees entropy stability is chosen as

f̄
(SSW )
i = f̄

(W )
i + δ

(
f̄

(S)
i − f̄ (W )

i

)
, δ =

√
b2 + c2 − b√
b2 + c2

,

b = (wi+1 − wi)T
(
f̄

(S)
i − f̄ (W )

i

)
, c = 10−12,

(3.42)

where f
(W )
i is the WENO flux without the correction described above. The limiting

process to get the entropy stable property is not unique. It was chosen merely
because it is smooth with respect to the solution. This same limiting procedure
works with fluxes other than WENO. It is shown in a later section that this minor
correction to the WENO operator has a large impact.

Remark. While this limiting process can be used on other dissipative methods to
ensure the entropy stability property, we note that the selected dissipative method
must be cast into telescopic-flux form and satisfy the generalized summation-by-
parts property. In other words, the dissipative part of the method must have formal
boundary closures and satisfy the entropy consistency condition.

3.4 Entropy Stable Viscous Terms

Using the formalism introduced in Section 2.3.3 combined with the definition of the
entropy dissipative regularization in Section 2.2, we can define viscous terms such
that the continuous entropy properties are mimicked by the semi-discrete equation.
This is accomplished simply by requiring that the discrete viscous fluxes are written
in dependence on the discrete gradients of the entropy variables,

(ĉwx)x = P−1∆f
(v)

= D2(ĉ)w + Tp 2p p,

D2(ĉ)w = P−1 (−M(ĉ) + B[ĉ]D) w,

M(ĉ) = DTP[ĉ]D +R(ĉ), R(ĉ) =

nr∑
k=1

N T
k [̃ĉ]kNk.

(3.43)

The accuracy requirements are automatically satisfied. The coefficient matrices [ĉ]

and [̃ĉ] are positive semi-definite because they are constructed using block-diagonal
combinations of positive semi-definite matrices.
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The contribution of the viscous terms to the semi-discrete entropy decay rate is

wT∆f
(v)

= wB[ĉ]Dw − (Dw)TP[ĉ](Dw)−
nr∑
k=1

(Nkw)T [̃ĉ]k(Nkw), (3.44)

where the last term is design-order small, and the last two terms are negative semi-
definite. Note that no definite properties can be defined if the discrete viscous fluxes
are constructed based on gradients of primitive or conservative variables. While at
the continuous level, wx = wqqx, at the discrete level in general we must assume
Dw 6= wuDu. As in 2.18, only the boundary term will result in growth of the
entropy, and thus this approximation of the viscous terms is entropy stable.

This formal definition of high-order entropy stable viscous terms with full bound-
ary closures appears to be completely new (to our knowledge). It can be used along
with the entropy consistent inviscid terms to construct a semi-discretization that
mimics the properties of the continuous entropy, which is shown in the next section.

3.5 Entropy Stable Semi-Discretization

We substitute the entropy stable fluxes for the inviscid 3.42 and viscous 3.43 terms
into the semi-discrete conservation law 2.43 to get what we define as an entropy
stable semi-discretization on the finite domain,

ut + P−1∆f
(SSW )

= P−1∆f
(v)

+ P−1gb. (3.45)

Note that the boundary conditions imposed with the penalty gb have not been con-
sidered. This is because we have found it necessary to specify the conservation law
and the entropy-entropy flux pair to derive appropriate boundary conditions. In the
case of the compressible Navier-Stokes equations, the continuous theory for entropy
stable boundary conditions is lacking, and no satisfactory entropy stable boundary
conditions have been derived. Instead, linearly stable boundary conditions are used
in the penalties. The particular boundary conditions used for each conservation law
are addressed in the next sections.

4 Applications

The new methodology developed herein is applied to two sets of conservation laws.
Developments in Burgers equation are used to illustrate how a fully entropy stable
scheme is constructed. The methodology is also extended to three dimensions for the
compressible Euler and Navier-Stokes equations, which are the target application
for this work. As mentioned above, full entropy stability cannot be achieved because
of incomplete continuous theory at the boundaries. The entropy stable numerics are
applied where possible.
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4.1 Burgers Equation

Burgers equation is a nonlinear model problem that admits shocks in the inviscid
limit,

qt + f(u)x = εf (v)
x , f(q) =

q2

2
, f (v) = qx, x ∈ [xL, xR], t ∈ [0,∞),

q(xL, t) + |q(xL, t)|
3

q(xL, t)− εqx(xL, t)− gL(t) = 0,

q(xR, t)− |q(xR, t)|
3

q(xR, t)− εqx(xR, t) + gR(t) = 0,

q(x, 0) = g0(x).

(4.1)

The boundary conditions in 4.1 are constructed such that the entropy corresponding
to

(S, F ) =

(
q2

2
,
q3

3

)
, (ϕ,ψ) =

(
q2

2
,
q3

6

)
, (4.2)

only increases with respect to the imposed data and maintains the same form in the
inviscid limit ε→ 0. The entropy variables are w = q. We substitute this definition
into the entropy decay rate 2.18 and find

d

dt

xR∫
xL

q2

2
dx =

[
εqqx −

q3

3

]xR
xL

− ε
xR∫
xL

qxqx dx. (4.3)

Using the boundary condition in 4.1 to replace εqx at the boundaries above, the
entropy decay rate becomes

d

dt

xR∫
xL

S dx = −|qR|
3
q2
R −
|qL|
3
q2
L + qRgR + qLgL − ε

xR∫
xL

q2
x dx, (4.4)

where qL = q(xL, t) and qR = q(xR, t). It is immediately clear that when qL = 0 or
qR = 0, the corresponding boundary terms do not contribute to the entropy decay.
When qL 6= 0 or qR 6= 0, the identity,

yz = −1

2

(√
ay − 1√

a
z

)2

+
a

2
y2 +

1

2a
z2, a > 0, (4.5)

is used to transform the corresponding positive terms in 4.4, which yields the entropy
decay rate

d

dt

xR∫
xL

S dx =− ε
xR∫
xL

q2
x dx

− 1

2

(√
aRqR −

1√
aR
gR

)2

− 1

2

(√
aLqL −

1√
aL
gL

)2

+

(
aR
2
− |qR|

3

)
q2
R +

(
aL
2
− |qL|

3

)
q2
L +

1

2aR
g2
R +

1

2aL
g2
L.

(4.6)
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The coefficients used to complete the square, aL and aR, are arbitrary, and thus it
is acceptable to set them to values that satisfy the proof,

0 < aR ≤
2

3
|qR|, 0 < aL ≤

2

3
|qL|.

This shows that the only terms in 4.6 that will contribute to growth of the entropy
are the boundary data terms, 1

2aL
g2
L and 1

2aR
g2
R. This result is independent of the

value of ε.

4.1.1 Entropy Stable Discretization of Burgers Equation

The inviscid terms in the discretization of Burgers equation are specified according
to 3.42, 3.9, and 3.10, where the two-point entropy consistent flux simplifies to

f̄S(uk, u`) =
1

6
(ukuk + uku` + u`u`) . (4.7)

The viscous terms are approximated according to 3.43 with the recognition that
ĉ = 1. For Burgers equation, entropy stable boundary penalties can be constructed,
which are equivalent to the penalties derived in [15],

gb =− e1

(
u1 + |u1|

3
u1 − ε (Du)1 − gL

)
+ eN

(
uN − |uN |

3
uN − ε (Du)N + gR

)
.

(4.8)

The e vectors ensure that only the first and last elements of gb are nonzero. The
contribution of the penalties to the discrete entropy is

uTgb =−
(
u1 + |u1|

3
u2

1 − εu1 (Du)1 − u1gL

)
+

(
uN − |uN |

3
u2
N − εuN (Du)N + uNgR

)
.

(4.9)

Note that the form of the penalties matches the boundary condition specification in
4.1. The individual discrete elements are combined using 3.45. The semi-discrete
entropy decay rate is

d

dt
uTPu ≤− 1

3

(
u3
N − u3

1

)
+

1

3

(
u3
N − u3

1 − |uN |u2
N − |u1|u2

1

)
− εuTMu + u1gL + uNgR.

(4.10)

Using the relation in 4.5 to transform the positive terms yields the entropy expression

d

dt
1TPS ≤− εuTMu +

1

2aL
g2
L +

1

2aR
g2
R

− 1

2

(√
(aR)uN −

1√
aR
gR

)
− 1

2

(√
(aL)u1 −

1√
aL
gL

)
+

(
aR
2
− |uN |

3

)
u2
N +

(
aL
2
− |u1|

3

)
u2

1,

0 < aL ≤
2

3
|u1|, 0 < aR ≤

2

3
|uN |.

(4.11)
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Just as in 4.6, the only terms that lead to entropy growth are 1
2aL

g2
L and 1

2aR
g2
R. This

ensures that the semi-discrete solution will remain bounded as long as appropriate
boundary data are used.

4.1.2 Advantages of Entropy Stability

We show in this section how schemes designed for linear stability may fail at shocks
and illustrate how entropy stable schemes can overcome such deficiencies. A linearly-
stable WENO scheme, termed ESWENO, was developed in Fisher et al. [10] with
full SBP boundary closures. This scheme is constructed such that when the WENO
operator is cast in flux form,

∆f
(ESW )

=
(
Q̃+ R̃

)
f , Q̃+ Q̃T = B, R = RT , (4.12)

the symmetric dissipation matrix R is positive or negative semi-definite for waves
with positive or negative propagation speeds, respectively. In comparison with the
base WENO operator used in this work, the ESWENO operator incorporates an
additional correction matrix,

∆f
(ESW ) −∆f

(W )
= Rcf , (4.13)

where Rc is a symmetric semi-definite matrix. This correction matrix has been
shown to be necessary in linear equations where the one-sided stencil biasing me-
chanics become poorly behaved if no correction is added and result in solutions that
do not converge. However, it has been observed that the ESWENO scheme exhibits
overshoots at stationary shocks, which is not surprising because it is based on lin-
ear theory. This is illustrated by recognizing that the contribution of the energy
correction term to the nonlinear entropy is

uT
(

∆f
(ESW ) −∆f

(W )
)

= uTRcf =
1

2
uTRcUu, U = diag(u). (4.14)

The ESWENO procedure ensures that Rc is semi-definite, but the matrix RcU may
be indefinite and thus may contribute to entropy growth. The disconnect between
the intended behavior and the actual behavior of the correction term illustrates
the shortfalls of linear analysis. Instead, if the entropy stable WENO (SSWENO)
scheme developed herein is applied, the WENO scheme will only dissipate entropy.

The above behavior is illustrated using a common example defined by

xL = −1, xR = 1, ε = 0, t ∈ [0, 2.5],

gL(t) = 1, gR(t) = −1, g0(x) = −x. (4.15)

This problem is discretized using N = 65 points. Figure 3 compares the simulation
results at t = 2.5 obtained using the WENO, ESWENO, and SSWENO schemes.
Clearly, the linearly stable ESWENO operator exhibits a dramatic overshoot at the
shock, while the WENO and SSWENO schemes are monotone.

While the WENO solution may appear to be the best solution, that is not in
general what is observed. The SSWENO scheme exhibits better stability properties

27



Figure 3. SSWENO, ESWENO, and WENO results for the stationary Burgers shock
case are compared for N = 65 points at t = 2.5.

for more complex problems. This is demonstrated with a different test problem with
time-dependent boundary conditions,

xL = −1, xR = 1, ε = 0, t ∈ [0, 5],

gL(t) = 1 +
1

2
sin(πt), gR(t) = −1− 1

2
sin(πt), gi(x) = −x.

(4.16)

Multiple shocks meet at x = 0 in this configuration. The problem described by 4.16
was simulated with N = 65 points and the SSWENO results are compared to the
WENO and ESWENO results at t = 2.5 (see Figure 4). It is clear that SSWENO
performs as expected. The overshoots at the shocks disappear, and the one-sided
stencil biasing mechanics are well controlled. (Figure 4). This problem also demon-
strates how the WENO scheme without correction degenerates at boundaries.

4.2 Euler and Navier-Stokes Equations

The end goal of this work is to simulate the Navier-Stokes equations in a stable and
efficient manner. Toward this end, the application of entropy stable inviscid and
viscous terms are detailed in this section. The developments for the Navier-Stokes
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Figure 4. The solutions using SSWENO, ESWENO, and WENO on N = 65 nodes
are plotted for the multiple shock problem at t = 2.5.

equations in this work are limited to the calorically perfect form,

qt + (f i)xi = (f (v)i)xi , x ∈ Ω, t ∈ [0,∞),

Bq = gb, x ∈ ∂Ω, t ∈ [0,∞),

q(x, 0) = g0(x), x ∈ Ω,

(4.17)

where the Cartesian coordinates, x = (x1, x2, x3)T , and time, t, are independent
variables and index sums are implied. The three dimensional domain is defined by
the box

Ω = [xL1 , x
H
1 ]× [xL2 , x

H
2 ]× [xL3 , x

H
3 ]

and ∂Ω represents the boundary of the domain. The conservative variables are

q = (ρ, ρυ1, ρυ2, ρυ3, ρE)T , (4.18)

where ρ denotes density, υ = (υ1, υ2, υ3)T is the velocity vector, and E is the specific
total energy. The convective fluxes are

f i = (ρυi, ρυiυ1 + δi1p, ρυiυ2 + δi2p, ρυiυ3 + δi3p, ρυiH)T , (4.19)

where p represents pressure, H = E + p/ρ is the specific total enthalpy, and δij is
the Kronecker delta. The viscous flux terms are

f (v)i = (0, τi1, τi2, τi3, τjiυj − qi)T , (4.20)
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where the shear stress is

τij = µ

(
(υi)xj + (υj)xi − δij

2

3
(υ`)x`

)
, (4.21)

and the heat flux is

qi = −κTxi . (4.22)

T denotes the static temperature, and µ = µ(T ), and κ = κ(T ) are the dynamic
viscosity and thermal conductivity, respectively. The viscous terms can also be
expressed as

f (v)i = cijqxj , (4.23)

which is a convenient form for entropy analysis. The constitutive relations for a
perfect gas are

h = H − 1

2
υjυj = cpT, (4.24)

where cp is the constant specific heat, and

p = ρRT, R =
Ru
MW

, (4.25)

where Ru is the universal gas constant and MW is the molecular weight of the gas.
The speed of sound for a perfect gas is

c =
√
γRT , γ =

cp
cp −R

. (4.26)

In the entropy analysis that follows, the definition of the thermodynamic entropy is
the explicit form,

s =
R

γ − 1
log

(
T

T0

)
−R log

(
ρ

ρ0

)
. (4.27)

4.2.1 Entropy Analysis

In the Navier-Stokes equations, entropy stability is not the same as full nonlinear
stability. However, entropy stability gives a stronger stability estimate than linear
energy stability, and in many ways is easier to apply. In this section, the continuous
entropy stability is conducted first to illustrate the entropy characteristics of the
governing equations at the continuous level. Then, spatial operators are derived
that enable these continuous properties to be mimicked, which is shown through the
semi-discrete entropy analysis.

The entropy–entropy flux pair for the Navier-Stokes equations is

S = −ρs, F i = −ρυis, (4.28)

and the potential–potential flux pair is

ϕ = ρR, ψi = ρυiR. (4.29)
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Note again that the mathematical entropy has the opposite sign of the thermo-
dynamic entropy. To avoid confusion, herein entropy refers to the mathematical
entropy unless otherwise noted. The entropy variables using the pair in 4.28 are

w = STq =

(
h

T
− s− υjυj

2T
,
υ1

T
,
υ2

T
,
υ3

T
,− 1

T

)T
(4.30)

and can be shown to have a one-to-one mapping with the conservative variables as
long as ρ, T > 0. Expressly:

ζTSqqζ
T > 0, ∀ζ 6= 0, ρ, T > 0.

This restriction is what makes the entropy proof fail to be a true measure of nonlinear
stability. Another mechanism must be employed to bound ρ and T away from zero to
ensure stability. This is not considered in the present work, but interested readers
can refer to the work by Zhang and Shu [31]. The full derivation of the entropy
variables and symmetrizing matrices are detailed in Appendix B.1.

The entropy equation is found by premultiplying the Navier-Stokes equations
with the transpose of the entropy variables,

Sqqt + Sq(f
i)xi = St + F ixi = wT

(
cijqwwxj

)
xi

=
(
wT cijqwwxj

)
xi
− wTxicijqwwxj ,

(4.31)

where the viscous terms satisfy

cijqw = ĉij = ĉTji, ζxi ĉijζxj ≥ 0, ∀ζ, (4.32)

requiring
T > 0, µ(T ) > 0, κ(T ) > 0.

This requirement and the symmetric coefficient matrices, ĉij , are derived in Ap-
pendix B.2. The total entropy decay rate is found by integrating 4.31 over space,

d

dt

∫
Ω

S dV =

∫
∂Ω

(
wT ĉijwxj − F i

)
∂Si −

∫
Ω

wTxi ĉijwxj dV. (4.33)

Dutt [32] used the above equation to derive well-posed boundary conditions. His
procedure has not gained wide acceptance [33]. In this work, boundary conditions
are still imposed based on linear stability theory.

4.2.2 Discretization Notes

To facilitate the extension of the entropy stable methods to the three-dimensional
equations, we define the three-dimensional nomenclature and examine the general
form of the semi-discretization. The semi-discrete form of 4.17 is

ut +
3∑
i=1

P−1
xi ∆xi

(
f
i − f

(v)i
)

=
3∑
i=1

P−1
xi

(
gib + giI

)
. (4.34)
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The solution vector is ordered as

u =
(
u(x(1)(1)(1))

T , u(x(1)(1)(2))
T , . . . , u(x(N1)(N2)(N3))

T
)T
.

The roman superscript indices on the flux in 2.43 indicate the direction of the flux,
and parenthetic superscripts indicate the type of flux, i.e. V for viscous, W for
WENO, S for entropy consistent. The multi-dimensional operator nomenclature is
defined as follows:

Px1 = (PN1 ⊗ IN2 ⊗ IN3 ⊗ I5) , Px2 = (IN1 ⊗ PN2 ⊗ IN3 ⊗ I5) ,

Px3 = (IN1 ⊗ IN2 ⊗ PN3 ⊗ I5) , Px1x2 = (PN1 ⊗ PN2 ⊗ IN3 ⊗ I5) ,

Px1x3 = (PN1 ⊗ IN2 ⊗ PN3 ⊗ I5) , Px2x3 = (IN1 ⊗ PN2 ⊗ PN3 ⊗ I5) ,

P = Px1x2x3 = (PN1 ⊗ PN2 ⊗ PN3 ⊗ I5) ,

(4.35)

where ⊗ represents the Kronecker product; PN represents the one-dimensional norm
defined with N solution points; IN is the one-dimensional identity operator defined
with N solution points; and the other operators, B,Q,∆,M,R, extend in an iden-
tical fashion. Note that transposition and inverse operations applied to these opera-
tors are distributive. When applying these operators to the scalar entropy equation
in space, a hat will be used to differentiate the scalar operator from the full vector
operator. For example,

P̂ = (PN1 ⊗ PN2 ⊗ PN3) . (4.36)

Expressly, 4.35 states that one subscript on an operator means the operator applies
in one direction, two subscripts apply in two-directions, and three subscripts or
boldface apply in all three directions. This nomenclature is used throughout the
following analyses and definitions.

4.2.3 Entropy Stable Spatial Discretization

The inviscid terms in the discretization of the Navier-Stokes equations are calculated
according to 3.42, 3.9, and 3.10, where the two-point entropy consistent flux was
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derived by Ismail and Roe [8],

f̄ jS(ui, ui+1) =
(
ρ̂υ̂j , ρ̂υ̂j υ̂1 + δj1p̂, ρ̂υ̂j υ̂2 + δj2p̂, ρ̂υ̂j υ̂3 + δj3p̂, ρ̂υ̂jĤ)

)T
,

υ̂ =

υ̂i√
Ti

+ υ̂i+1√
Ti+1

1√
Ti

+ 1√
Ti+1

, p̂ =

p̂i√
Ti

+ p̂i+1√
Ti+1

1√
Ti

+ 1√
Ti+1

,

ĥ = R

log

( √
Tiρi√

Ti+1ρi+1

)
1√
Ti

+ 1√
Ti+1

 √
Tiρi +

√
Ti+1ρi+1(

1√
Ti

+ 1√
Ti+1

)(√
Tiρi −

√
Ti+1ρi+1

)

+
γ + 1

γ − 1

log

(√
Ti+1

Ti

)
log
(√

Ti
Ti+1

ρi
ρi+1

)(
1√
Ti
− 1√

Ti+1

)
 ,

Ĥ = ĥ+
1

2
υ̂`υ̂`, ρ̂ =

(
1√
Ti

+ 1√
Ti+1

)(√
Tiρi −

√
Ti+1ρi+1

)
2
(
log(
√
Tiρi)− log(

√
Ti+1ρi+1)

) .

(4.37)

This somewhat complicated explicit form is the first entropy consistent flux for
the convective terms with low enough computational cost to be implemented in
a practical simulation code. Previously, Tadmor [5] derived an entropy consistent
flux form that required integration through phase space, but this was deemed too
expensive to be practical.

The resulting entropy stable WENO scheme for the Navier-Stokes equations
satisfies

wT∆xif
(SSW )i ≥ B̂xiFi, (4.38)

in each direction. This new version of WENO is more robust than ESWENO for
the Navier-Stokes equations and easier to implement. The current major limitation
is that it has only been derived for the calorically perfect equations.

The definitions in 4.35 are used to extend the viscous operator in 3.43 to a
system of equations in three dimensions. Recall that to demonstrate the entropy
decay resulting from the viscous terms, the discrete viscous fluxes must be written
in terms of entropy variable gradients,

(ĉiiwxi)xi = Dxixi(ĉii)w + Tp 2p p,

Dxixi(ĉii)w = P−1
xi (−Mxi(ĉii) + Bxi [ĉii]Dxi) w,

Mxi(ĉii) = DTxiPxi [ĉii]Dxi +Rxi(ĉii), Rxi(ĉii) =

nr∑
k=1

N T
kxi

[̃ĉii]kNkxi .
(4.39)

The definition above only considers the approximation of the diagonal viscous terms,
where two derivative operators are applied in the same direction. Cross terms can
be incorporated into the same form using the SBP property, Q = B −QT , yielding
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the full viscous flux gradient,

(ĉijwxi)xj = Dxixj (ĉij)w + Te,
Dxixj (ĉij)w = P−1

xi

(
−DTxiPxi [ĉij ]Dxj − δijRxj (ĉij) + Bxi [ĉij ]Dxj

)
w,

Rxj (ĉij) =

nr∑
k=1

N T
kxj

[̃ĉij ]kNkxj .
(4.40)

We recast the viscous gradient in 4.40 into a flux difference form. The equivalent
viscous flux differences are defined by

∆xif
(v)i

=

3∑
`=1

(
B[ĉi`]Dx` −DTxiPxi [ĉi`]Dx`

)
w −

nr∑
`=1

N T
`xi

[̃ĉii]`N`xiw. (4.41)

The derivation of the actual flux form, f
(v)

, is somewhat complicated and long,
including two parts. The procedure to calculate the contribution of the diagonal

viscous terms to f
(v)

is detailed in Appendix A.2.1. The procedure to calculate

the contribution of the cross terms to f
(v)

follows from Appendix A.1.1, where the
transverse gradients, calculated using SBP finite differences, are simply interpolated
to the flux point using the high-order interpolation formulas.

We calculate the contribution of the viscous terms to the semi-discrete entropy
decay rate by premultiplying the flux difference in 4.41 by wTP ,

wTP
3∑
i=1

P−1
xi ∆xif

(v)i
=

3∑
i=1

3∑
`=1

wTPP−1
xi Bxi [ĉi`]Dx`w

−
3∑
i=1

3∑
`=1

(Dxiw)T P [ĉi`] (Dx`w)

−
nr∑
i=1

nr∑
`=1

(N`xiw)T PP−1
xi [̃ĉii]` (N`xiw) .

(4.42)

Reorganizing the gradient terms into a long vector, we show in Appendix B.2 that
the latter two terms in 4.42 are always negative semidefinite as long as temperature,
viscosity, and thermal conductivity are positive everywhere in the domain.

The multidimensional form of the semi-discrete entropy decay is found by com-
bining the contributions from the entropy stable WENO flux in 3.42 and the entropy
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stable viscous terms in 4.42. The resulting semi-discrete entropy decay rate is

wPut =
d

dt
1T P̂S ≤

3∑
i=1

1T P̂P̂−1
xi B̂xiFi +

3∑
i=1

wTPP−1
xi gib

+
3∑
i=1

3∑
`=1

wTPP−1
xi Bxi [ĉi`]Dx`w

−
3∑
i=1

3∑
`=1

(Dxiw)T P [ĉi`] (Dx`w)

−
nr∑
i=1

nr∑
`=1

(N`xiw)T PP−1
xi [̃ĉii]` (N`xiw) .

(4.43)

The last term is design-order small and vanishes as the grid is refined. The other
terms are analogous to the terms in 4.33. For high-order finite-difference (HOFD)
methods, this is the first known implementation that satisfies this property.

4.2.4 Energy Stable Boundary Conditions

All the problems we have studied in this work have been limited to open boundary
conditions, which are implemented in the form of Svärd et al. [22] Extensions of these
energy stable boundary conditions to walls are detailed in Berg and Nordström [24].

5 Accuracy Validation and Robustness

The accuracy and robustness of the algorithms developed herein are tested using two
smooth and two discontinuous problems. The smooth problems are the propagation
of an isentropic vortex, and the propagation of the viscous shock. Both problems
demonstrate the design-order convergence of the new entropy consistent formulation
and of the SSWENO scheme. The final two problems (the Sod and Lax shock tube
problems) have discontinuous solutions, and test the efficacy of the entropy stable
correction terms used in the SSWENO formulation. It is demonstrated that the
corrections do not adversely affect the desirable stencil biasing properties of the
baseline WENO scheme.

5.1 Isentropic Vortex

The isentropic vortex is an exact solution to the Euler equations that has proven to
be an excellent test of the accuracy and functionality of the inviscid components of
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a Navier-Stokes solver. It is fully described by

f(x, y, z, t) = 1−
[
(x− x0 − U∞ cos(α) t)2 + (y − y0 − U∞ sin(α) t)2

]
,

T (x, y, z, t) =
[
1− ε2vM2

∞
γ−1
8π2 exp (f(x, y, z, t))

]
, ρ(x, y, z, t) = T

1
γ−1 ,

u(x, y, z, t) = U∞ cos(α)− εv y−y0−U∞ sin(α)t
2π exp

(
f(x,y,z,t)

2

)
,

v(x, y, z, t) = U∞ sin(α)− εv x−x0−U∞ cos(α)t
2π exp

(
f(x,y,z,t)

2

)
,

w(x, y, z, t) = 0.

(5.1)

In this study the values U∞ = M∞c∞, εv = 5.0, M∞ = 0.5, and γ = 1.4 are used.

5.1.1 Optimal Accuracy: A Periodic Cartesian Grid Test Case

Theorem 3.1 proves that design order entropy consistent fluxes can be constructed
using a linear combination of two-point entropy fluxes. A critical assumption used
in the proof is that the two-point non-dissipative fluxes satisfy Tadmor’s integral re-
lation given in equation 3.10. Herein, the non-dissipative Euler fluxes of Ismail and
Roe [8] are used, which to our knowledge have not been shown to satisfy Tadmor’s
integral relation. The first study is designed to detect the presence of order reduc-
tion resulting from the use of the Ismail and Roe fluxes in the entropy consistent
formulation. A periodic domain is used to eliminate the order reduction associated
with pth-order boundary closures in the diagonal norm operators, thus enabling the
potential of fully 2pth-order convergence.

The Cartesian grid test case is described by

x ∈ (−15, 15), y ∈ (−15, 15), (x0, y0) = (0, 0), α = 0.0, t ≥ 0.

Although periodic boundary conditions were used, note that the actual propagating
vortex solution is not periodic. For this domain and the chosen vortex strength, the
deviation from periodicity is exponentially small. Discrete error is compared with
the exact solution after one full flow through time.

Three grid resolutions are examined using both the fourth- and sixth-order en-
tropy consistent target finite difference schemes and the entropy stable WENO
schemes. The error decay, shown in Tables 1 and 2, asymptotes towards the de-
signed rate in each case (i.e., fourth-order and sixth-order respectively). The error
for the SSWENO scheme approaches the target central scheme as the grid is refined.
The increase in the SSWENO error constant is more pronounced in the sixth-order
case, although still within about a factor two of the target entropy consistent FD
scheme.

The study provides evidence that the the non-dissipative Euler fluxes of Ismail
and Roe [8] do not degrade the formal accuracy of the high-order entropy consistent
fluxes.

5.1.2 Finite Domain Cartesian Grid Test

Theorems 3.1 and 3.2 provide a recipe to construct design-order entropy consistent
fluxes on a finite domain, including points with biased stencils close to each bound-
ary. Having established fully 2pth-order convergence for the interior operator, now
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Table 1. Error convergence is shown for the fourth-order simulation of the periodic
isentropic vortex.

Entropy Consistent FD Entropy Stable WENO FD
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

60× 60 1.05 - 0.38 - 0.88 - 0.29 -
120× 120 7.60e-02 3.79 3.19e-02 3.58 8.85e-02 3.32 3.38e-02 3.12
240× 240 5.01e-03 3.92 2.11e-03 3.92 5.97e-03 3.89 2.81e-03 3.59

Table 2. Error convergence is shown for the sixth-order simulation of the periodic
isentropic vortex.

Entropy Consistent FD Entropy Stable WENO FD
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

60× 60 0.31 - 0.13 - 0.30 - 0.11 -
120× 120 6.05e-03 5.67 2.50e-03 5.69 1.20e-02 4.63 5.58e-03 4.34
240× 240 9.76e-05 5.95 3.81e-05 6.04 2.46e-04 5.60 1.83e-04 4.93

a finite-domain Euler vortex test case is used to establish convergence rates for the
boundary closures when using a diagonal norm, finite-domain operator.

The finite domain Cartesian grid test is described by

x ∈ (−5, 5), y ∈ (−5, 5), (x0, y0) = (0, 0), α = 0.0, t ≥ 0.

Three different grid resolutions are examined, with the vortex located precisely on
the boundary when the error measure is evaluated. This measures the effect of the
boundary closure, the penalty boundary condition, and the interior scheme. Both
the (2-4-2) and (3-6-3) entropy stable WENO finite difference schemes are evaluated.
The designed order of accuracy (p + 1) is observed for all algorithms as indicated
in Tables 3 and 4, in accordance with the classical theorem of Gustafsson [34]. The
reduction in order from 2p to p+ 1 relative to the periodic test case results from the
order p boundary closures. No explanation is currently available for why the (3-6-3)
scheme appears to converge at a super-optimal rate

Table 3. Error convergence is shown for the (2-4-2) simulation of the finite domain
isentropic vortex.

Entropy Consistent FD Entropy Stable WENO FD
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

32× 32 5.37e-02 - 3.17e-02 - 5.44e-02 - 3.49e-02 -
64× 64 6.14e-03 3.13 3.51e-03 3.18 6.26e-03 3.12 3.51e-03 3.31

128× 128 7.43e-04 3.05 4.63e-04 2.92 7.46e-04 3.07 4.72e-04 2.90
256× 256 9.01e-05 3.04 5.95e-05 2.96 8.39e-05 3.15 5.52e-05 3.10

5.2 Viscous Shock

The entropy consistent Navier-Stokes formulation developed herein, relies on newly
derived narrow stencil viscous terms. In principle, design order convergence should
be achieved for all terms including the nonlinear viscous terms in the energy equa-
tion. The convection of the viscous shock (an exact solution to the Navier-Stokes
equations) is used to test this assertion as well as the functionality of the viscous
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Table 4. Error convergence is shown for the (3-6-3) simulation of the finite domain
isentropic vortex.

Entropy Consistent FD Entropy Stable WENO FD
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

32× 32 7.33e-02 - 3.65e-02 - 7.32e-02 - 3.73e-02 -
64× 64 4.30e-03 4.09 2.10e-03 4.12 4.95e-03 3.89 3.03e-03 3.62

128× 128 1.94e-04 4.47 2.08e-04 3.34 2.53e-04 4.29 3.80e-04 3.00
256× 256 7.72e-06 4.65 1.79e-05 3.54 1.09e-05 4.54 3.09e-05 3.62
512× 512 2.83e-07 4.77 1.01e-06 4.15 4.19e-07 4.70 1.71e-06 4.18

terms in the solver. The nonlinear convection and viscous terms are perfectly bal-
anced in this computation, and thus the shock thickness remains constant, and
the shock front is simply advected. The derivation of this problem is available in
Fisher [35].

The convergence rate for the viscous shock is evaluated on a Cartesian grid,
described by

x ∈ (−1, 1)× (−0.5, 0.5).

The shock flow is rotated α = 20◦ with respect to the x-axis. The shock profile
is initially located at xs = −0.5 with respect to the origin and is simulated until
t = 0.25. The Reynolds number was Re = 10, and the reference Mach number was
M = 2.5. Table 5 shows the errors for the Cartesian grid. Because the Navier-
Stokes equations are incompletely parabolic in type, the design order convergence
rate for the (2-4-2) and (3-6-3) operators should be 3 and 4, respectively. Once
again, super-optimal convergence is observed for this test case. No explanation is
currently available for why the schemes converge at a super-optimal rate.

All smooth test cases demonstrate the validity of the Theorems 3.1 and 3.2.
Furthermore, the SSWENO formulation achieves design order in all cases with only
marginal loss in accuracy relative to the baseline target operator.

Table 5. Error convergence is shown for (2-4-2) and (3-6-3) simulations of the viscous
shock.

Entropy Stable(2-4-2) Entropy Stable (3-6-3)
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

48× 24 1.74e-03 - 5.60e-03 - 3.36e-04 - 1.57e-03 -
96× 48 1.10e-04 3.97 4.24e-04 3.72 7.62e-06 5.46 6.51e-05 4.59
192× 96 7.30e-06 3.92 3.38e-05 3.65 2.53e-07 4.91 3.42e-06 4.25

5.3 Shock Tube Problems

All WENO schemes including those used herein [10, 28, 29], incorporate elaborate
stencil biasing mechanics to achieve nearly monotone solutions in the vicinity of
shocks and other discontinuities. It is critically important that the additional dis-
sipation provided by the entropy stabilization terms does not contaminate the de-
sirable attributes of the baseline WENO scheme. To date, all evidence suggests
that this it indeed the case (including test cases run on non-Cartesian meshes on
curvilinear grids, but not reported here). The shock tube problems shown below
are representative of the observed behavior of the SSWENO scheme.
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(a) Sod Shock Tube, t = 0.2 (b) Lax Shock Tube, t = 1.3

Figure 5. Shock tube solutions are plotted for the entropy stable WENO methods
developed in this work and compared to reference solutions.

5.3.1 Sod Shock Tube

Sod’s shock tube problem evaluates the behavior of a numerical method when a
shock, expansion, and contact discontinuity are present. Of particular interest is
additional observed smearing in the shock and contact, or oscillations at any of
the discontinuities. These would be indications of adverse side-effects of the entropy
stabilization term, since the baseline operator performs adequately on this problems.

The domain is

x ∈ (0, 1), y ∈ (−0.1, 0.1), t ≥ 0,

and is initialized with

ρ(x, y, z) =

{
1 x < 0.5,
1/8 x ≥ 0.5,

p(x, y, z) =

{
γ x < 0.5,
γ/10 x ≥ 0.5,

u(x, y, z) = 0, v(x, y, z) = 0, w(x, y, z) = 0,

(5.2)

where γ = 7/5. The problem is simulated with the (2-4-2) and (3-6-3) entropy stable
WENO operators using N = 100 uniform cells. The solution is plotted for t = 0.2
in Figure 5(a). The solutions do not exhibit oscillations and the shock smearing is
nearly equivalent between the two schemes, with slightly less diffusion observed in
the (3-6-3) scheme. All profiles are essentially equivalent to those obtained with the
baseline WENO operator.

5.3.2 Lax Shock Tube

Lax’s shock tube problem is used to show that no entropy problems are observed
using the current methodology and that the correct shock location is observed. The
reference solution uses N = 800 points with the (2-4-2) WENO operator.
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The simulated domain is

x ∈ (−5, 5), y ∈ (−0.5, 0.5), t ≥ 0,

initialized with

ρ(x, y, z) =

{
0.445 x < 0.0,
0.5 x ≥ 0.0,

p(x, y, z) =

{
3.528γ x < 0.0,
0.571γ x ≥ 0.0,

u(x, y, z) =

{
0.698 x < 0.0,
0.0 x ≥ 0.0,

v(x, y, z) = 0, w(x, y, z) = 0,

(5.3)

where again γ = 7/5. The simulation used N = 200 uniform cells and the solution
is plotted in Figure 5(b) for t = 1.3. Again the solutions do not exhibit oscillations.

6 Conclusions

High-order entropy stable finite difference methods have been derived for conserva-
tion laws on finite domains. These methods use formal boundary closures to satisfy
a generalized summation-by-parts property. A new method was developed to ensure
that dissipative inviscid approximations for shock capturing are guaranteed to be
entropy stable. This was shown for WENO but is more generally applicable. A new
high-order entropy stable viscous approximation method was also developed using
narrow-stencil finite difference operators. These new methods were shown to fix
deficiencies observed in linearly stable methods and do not adversely affect shock
capturing capability in Burgers equation or the Euler equations. The approach was
shown to preserve design-order accuracy of diagonal SBP finite difference operators
on simulations of the Euler equations and the Navier-Stokes equations.
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Appendix A

Summation-by-parts operators–(2-4-2)

The (2-4-2) family of finite difference operators used in this work is specified in
this section. This operator set enables the Navier-Stokes equations to be simulated
with third-order accuracy. Another important note is that energy and entropy
stability proofs require a common diagonal P norm to be used for all terms in
an approximation. The number of special boundary points for this operator is
s = 2p = 4. With this specification, the diagonal P norm for the (2-4-2) operator is
unique,

P = diag

(
17

48
,
59

48
,
43

48
,
49

48
, 1, 1, · · · , 1, 1, 49

48
,
43

48
,
59

48
,
17

48

)
δx, (A1)

where P is an (N ×N) matrix, and thus has N elements on the diagonal. This form
follows immediately from the accuracy requirement and form of the first derivative
operator.

A.1 First Derivative

Recall that the summation-by-parts operator approximating the first derivative has
the form,

D = P−1Q.

When using a diagonal norm, P, and s = 2p boundary points, this operator is
unique. The matrix elements at the left boundary have the structure,

Q =



−1
2

59
96 − 1

12 − 1
32 0 0 0 0 0 · · ·

−59
96 0 59

96 0 0 0 0 0 0 · · ·
1
12 −59

96 0 59
96 − 1

12 0 0 0 0 · · ·
1
32 0 −59

96 0 2
3 − 1

12 0 0 0 · · ·
0 0 1

12 −2
3 0 2

3 − 1
12 0 0 · · ·

0 0 0 1
12 −2

3 0 2
3 − 1

12 0 · · ·
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


. (A2)

Q is an (N ×N) matrix and elements corresponding to the right boundary have the
property,

q(i,j) = −q(N+1−i,N+1−j), 1 ≤ i, j ≤ N. (A3)

Each interior row has the form

q(i,i−2) =
1

12
, q(i,i−1) = −2

3
, q(i,i+1) =

2

3
, q(i,i+2) = − 1

12
,

i = s+ 1, . . . , N − s.
(A4)
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A.1.1 Flux Form

The first derivative SBP operator above can be recast into the flux form,

Qf = ∆f = ∆Īf . (A5)

The interpolation matrix, Ī, is an (N + 1 ×N) matrix where each row sums to 1.
The matrix elements near the left boundary are

Ī =



1 0 0 0 0 0 0 0 0
1
2

59
96 − 1

12 − 1
32 0 0 0 0 0 · · ·

−11
96

59
96

17
32 − 1

32 0 0 0 0 0 · · ·
− 1

32 0 17
32

7
12 − 1

12 0 0 0 0 · · ·
0 0 − 1

12
7
12

7
12 − 1

12 0 0 0 · · ·
0 0 0 − 1

12
7
12

7
12 − 1

12 0 0 · · ·
0 0 0 0 − 1

12
7
12

7
12 − 1

12 0 · · ·
...

...
...

...
...

...
...

...
...

. . .


. (A6)

The flux consistency condition is imposed in the first row of Ī. The right boundary
terms satisfy the matrix property,

h̄(i,j) = h̄(N−i,N+1−j), 0 ≤ i ≤ N, 1 ≤ j ≤ N, (A7)

where h̄(i,j) is the element in row i and column j in Ī. Note that for the interpolation
matrix the first row is indexed at 0 to be consistent with the flux point nomenclature
used throughout this document. The interior elements have the formula,

h̄(i,i−1) = − 1

12
, h̄(i,i) =

7

12
, h̄(i,i+1) =

7

12
, h̄(i,i+2) = − 1

12
,

i = s, . . . , n− s.
(A8)

A.2 Variable Coefficient Second Derivative

To find the matrices specified in 2.37, Nk and [ϑ̃]k, only ϑ(x) = 1 must be consid-
ered. Then, for variable coefficients and nonlinear problems, the structure of [ϑ̃]k
ensures the accuracy and stability of the full operator. The structure of M(1) is a
pentadiagonal matrix with (s× s) block matrices superimposed on the diagonal at
the two boundaries. The first constraint is to require M(1) to satisfy the optimal
accuracy,

φxx(x) = P−1 (−M(1) + BD)φ+ T2−4−2.

At fourth-order, this leaves one free parameter in the matrixM(1). The remainder
is constructed using the matrices:

N1 =



−1 3 −3 1 0 0 0 0 . . . 0
0 −1 3 −3 1 0 0 0 . . . 0
0 0 −1 3 −3 1 0 0 . . . 0
... . . .

. . .
. . .

. . .
. . .

. . .
. . . . . .

...
0 . . . 0 0 −1 3 −3 1 0 0
0 . . . 0 0 0 −1 3 −3 1 0
0 . . . 0 0 0 0 −1 3 −3 1


, (A9)
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which is a (N − 3×N) matrix,

N2 =



1 −4 6 −4 1 0 0 0 0 . . . 0
0 1 −4 6 −4 1 0 0 0 . . . 0
0 0 1 −4 6 −4 1 0 0 . . . 0
... . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . . . .
...

0 . . . 0 0 1 −4 6 −4 1 0 0
0 . . . 0 0 0 1 −4 6 −4 1 0
0 . . . 0 0 0 0 1 −4 6 −4 1


, (A10)

which is a (N − 4×N) matrix, and

N3 =



−1 5 −10 10 −5 1 0 0 0 0 . . . 0
0 −1 5 −10 10 −5 1 0 0 0 . . . 0
0 0 −1 5 −10 10 −5 1 0 0 . . . 0
... . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . . . .

...
0 . . . 0 0 −1 5 −10 10 −5 1 0 0
0 . . . 0 0 0 −1 5 −10 10 −5 1 0
0 . . . 0 0 0 0 −1 5 −10 10 −5 1


, (A11)

which is a (N − 5 × N) matrix. If only these matrices are used to construct the
remainder, a proof that the remainder is positive semi-definite will not be possible.
We find that an additional (N ×N) matrix, N4 is required with only the first and
last rows containing nonzero terms,

ñ
(4)
(1,1) = −a1 + a2 − a3, ñ

(4)
(1,2) = 3a1 − 4a2 + 5a3,

ñ
(4)
(1,3) = −3a1 + 6a2 − 10a3, ñ

(4)
(1,4) = a1 − 4a2 + 10a3,

ñ
(4)
(1,5) = a2 − 5a3, ñ

(4)
(1,6) = a3, ñ(N,j) = ñ(1,N+1−j), j = 1, 2, . . . , N.

(A12)

This introduces nonlinearity into the derivation of the operator, which is addressed
differently in our methodology below. The form of the variable coefficient matrices
is

([ϑ̃]1)(i,i) = −c(1)
i

1

2
(ϑi+1 + ϑi+2) , i = 1, 2, . . . , N − 3,

([ϑ̃]2)(i,i) = −c(2)
i ϑi+2, i = 1, 2, . . . , N − 4,

([ϑ̃]3)(i,i) = −c(3)
i

1

2
(ϑi+2 + ϑi+3) , i = 1, 2, . . . , N − 5,

([ϑ̃]4)(i,i) = ϑi, i = 1, 2, . . . , N,

(A13)

and for the operator to be provably stable, all coefficients, c
(j)
i ≤ 0. For ϑ(x) = 1,

only these coefficients are left in [ϑ̃]k. The coefficients, c
(j)
i can be solved for linearly

as nonlinear functions of the free parameter left in M(1), a1, a2, and a3, such that
the remainder term recovers the narrow form ofM(1) with the accuracy constraints
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satisfied. The resulting coefficients, organized into vectors are:

c(1) =



a21 − a1a2 + a1a3 + 1
3m(2,4) − 181507

1719312
a1a2 − 2a1a3 − 293

4214
a1a3 − 185

3528
− 1

18
− 1

18
− 1

18
− 1

18
− 1

18
...
− 1

18
− 1

18
− 1

18
− 1

18
− 1

18
a1a3 − 185

3528
a1a2 − 2a1a3 − 293

4214
a21 − a1a2 + a1a3 + 1

3m(2,4) − 181507
1719312



, (A14)

and

c(2) =



−a1a2 + a22 − a2a3 − 5
50568

−(2a1 − a2)a3 − 5
392

− 1
144
− 1

144
− 1

144
− 1

144
− 1

144
− 1

144
...
− 1

144
− 1

144
− 1

144
− 1

144
− 1

144
−(2a1 − a2)a3 − 5

392
−a1a2 + a22 − a2a3 − 5

50568



, c(3) =



(a1 − a2)a3 + a23 + 1
392

0
0
0
0
0
0
...
0
0
0
0
0
0

(a1 − a2)a3 + a23 + 1
392



(A15)

To eliminate the remaining nonlinear terms such that c
(j)
i ≤ 0, a nonlinear

optimization problem is solved, where the functional is

r =
∑
i

∑
j

√(
c

(j)
i

)2
+ δ + c

(j)
i , (A16)

which is very small as long as all c
(j)
i are negative or zero. The functional is mini-

mized using a conjugate gradient method in the open-source computational mathe-
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matics package SAGE [36],

m(2,4) =
16815244

410099621
, a1 = − 88998127

304807400
,

a2 =
6823462

373821039
, a3 = − 20751280

551691433
.

(A17)

The constant coefficient narrow stencil matrix has the form,

M(1) =


− 1

3
m(2,4) + 9

8
m(2,4) − 59

48
−m(2,4) + 1

12
1
3
m(2,4) + 1

48
0 0 0 . . .

m(2,4) − 59
48

−3m(2,4) + 59
24

3m(2,4) − 59
48

−m(2,4) 0 0 0 . . .

−m(2,4) + 1
12

3m(2,4) − 59
48

−3m(2,4) + 55
24

m(2,4) − 59
48

1
12

0 0 . . .
1
3
m(2,4) + 1

48
−m(2,4) m(2,4) − 59

48
− 1

3
m(2,4) + 59

24
− 4

3
1
12

0 . . .

0 0 1
12

− 4
3

5
2

− 4
3

1
12

. . .

...
...

...
...

...
...

...
. . .

 ,

m(i,j) = m(N+1−i,N+1−j), i, j = 1, 2, . . . , N.

While thus far only the constant coefficient case has been considered, the variable
coefficient viscous gradient operator has been fully specified. It is noted, however,
that the number of special boundary points has increased from s = 4 to sϑ = 6
because the form used here is not optimal for the boundaries. This was deemed
appropriate for the time being but will be revisited in the future. The accuracy of the
variable coefficient gradient is guaranteed by using only undivided third derivative
approximations and above. The lowest-order remainder term is O(δx4). Higher-
order methods can follow in a similar way.

A.2.1 Flux Form

The operators above are inconvenient for implementation. Instead, the viscous flux
gradient is calculated using the flux form,

D2(ϑ)v = P−1∆f
(v)
, (A18)

where f
(v)

is consistent with the viscous flux to design order. To calculate the fluxes,
a coefficient array is needed for each flux point, and a three-dimensional array is
required to describe the full operator. To reduce confusion, a compressed sparse
row structure is used below to show coefficients. The pointer for the beginning of
each row is denoted by z. The two column pointers corresponding to the coefficient
and the variable are denoted by o(1) and o(2), respectively. Note that there are two
because of the three-dimensional coefficient array. The coefficients are denoted by
b. The form of the viscous flux is

f̄
(v)
i =

N∑
j=1

N∑
k=1

C(i,j,k)ϑjvk =

zi+1−1∑
`=zi

b`ϑo(1)`
v
o
(2)
`

, 0 ≤ i ≤ N. (A19)

Note that the structure of the coefficients is such that

C(i,j,k) = C(N+1−i,N+1−j,N+1−k), 0 ≤ i ≤ N, 1 ≤ j, k ≤ N. (A20)
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The left boundary and first interior points are described by

z = (1, 5, 27, 49, 75, 100, 130, 144) , (A21)

and

k o
(1)
k o

(2)
k bk

1 1 1 −1.83333333333333333
2 1 2 3.00000000000000000
3 1 3 −1.50000000000000000
4 1 4 0.333333333333333333
5 1 1 −0.761632318953671114
6 2 1 −0.318772132024516656
7 3 1 −0.0290918865391788973
8 4 1 −0.00183605333033583864
9 1 2 1.01739604757603651
10 2 2 0.0344413960735499694
11 3 2 0.131929292173814632
12 4 2 0.00439710338637307075
13 1 3 −0.228084367243370364
14 2 3 0.272850270593116697
15 3 3 −0.0971159779636451267
16 4 3 0.0100195687374579401
17 1 4 −0.0537999941893968519
18 2 4 0.0114804653578499898
19 3 4 −0.000975620426830106209
20 4 4 0.00879420677274614150
21 1 5 0.0304304945731143092
22 3 5 −0.00562522792143511602
23 4 5 −0.0248052666516791932
24 1 6 −0.00430986176271249361
25 3 6 0.000879420677274614150
26 4 6 0.00343044108543787946
27 1 1 0.255763728622365400
28 2 1 −0.284330735950966687
29 3 1 0.102837405634635735
30 4 1 0.00256105005603723211
31 1 2 −0.451324881722072318
32 2 2 −0.0688827921470999388
33 3 2 −0.582638326788311979
34 4 2 −0.0443150110953974708
35 1 3 0.213167159097448528
36 2 3 0.376174458813766606
37 3 3 0.337533229266219984
38 4 3 0.136952831242113255
39 1 4 0.0264355268164343218
40 2 4 −0.0229609307156999796
41 3 4 0.126731216584854573
42 4 4 −0.123703927714327261
43 1 5 −0.0513083138154186242
44 3 5 0.0190541580117001441
45 4 5 0.0322541558037184802
46 1 6 0.00726678100124269184
47 3 6 −0.00351768270909845660
48 4 6 −0.00374909829214423523
49 1 1 0.0276793613789950362
50 2 1 −0.0114804653578499898
51 3 1 0.00572142767099060808
52 4 1 0.0125806187934951722
53 1 2 −0.0100733553812534256
54 2 2 0.0344413960735499694
55 3 2 −0.147989119558446868
56 4 2 0.0826182514092578440
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k o
(1)
k o

(2)
k bk

57 1 3 −0.0252103078326823143
58 2 3 −0.0344413960735499694
59 3 3 −0.392512731414250729
60 4 3 −0.609893549870353691
61 5 3 −0.0427725206856041496
62 1 4 −0.0000975580043828657740
63 2 4 0.0114804653578499898
64 3 4 0.680133634883527315
65 4 4 0.333164953220562285
66 5 4 0.169984228723479116
67 1 5 0.00897265413685119573
68 3 5 −0.150629735645468011
69 4 5 0.186641310232095931
70 5 5 −0.128317562056812449
71 1 6 −0.00127079429752762628
72 3 6 0.00527652406364768490
73 4 6 −0.00511158378505754159
74 5 6 0.00110585401893748296
75 1 1 −0.0261206328104018156
76 3 1 0.00474580724416050187
77 4 1 0.0213748255662413137
78 1 2 0.0701621656245777480
79 3 2 −0.0202822825467621893
80 4 2 −0.0498798830778155587
81 1 3 −0.0517433926534995019
82 3 3 0.160889686884422013
83 4 3 −0.153024668935464144
84 5 3 0.127211708037874966
85 1 4 −0.00453648768294982641
86 3 4 −0.200100104480964590
87 4 4 −0.330394950389127353
88 5 4 −0.673301790780291564
89 6 4 −0.0416666666666666667
90 1 5 0.0142576548800962444
91 3 5 0.0582645756082427202
92 4 5 0.629175978731369471
93 5 5 0.381635124113624898
94 6 5 0.166666666666666667
95 1 6 −0.00201930735782284852
96 3 6 −0.00351768270909845660
97 4 6 −0.117251301895203729
98 5 6 0.164454958628791701
99 6 6 −0.125000000000000000
100 1 1 0.00430986176271249361
101 3 1 −0.000879420677274614150
102 4 1 −0.00343044108543787946
103 1 2 −0.0115766427639551854
104 3 2 0.00439710338637307075
105 4 2 0.00717953937758211469
106 1 3 0.00853757529877031811
107 3 3 −0.00879420677274614150
108 4 3 0.00136248549291330635
109 5 3 −0.00110585401893748296
110 1 4 0.000748513060295222244
111 3 4 0.00879420677274614150
112 4 4 0.112139718110146187
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k o
(1)
k o

(2)
k bk

113 5 4 −0.163349104609854218
114 6 4 0.125000000000000000
115 1 5 −0.00235248977464312509
116 3 5 −0.00439710338637307075
117 4 5 −0.156599511448838022
118 5 5 −0.378317562056812449
119 6 5 −0.666666666666666667
120 7 5 −0.0416666666666666667
121 1 6 0.000333182416820276572
122 3 6 0.000879420677274614150
123 4 6 0.0393482095536342930
124 5 6 0.667772520685604150
125 6 6 0.375000000000000000
126 7 6 0.166666666666666667
127 5 7 −0.125000000000000000
128 6 7 0.166666666666666667
129 7 7 −0.125000000000000000
130 5 5 0.125000000000000000
131 6 5 −0.166666666666666667
132 7 5 0.125000000000000000
133 5 6 −0.166666666666666667
134 6 6 −0.375000000000000000
135 7 6 −0.666666666666666667
136 8 6 −0.0416666666666666667
137 5 7 0.0416666666666666667
138 6 7 0.666666666666666667
139 7 7 0.375000000000000000
140 8 7 0.166666666666666667
141 6 8 −0.125000000000000000
142 7 8 0.166666666666666667
143 8 8 −0.125000000000000000
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Appendix B

Navier-Stokes Equations–Supplemental Details

B.1 Derivation of Entropy Variables

Recall that the entropy variables are defined as wT = Sq. While this can be calcu-
lated directly for the calorically perfect equations, in general it is more convenient to
use the primitive variables to aid in the derivation. To accomplish this, the standard
differential relations for pressure, enthalpy, internal energy, and entropy are used,

dp = ρRdT +RTdρ,

dh =
γR

γ − 1
dT, de =

R

γ − 1
dT

ds =
dh

T
− dp

ρT
=

RdT

(γ − 1)T
−Rdρ

ρ
.

(B1)

A set of primitive variables,

v = (ρ, υ1, υ2, υ3, T )T , (B2)

is selected for the derivation. The expansion Sq = Svvq is used, where

Sv =

(
R− s, 0, 0, 0,− ρR

(γ − 1)T

)
, (B3)

is combined with

vq =


1 0 0 0 0

−υ1
ρ

1
ρ 0 0 0

−υ2
ρ 0 1

ρ 0 0

−υ3
ρ 0 0 1

ρ 0
(γ−1)(2RT+υ21+υ22+υ23−2h)

2Rρ − (γ−1)υ1
Rρ − (γ−1)υ2

Rρ − (γ−1)υ3
Rρ

γ−1
Rρ

 (B4)

yielding

Sq = wT =

(
h

T
− s− υkυk

2T
,
υ1

T
,
υ2

T
,
υ3

T
,− 1

T

)
.

A similar procedure is followed to find the matrix wq = Sqq = wvvq, where

wv =


R
ρ −u1

T −u2
T −u3

T
R
T +

u21
2T 2 +

u22
2T 2 +

u23
2T 2 − h

T 2

0 1
T 0 0 − u1

T 2

0 0 1
T 0 − u2

T 2

0 0 0 1
T − u3

T 2

0 0 0 0 1
T 2

 . (B5)
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To illustrate why ρ, T > 0 are required for the convexity of the entropy function to
hold, the symmetric matrix wq is diagonalized by

D = qTv wqqv = qTv wv = diag

(
R

ρ
,
ρ

T
,
ρ

T
,
ρ

T
,

ρR

(γ − 1)T 2

)
, (B6)

where

qv =


1 0 0 0 0
υ1 ρ 0 0 0
υ2 0 ρ 0 0
υ3 0 0 ρ 0

−RT + 1
2 υ

2
1 + 1

2 υ
2
2 + 1

2 υ
2
3 + h ρυ1 ρυ2 ρυ3

Rρ
γ−1

 . (B7)

A sufficient condition to ensure that ζTwqζ > 0 is to ensure that all diagonal terms
above are positive. This is satisfied by ρ, T > 0. The inverse, S−1

qq is also calculated
using an expansion, qw = qvvw, where

vw =


ρ
R

ρu1
R

ρu2
R

ρu3
R −2RTρ−ρu21−ρu22−ρu23−2hρ

2R
0 T 0 0 Tu1

0 0 T 0 Tu2

0 0 0 T Tu3

0 0 0 0 T 2

 . (B8)

B.2 Viscous Stability

To develop the viscous coefficient matrices used to define the viscous fluxes, the
definition of the Cartesian viscous fluxes based on the primitive variable gradients
is examined,

f (v)i = (0, τi1, τi2, τi3, τjiυj − qi)T , i = 1, 2, 3.
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This can be expressed as f (v)i = c′ijvxj , where

c′11 =


0 0 0 0 0
0 4

3 µ 0 0 0
0 0 µ 0 0
0 0 0 µ 0
0 4

3 µυ1 µυ2 µυ3 κ

 , c′12 =


0 0 0 0 0
0 0 −2

3 µ 0 0
0 µ 0 0 0
0 0 0 0 0
0 µυ2 −2

3 µυ1 0 0

 ,

c′13 =


0 0 0 0 0
0 0 0 −2

3 µ 0
0 0 0 0 0
0 µ 0 0 0
0 µυ3 0 −2

3 µυ1 0

 , c′21 =


0 0 0 0 0
0 0 µ 0 0
0 −2

3 µ 0 0 0
0 0 0 0 0
0 −2

3 µυ2 µυ1 0 0

 ,

c′22 =


0 0 0 0 0
0 µ 0 0 0
0 0 4

3 µ 0 0
0 0 0 µ 0
0 µυ1

4
3 µυ2 µυ3 κ

 , c′23 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −2

3 µ 0
0 0 µ 0 0
0 0 µυ3 −2

3 µυ2 0

 ,

c′31 =


0 0 0 0 0
0 0 0 µ 0
0 0 0 0 0
0 −2

3 µ 0 0 0
0 −2

3 µυ3 0 µυ1 0

 , c′32 =


0 0 0 0 0
0 0 0 0 0
0 0 0 µ 0
0 0 −2

3 µ 0 0
0 0 −2

3 µυ3 µυ2 0

 ,

c′33 =


0 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 4

3 µ 0
0 µυ1 µυ2

4
3 µυ3 κ

 .

The symmetrized coefficient matrices are found using

ĉij = cijqw = c′ijvw,
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and thus take the form,

ĉ11 =


0 0 0 0 0
0 4

3 Tµ 0 0 4
3 Tµυ1

0 0 Tµ 0 Tµυ2

0 0 0 Tµ Tµυ3

0 4
3 Tµυ1 Tµυ2 Tµυ3 T 2κ+ 1

3

(
4µυ2

1 + 3µυ2
2 + 3µυ2

3

)
T

 ,

ĉ22 =


0 0 0 0 0
0 Tµ 0 0 Tµυ1

0 0 4
3 Tµ 0 4

3 Tµυ2

0 0 0 Tµ Tµυ3

0 Tµυ1
4
3 Tµυ2 Tµυ3 T 2κ+ 1

3

(
3µυ2

1 + 4µυ2
2 + 3µυ2

3

)
T

 ,

ĉ33 =


0 0 0 0 0
0 Tµ 0 0 Tµυ1

0 0 Tµ 0 Tµυ2

0 0 0 4
3 Tµ

4
3 Tµυ3

0 Tµυ1 Tµυ2
4
3 Tµυ3 T 2κ+ 1

3

(
3µυ2

1 + 3µυ2
2 + 4µυ2

3

)
T

 ,

ĉ12 =


0 0 0 0 0
0 0 −2

3 Tµ 0 −2
3 Tµυ2

0 Tµ 0 0 Tµυ1

0 0 0 0 0
0 Tµυ2 −2

3 Tµυ1 0 1
3 Tµυ1υ2

 ,

ĉ13 =


0 0 0 0 0
0 0 0 −2

3 Tµ −2
3 Tµυ3

0 0 0 0 0
0 Tµ 0 0 Tµυ1

0 Tµυ3 0 −2
3 Tµυ1

1
3 Tµυ1υ3

 ,

ĉ23 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −2

3 Tµ −2
3 Tµυ3

0 0 Tµ 0 Tµυ2

0 0 Tµυ3 −2
3 Tµυ2

1
3 Tµυ2υ3

 ,

ĉ21 = ĉT12, ĉ31 = ĉT13, ĉ32 = ĉT23.

(B9)

For the viscous terms to be entropy dissipative,

wTxi ĉijwxj ≥ 0

must be satisfied. The easiest way to ensure this is to create a larger coefficient
matrix,

Ĉ =

 ĉ11 ĉ12 ĉ13

ĉ21 ĉ22 ĉ23

ĉ31 ĉ32 ĉ33

 , (B10)
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and require

(ζx1 , ζx2 , ζx3) Ĉ

 ζx1
ζx2
ζx3

 ≥ 0, ∀ζ.

To show this, the Cholesky decomposition, Ĉ = L̂D̂L̂T of the (15 × 15) matrix is
calculated. The diagonal terms must non-negative,

D̂ =

(
0,

4

3
Tµ, Tµ, Tµ, T 2κ, 0, 0, Tµ, Tµ, T 2κ, 0, 0, 0, 0, T 2κ

)
. (B11)

In the discrete proof, the viscous terms require the additional property that each
symmetric diagonal sub-block is also positive semi-definite. This is verified by,

ĉ11 = L̂11D̂11L̂
T
11, D̂11 =

(
0,

4

3
Tµ, Tµ, Tµ, T 2κ

)
,

ĉ22 = L̂22D̂22L̂
T
22, D̂22 =

(
0, Tµ,

4

3
Tµ, Tµ, T 2κ

)
,

ĉ33 = L̂33D̂33L̂
T
33, D̂33 =

(
0, Tµ, Tµ,

4

3
Tµ, T 2κ

)
.

(B12)

From the above, it is clear that in order for the viscous conditions to be satisfied,

T > 0, µ(T ) > 0, κ(T ) > 0.

Thus, recall that the contribution of the viscous terms to the semi-discrete en-
tropy decay from 4.42 is

wTP
3∑
i=1

P−1
xi ∆xif

(v)i
=

3∑
i=1

3∑
`=1

wTPP−1
xi Bxi [ĉi`]Dx`w

−
3∑
i=1

3∑
`=1

(Dxiw)T P [ĉi`] (Dx`w)

−
3∑
i=1

3∑
`=1

(N`xiw)T PP−1
xi [̃ĉii]` (N`xiw) .

The last term is easily shown to be always negative. Above it was shown that
ζxi ĉiiζxi ≥ 0 is satisfied in each direction. Thus, all that is required is

ζTPP−1
xi [̃ĉii]`ζ ≥ 0, ∀ζ. (B13)

Examining A13, it is clear that [̃ĉii]` is composed of convex combinations of sym-
metric, positive semi-definite matrices, so the full matrix will also be positive semi-

definite. The diagonal matrices PP−1
xi are positive definite and commute with [̃ĉii]`.

They will not effect the eigenvalues of the matrix. Thus, the requirement above
holds and the last term will always dissipate entropy. The second-to-last term on
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the right side of the entropy decay rate above is only slightly more difficult. It is
first reorganized using

3∑
i=1

3∑
`=1

(Dxiw)T P [ĉi`] (Dx`w) =

 Dx1wDx2w
Dx3w

T  P [ĉ11] P [ĉ12] P [ĉ13]
P [ĉ21] P [ĉ22] P [ĉ23]
P [ĉ31] P [ĉ32] P [ĉ33]

 Dx1wDx2w
Dx3w

 ,

where P commutes with the viscous coefficient matrices, so it can be split into
P =

√
P
√
P and absorbed into the gradient vectors. The gradient vectors can be

reorganized such that the center term becomes

3∑
i=1

3∑
`=1

(Dxiw)T P [ĉi`] (Dx`w) = (wx)T√P [Ĉ](wx)√P ,

where [Ĉ] is a block diagonal matrix with blocks Ĉi corresponding to the viscous
coefficients at each solution point. Each of these blocks is positive semi-definite, so
the full matrix is positive semi-definite. Thus,

3∑
i=1

3∑
`=1

(Dxiw)T P [ĉi`] (Dx`w) ≥ 0, (B14)

completing the entropy stability proof for the Navier-Stokes viscous terms.
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