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Abstract 
 
Restoration of the industrial salt flats in the San Francisco Bay, California is an ongoing wetland rehabilitation 

project. Remote sensing maps of suspended sediment concentration, and other GIS predictor variables were used to 

model sediment deposition within these recently restored ponds. Suspended sediment concentrations were calibrated 

to reflectance values from Landsat TM 5 and ASTER using three statistical techniques—linear regression, 

multivariate regression, and an Artificial Neural Network (ANN),  to map suspended sediment concentrations. 

Multivariate and ANN regressions using ASTER proved to be the most accurate methods, yielding r2 values of 0.88 

and 0.87, respectively. Predictor variables such as sediment grain size and tidal frequency were used in the Marsh 

Sedimentation (MARSED) model for predicting deposition rates for three years. MARSED results for a fully 

restored pond show a root mean square deviation (RMSD) of 66.8 mm (<1σ) between modeled and field 

observations. This model was further applied to a pond breached in November 2010 and indicated that the recently 

breached pond will reach equilibrium levels after 60 months of tidal inundation.  
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Introduction 

 

Development of the San Francisco Bay Estuary during the last 200 years has transformed nearly 90% of 

historical wetland habitats into agricultural fields and industrial salt production ponds (Philip Williams & Associates 

Ltd. and Faber 2004). The South Bay Salt Pond Restoration Project (SBSPRP), the largest and most complex 

wetland restoration effort on the West Coast of the United States, will convert approximately 6070 hectares of salt 

production ponds to restored wetland habitats (Takekawa et al. 2005). Understanding long-term sediment dynamics 

within the South Bay is critical for proper accumulation estimates and subsequent restoration management strategies 

in newly breached salt ponds (Foxgrover et al. 2007; Trulio et al. 2007). Sediment accumulation rates of breached 

salt ponds are directly influenced by suspended sediment concentrations (SSCs), water flow paths, and tidally-driven 

sediment re-suspension (Philip Williams & Associates Ltd. and Faber 2004). Marshland rise within the breached salt 

ponds allows plant colonization and establishment of a healthy wetland ecosystem (Philip Williams & Associates 

Ltd. 2005). Continued monitoring of estuarine sediment accumulation will provide temporal and spatial 

development predictions for each phase of the restoration process.  

 

Materials and Methods 

 

Study Site 

Tidal marshes are some of the most highly productive ecosystems on the planet (Kelly and Tuxen 2009). 

The South Bay salt ponds, located at the southern end of San Francisco Bay (Figure 1), lie on the Pacific flyway, 

providing roosting and over-wintering sites for migratory bird species, and habitat for waterfowl, shorebirds, and 

mammals (Siegel and Bachand 2002). Fresh water enters the south bay through the Coyote Creek Tributary and also 

delivers sediment to the Alviso Ponds. In March of 2006, the U.S. Fish and Wildlife Service (USFWS) Don 

Edwards National Wildlife Refuge and the Santa Clara Valley Water District initiated tidal pond inundation in Pond 

A21 (Callaway et al. 2009). The levees of the Pond A21 (Figure 1) were breached allowing daily tidal flow for the 

first time in over 100 years with the goal of providing natural sedimentation processes to restore the tidal marsh 

habitat for successful vegetation reestablishment (Callaway et al. 2009).     
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Experimental Design 

Sediment deposition was modeled for Pond A21 for the three years after the levees were breached in 

March, 2006 (Figure 1) (Newcomer et al. 2011). The model was further applied to Pond A6 (discussed below) 

following the methods outlined by Newcomer et al. (2011). Pond A6 was breached in November 2010 and a high 

tide satellite image was obtained in January 2011. Sediment deposition is a function of the SSC, settling velocity, 

bulk density, and water velocity (Temmerman et al. 2004). Temmerman et al. (2003) modified an algorithm 

developed by Krone (1987) to predict sediment deposition using these known variables, and was able to predict 

sediment deposition in growing marsh ecosystems at point locations of known SSC. This study used point locations 

of SSC to calibrate satellite imagery, providing a spatially comprehensive distribution of SSCs within Pond A21 and 

Pond A6. Accurately mapping SSCs from remotely sensed images provided a method for determining sediment 

concentrations without disturbing ecologically sensitive areas.   

Satellite image processing has previously been used to calibrate image-based reflectance values to in-situ 

measurements of SSCs in the visible and near-infrared spectral range (Munday and Alföldi 1979; Chen et al. 1992; 

Baban, 1995; Miller and McKee 2004; Chen et al. 2006). Previous studies report moderately strong correlations 

between reflectance values and turbidity using a linear analysis (another measure of suspended sediment) in the 

600–700 nm range (r2 = 0.72) (Miller and McKee 2004; Chen et al. 2006) while other studies report strong 

correlations in the 600–900 nm range (r2 = 0.79) using a linear and multivariate analysis (Pavelsky and Smith, 

2009).  

Two different satellite sensors—the Landsat-5 Thematic Mapper (TM), and the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER)—were used in this study to map suspended sediment in the 

South San Francisco Bay (WIST 2010; USGS 2010a). Reflectance values were statistically correlated with SSCs 

from in-situ field data collected during the summer of 2010 and from the USGS Water Quality Dataset (USGS 

2010b). Linear regression, multivariate regression, and an Artificial Neural Network (ANN) were used to correlate 

pixel reflectance values with corresponding SSC measurements. Additional inputs of seasonal variations in SSCs, 

distance from the levee breech, bulk density, settling velocity, initial marsh height, time of inundation, tidal 

frequency, and a high-volume array of SSC data points (obtained from the satellite-produced images) were used in 

the MARSED model for sediment accumulation.   
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Care was taken to create accurate SSC maps because this variable highly influences sediment deposition. 

The three different regression techniques thus ensured that the regression chosen would most accurately represent 

sediment concentrations for any day throughout the year. After calibrating the satellite imagery using the regression 

equations, the SSC maps were input into the MARSED model to predict deposition in Pond A21 for three years 

post-breach. Modeled marsh accumulation values were then compared to previously documented point 

measurements of sediment accumulation heights in the breached Pond A21 (Callaway et al. 2009) to assess model 

accuracy. Pond A21 was used in the model due to the previously acquired point measurements provided in Callaway 

et al. (2009), which provided a baseline for comparison with the modeled estimates. Once the modeled values for 

Pond A21 were within reasonable tolerance (± 10%) to previously documented point measurements, the model was 

used to predict deposition for Pond A6 which was breeched in November 2010.  

 

Satellite Remote Sensing 

All satellite imagery was radiometrically corrected to reflectance and re-projected to the UTM WGS 84 

North projection to ensure tonal and spatial comparability between each scene. To create SSC maps, Landsat TM 5 

and ASTER images were first imported into a Geographical Information System (ArcGIS). Reflectance values from 

Band 1, 2, and 3 of ASTER (520–600 nm, 603–690 nm, 780–860 nm respectively) were calibrated with SSC values 

using two scenes (Table 1). Reflectance values from Band 1, 2, 3 and 4 of Landsat TM 5 (450–520 nm, 520–600 

nm, 630–690 nm, 760–900 nm respectively) were calibrated with SSC values using five scenes (Table 1). Linear, 

multivariate, and ANN regressions were compiled for both sensors to determine the best statistical technique for 

correlation with SSCs. Imagery was calibrated using data from the historical USGS Water Quality of San Francisco 

Bay monitoring program (USGS 2007; USGS 2010b) and from our field samples. The scenes chosen in Table 1 

were based on the availability of an overpass that corresponded with a cloud-free day and correlated with the day of 

the historical USGS samples and our field samples. Values were determined at both the original resolution and at an 

averaged resolution (a 3x3 grid) to reduce signal noise.  

 

Field Methods 

 Various studies have developed methods for monitoring in-situ sediment accumulation rates, with a wide-

range of techniques and accuracy. Installed monitoring devices such as: sediment traps (Gardner et al. 1980; Bale 
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1998), graduated pins (Reed 1989; Cahoon and Lynch 1997; Callaway et al. 2009), anchored tiles (Reed 1989; 

Pasternack and Brush 1998), and sediment erosion tables (SETs) (Boumans and Day 1993; Childers et al. 1993; 

Cahoon et al. 2002) are inexpensive and effective methods for estimating accumulation rates, but provide limited 

sampling points. SSC estimates are often used to indirectly measure sediment accumulation rates, and can be 

obtained through in-situ measurements and remote sensing techniques (Stumpf and Pennock 1989; Froidefond et al. 

1993; Ruhl et al. 2001; Li et al. 2003; Miller and McKee 2004).  

Surface water samples for suspended sediment analysis were collected at 24 random locations in the South 

Bay over the course of two field days that corresponded with Landsat and ASTER overpasses. Sampling sites were 

also chosen in locations of the deep water channel where the boat would not affect SSC values. Samples were 

processed at the USGS Western Coastal and Marine Geology Laboratory (WCMGL) to determine SSC values. In 

addition, sediment samples were collected from Pond A21 to characterize the physical properties of sediment in the 

South Bay. These samples were taken at five representative locations along the perimeter and seven locations on the 

interior of the pond. Each sample was processed at the WCMGL for grain size distribution, settling velocity, and 

organic content (Table 2). A value for bulk density was generated from a reference density data set of clay and mud 

densities (SI Metric, 2009). These characteristics, along with SSCs, are inputs to the MARSED model (Temmerman 

et al. 2003; Temmerman et al. 2004). 

 

USGS Continuous Monitoring Stations and Monthly Cruises 

In addition to the field collected SSC samples, historical SSC datasets were obtained from the USGS’s 

Water Quality and Continuous Monitoring Stations of San Francisco Bay database for sampling stations 30 to 36, 

south of the San Mateo Bridge (USGS 2007;USGS 2010b). These additional datasets provided us with a more 

comprehensive set of SSC values for which to correlate with the satellite images from 1994, 2007, and 2009. 

Outliers due to sensor interference from biological fouling, especially during summer months, were excluded 

(Buchanan and Lionberger 2007). Additionally, these datasets were also used to calculate seasonal trends of 

sediment influx to the South Bay. Seasonal mean averages were computed and compared to the 10-year average of 

35.20 mg/L. The ratio between seasonal average SSCs and the 10-year average was calculated to be 1.08 for winter, 

1.16 for spring, 0.95 for summer, and 0.81 for fall. This seasonal variation in SSCs can be explained by high rainfall 

in the winter and spring (NCDC 2010). Resuspension of sediments may have also contributed to higher 
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concentrations in the spring and summer months, due to stronger winds in the South Bay (Buchanan and Lionberger 

2007). These coefficients were applied to seasonally adjust predicted SSCs for input into the MARSED model.  

 

Marsh Sediment Deposition Model (MARSED)  

A goal of this study was to model sediment deposition in Pond A21 (Figure 1) and compare modeled 

results with the field dataset for sediment deposition collected by Callaway et al. (2009). Modeling techniques can 

be used to estimate future sediment accumulation rates and account for factors including wetland age, surface 

elevation, and sea level fluctuations (Allen, 1990; French and Spencer 1993; French et al. 1995; Allen 1997; 

Temmerman et al. 2003; Temmerman et al. 2004). A zero-dimensional time-stepping marsh sediment deposition 

model (MARSED) has been used to predict wetland development based on particle settling velocity, time dependant 

SSCs, and sediment bulk density (Krone 1987; Temmerman et al. 2003; Temmerman et al. 2004). To effectively 

model sediment accumulation over several tidal cycles and years, the MARSED model developed by Krone (1987), 

and modified by Temmerman et al. (2004), was implemented using a GIS to predict sediment accumulation for Pond 

A21, and then an accuracy assessment was run to verify simulated results from Equation 1.  

 

 

[1] 

 

Where: 

dE/dt = rate of marsh height rise (m/year) 

dS(grain)/dt = rate of mineral sediment deposition (m/year) 

dS(organic)/dt = rate of organic content deposition (m/year) 

dP/dt = resuspension/compaction (m/year) 

 

Equation 1 was solved for dE/dt by summing the rates of deposition for mineral sediment and organic 

content and subtracting resuspension and compaction. Organic content was obtained from laboratory analysis and 

solving for the addition of sediment grains, dS(grain)/dt, required further calculation in Equation 2. Equation 2 

provides the total grain deposition by calculating deposition for each tidal cycle and subsequently for each year. 
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Equation 2 produced a final estimate of marsh evolution during the three years post-breach as a function of sediment 

concentration, settling velocity, and bulk density of the sediment grains (Krone 1987). 

 

 

[2] 

 

Where: 

dS(grain)/dt = rate of mineral sediment deposition (m/year) 

ws = particle settling velocity (m/s) 

C(t) = time dependant sediment concentration from Equation 3 (kg/m3), obtained using remote sensing 

ρ = bulk density (kg/m3) 

To obtain the C(t) term in Equation 2, the initial concentration value C(0) was taken from the remotely 

sensed image, and then Equation 3 was solved for dC/dt for initial conditions at t = 0. Euler’s Method was used for 

solving the equation by iteration through each time step to obtain the final C(t) at each time step until the solution 

reached a steady-state value. To initially model the changing sediment concentration with the incoming tide, 

Equation 3 was solved at time steps of t = 0.001s in Matlab (Krone, 1987; Temmerman et al. 2003).  

 

 

[3] 

 

Where: 

h(t) = time dependant water surface elevation (m) 

E = Elevation of the marsh surface (m) 

dC/dt = rate of sediment concentration change (kg/s) 

ws = particle settling velocity (m/s) 

C(t) = time dependant sediment concentration (kg/m3) 

C(0) = initial sediment concentration (kg/m3) 

dh/dt = velocity of incoming flood tide (m/s) 
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For the purposes of this study, the Euler method yielded a sufficient approximation to the final SSC value. The 

numerical approximation for solving Equation 3 at time steps of t = 0.001 s and 60,000+ iterations ensured a steady-

state solution was reached. Euler’s method was appropriate for solving Equation 3 because the Euler global error is 

proportional to the precision of the time step—approximately ± 0.001 mg/L in this case (Zill and Cullen 2009). This 

error is insignificant to the overall SSC values because the accuracy of the laboratory-derived SSC is ±0.01 mg/L.  

The conceptual framework of the MARSED model includes all inputs that directly affect marsh 

sedimentation, and were applied to the GIS model (Figure 2). SSC was the most influential variable in this study and 

was calculated using an algorithm applied to the remote sensing images. For each pixel, a correlating SSC value was 

used as the initial condition (C(0)) and was used in Equation 3 to determine the final rate of concentration change 

(dC/dt). Once the rate of concentration change was obtained, the concentration at any specific time thereafter could 

be solved. 

 

Statistical Analysis  

 

Three different statistical techniques were used to establish correlations between a range of SSC values (0-

100 mg/L) and satellite reflectance values (Teodoro et al. 2008)—linear regression, multivariate regression, and an 

ANN. For linear regressions, the band that produced the best statistical correlation for each sensor was determined 

and then used in subsequent calculations. For multivariate regressions and artificial neural networks, all available 

visible and near-infrared bands were used. The ANN was implemented using an adaptive linear combiner (Wilde 

2009). The ANN estimates the SSC by multiplying each band by a weight. After each iteration, the residual is 

calculated, and the weights are adjusted until the error is minimized. Essentially, the ANN takes the data and learns 

from it until it produces the lowest possible error. Field SSC measurements as well as data from the USGS’s Water 

Quality of the San Francisco Bay Project were correlated with reflectance values from multiple satellite images 

using all of these statistical techniques (USGS 2010b). The final values contained in the SSC maps were then used 

in the MARSED model for predicting sediment deposition.  

 

Results  
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Field and Laboratory Results 

 The field samples were processed at the USGS WCMGL. The average values from this analysis that were 

used in the MARSED model are shown in Table 3 (Newcomer et al. 2011). Average surface SSCs for Pond A21 

were 46.16 mg/L. This is consistent with the values provided by the multivariate regression for Pond A21 using the 

satellite images. This field validation of the multivariate correlation is another source of information that provides 

the best possible SSC map for input into the MARSED model. The low organic content of sediment in our samples 

can be attributed to the fact that Pond A21 is a continuously developing marsh with little biological activity. The 

sediment is dominated by clay sized particles—92% of particle diameters fall below 16 µm (Krumbein and Sloss 

1963).  

 

Suspended Sediment Prediction Results 

The accuracy of detecting SSCs through the use of remote sensing is dependent on many factors including 

the resolution of the satellite image, the ability to acquire and process the image with corresponding in-situ SSC 

values, and hydrodynamic influences. The two remote sensing instruments used in this study (ASTER and Landsat 

TM 5) show varying accuracy in correlating reflectance values with SSCs (Table 4). Reflectance values in clear 

water are generally zero, and predictably increase with increasing SSCs (Figure 3) as also shown by Li et al. (2003). 

Regressions effectively correlated pixel values with SSCs in each of the sensors, and were subsequently applied to 

each image in ArcGIS to create a suspended sediment map. The most effective linear regression for SSC 

correlations from ASTER and Landsat TM 5 was band 3 (630–690 nm) (Table 3). Multivariate and ANN 

regressions using ASTER imagery proved to be the most accurate correlation method, yielding r2 values of 0.88 and 

0.87, respectively (Table 3). The 15 m resolution of ASTER produced the most accurate results in correlating SSCs. 

The low linear regression value for ASTER can be attributed to the lack of field data for the overpass of the ASTER 

sensor. 
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GIS Model Results 

Root mean square deviation (RMSD) was used to measure the difference between marsh accumulation 

values computed by the model and field values collected by Callaway et al. (2009) (Table 4). Linear regression with 

band 3 of ASTER provided the most accurate results, yielding a RMSD of 66.84 mm (Table 4). This is less than 3 

inches of deviation, providing reasonable error and accuracy for predicting marsh sedimentation at local ponds in the 

South Bay.  

 

Predicting Deposition in Pond A6 

The MARSED model was applied to Pond A6 in the Alviso complex, which was breached in the 

November of 2010 (Figure 4). A January 5, 2011 Landsat TM5 image was used to map SSCs because of an overpass 

on a day of high tide. An initial run of the model with the same rates of deposition and initial conditions as for Pond 

A21 did not yield marsh equilibrium levels to provide a stable habitat for vegetation colonization within a 36-month 

time frame. The model was then run for a longer time frame, yielding equilibrium levels after 60 months. One 

interpretation is that a longer time frame was necessary because SSCs are consistently lower (by about half) around 

A6 than around A21, leaving less sediment for deposition and resulting in lower marsh accumulation rates in A6. 

The location of the levee breaches also factored into the longer time frame for marsh establishment in A6 (Figure 4). 

Pond A6 has two breaches along a slough divergent from the relatively calm Coyote Creek, as well as two breaches 

connecting the Pond to the relatively strong tidal currents of the South Bay. The tidal influences from the breach on 

the west side of Pond A6 may increase the potential for erosion and further inhibit marsh accumulation from the 

rates observed in Pond A21. The initial height of Pond A6 also factors into the time-frame required for the marsh to 

reach equilibrium. Pond A6 has experienced much more subsidence and compaction than other ponds and initially 

had lower elevations. The lower initial elevation of Pond A6 requires more sediment deposition to reach 

equilibrium.  

 

Model Sensitivity 

 A sensitivity analysis of the MARSED model to different parameters was run to assess how some of the 

most important predictor variables change the trajectory of marsh equilibrium accumulation. The variables of tidal 

velocity, length of each time step, and the time-length of slack during one tidal cycle were considered. The modeled 
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dataset was compared to the field dataset, and the sensitivity of the model to different tidal velocities was examined 

(Figure 5). The lowest tidal velocity was assumed for these areas because these areas are not influenced by wave 

action. The velocity of the incoming tide is important to the model, thus, three different model runs using different 

tidal velocities were considered (Figure 5). The field data line shows the true values for marsh accumulation over 

time measured by field parameters (Callaway et al. 2009). The high, medium, and low tidal velocity curves 

correspond to different marsh accumulation rates for each run. The incoming tidal velocity was estimated to be 7 

mm/s, 10 mm/s, and 12 mm/s for the lowest, medium, and highest tidal velocities, respectively. These tidal 

velocities are slow relative to typical velocities of tides and to velocities outside of the pond breaches. Since the 

ponds fill up from multiple input points, we assumed that flow in through these inputs would sufficiently suppress 

the tidal velocity allowing for sediment accumulation. Small changes in the assumed tidal velocity produced 

significant changes in the accumulation. For example, the lowest tidal velocity produced the highest amount of 

marsh accumulation because sediments can only settle when conditions are at or near slack. For the final model run 

the lowest tidal velocity of 7 mm/s was used.  

 Equation 3 was solved for each time step to retrieve the change in the SSC with time. The model is 

sensitive to the choice of the time-step used (Figure 6). A time-step of 5 s produces larger errors in the beginning, 

but eventually results in the same value as the other time steps. For this analysis, a time-step of 0.001 s was used. 

Because the time of accumulation of a marshland occurs at timescales much larger than those producing errors here, 

any time step could have been used.  

 Another variable that can significantly alter the output of the model is time that the water experiences slack. 

The period of slack is very important to marsh accumulation and without a significant amount of time for sediment 

to deposit, acceptable rates of marsh accumulation will not occur. Three different slack times produce varying 

amounts of deposition (Figure 7). A slack time of 0.5 hour produces less than half of the amount of deposition 

compared to a 1.5 hour slack time. A total time of slack was chosen to be 1.5 hours, due to the average slack time 

observed in the study area (NOAA, 2011).  

 

Discussion 

The MARSED model can accurately predict marsh sedimentation in the newly breached salt ponds in the 

South San Francisco Bay. The accuracy of the MARSED model is dependent on field data and GIS inputs. In the 
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case for prediction using ASTER, the linear technique produced the lowest RMSD for the model, whereas 

multivariate regression produced the best correlation between SSC and reflectance (Table 4). Furthermore, linear 

regression, being the simplest statistical method used, was not expected to produce the most accurate marsh 

accumulation estimates. This discrepancy could have resulted from bias in the model, which systematically 

overestimated marsh accumulation. This overestimation most likely arose because the model does not account for 

compaction or resuspension of settled sediment processes, which inhibit marsh elevation rise. Resuspension may be 

wind-generated (driven by shear velocity and water depth) or tidally generated (when ebb tide moves water and 

sediment out of the ponds). The inherent error of the model can also be attributed to the deviation of the reflectance 

values from the true SSC values. Reflectance values are measured to the fifth decimal place, whereas SSCs are 

reported to the second decimal place. This discrepancy could result in multiple reflectance values for the same SSC 

value, thus increasing error in the analysis. The cumulative marsh sedimentation curve is shown in Figure 5. The 

marsh initially rises rapidly, but sedimentation rates slow as the marsh sediment nears a stable height relative to sea-

level that allows for vegetation colonization. The height of marsh growth will vary with the initial elevation of the 

pond, however once equilibrium with sea-level is reached, the marsh will no longer accumulate sediment. 

Although the model produced applicable results to other wetland restoration efforts, outliers indicate a need 

for further assessment of environmental variables. Four outliers greatly underestimated sediment accumulation in 

the model, and were not included in the RMSD calculations. These outliers corresponded with locations along the 

southeastern perimeter of Pond A21, where unaccounted influences from the tidal channel and from pond geometry 

may have significantly heightened true marsh accumulation. When outliers were excluded, the model’s RMSD of 

66.84 mm fell within one standard deviation of actual accumulation values. Due to highly accurate depositional 

estimates, the model is a useful tool for studying future wetland restoration efforts, however the sensitivity of the 

model should be considered for future use in other wetland ecosystems. 

  

Conclusions 

In this study, suspended sediment concentrations were successfully calibrated to remote sensing reflectance 

values using three statistical techniques: linear regression, multivariate regression, and ANN regression. Multivariate 

correlations with ASTER provided the best r2 value of 0.88. The output suspended sediment maps were then used in 

the MARSED model to predict sediment deposition for Pond A21. Model results show excellent correlation with 
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observed sedimentation rates from Pond A21 with a RMSD of 66.8 mm (approximately 2.6 inches). Overall, the 

model is an accurate predictor of sedimentation for the South San Francisco Bay salt ponds, and can be a useful and 

successful tool for future management decisions. These tools can aid restoration managers in deciding not only the 

ideal location for a breach, but can also provide time estimates for a newly breached pond to reach equilibrium 

levels. 
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Sensor Bands 
Used 

Wavelengths 
(nm) 

Resolution 
(m) Dates used Image 

Source 

ASTER 
on Terra 1,2,3 520-860 15 10/8/04, 10/29/09 

Glovis 
(USGS, 
2010a)  

Landsat 5 
TM 1,2,3,4 405-900 30 8/18/94, 8/22/07, 8/27/09, 

7/5/10, 1/5/11 Glovis 

Table I Satellite sensors used to detect SSCs and corresponding dates 
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Variable Field Collection Method Laboratory Processing Technique 
Suspended sediment 
concentration (mg/L) Water samples from South Bay Filtration 

Grain size distribution Sediment samples from Pond A21 Coulter LS100Q using laser diffraction 

Settling velocity (cm/s) Sediment samples from Pond A21 Modified Gibbs equation (Gibbs et al. 
1971) 

Organic carbon content 
(% organic carbon) Sediment samples from Pond A21 CO2 coulometer and combustion 

chamber 

Table II Variables used in the MARSED model, the field collection method for each variable, 
and the corresponding laboratory processing techniques. 
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Variable Average Value 
Surface suspended sediment 

concentration (mg/L) 46.16 

Grain size (µm) 4.72 

Settling velocity (m/s) 5.06 × 10-5 
Organic carbon content (% organic 

carbon) 2.08 

Bulk density (kg/m3) 1600 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table III Average values of the field data collected in Pond A21. All data were 
analyzed in the USGS Western Coastal Marine Geology Laboratory. 
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Sensor  Linear Multivariate ANN 

Regressions 
Landsat 5 TM 0.83 (Band 3) 0.84 0.69 

ASTER 0.65 (Band 3) 0.88 0.87 

RMSD (mm) 
Landsat 5 TM 120.41 186.84 131.83 

ASTER 66.84 97.94 82.32 
 
 

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table IV Regressions are shown from the, linear, multivariate, and ANN statistical techniques for 
predicting SSCs. Root mean square deviation (RMSD) (mm) calculated between modeled and field 
results is also shown from comparisons with the field results.  Note that the most accurate predicted 
dataset was derived from ASTER linear regression with an RMSD of 66.84 mm. 
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Fig. 1 Study location in the Alviso Complex in the San Francisco Bay, California. Ponds A21 and A6 are shown 
in yellow. Note also the location of Coyote Creek and NASA Ames Research Center (ARC). 
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Fig. 2 Conceptual framework of variables contributing to marsh 
accumulation. All variables contribute to sediment deposition and are used 
in the MARSED model. 
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Fig. 3 Linear regression between suspended sediment concentrations combined from the USGS and from the 
field samples and the reflectance values from Landsat TM.  Landsat band 3 (630–690 nm) reflection correlated 
with suspended sediment concentration.  
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Fig. 4 Pond A6 showing sediment deposition in mm. The 
locations of the levee breaches (yellow) are indicated. 
Also, the South Bay flows into Coyote Creek near Pond 
A6. 
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Fig. 5 MARSED model sensitivity to the input tidal velocity.  
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Fig. 6 Sensitivity of the MARSED model to the length of the time steps. Time steps of 0.01 
seconds produces a relatively more stable curve than the other, and for accuracy purposes, a time 
step of 0.001 s was used in this study. 
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Fig. 7 Sensitivity of the MARSED model to the time of the slack period. Because tides vary each 
day, and because the ponds are shielded from large variations in tides, a slack period of 1.5 hours 
was chosen. 
 


