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 best-known examples are:  

 Shor’s algorithm for integer factorization. solves the problem in 

polynomial time (exponential speedup). 

current quantum computers can factor all integers up to 21.  

 Grover's algorithm is a quantum algorithm for searching an unsorted 

database with 𝑁 entries in 𝑂 𝑁1/2  time (quadratic speedup).   

 importance is huge (cryptanalysis, etc.). 

Motivation 

in what ways quantum computers are 
more efficient than classical computers? 

what problems could be solved more 
efficiently on a quantum computer? 
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 here, we will discuss “hard” satisfiability (SAT) and  

   optimization problems which are at least “NP-complete”, i.e., 

 hard to solve classically; time needed is exponential in the 

input (exponential complexity). 

 could a quantum computer solve these problems in an 

efficient manner? perhaps even in polynomial time?  

 we also discuss the graph isomorphism problem. 

 

Motivation 

the Quantum Adiabatic Algorithm  
is a general approach to solve a broad range of 
hard optimization problems using a quantum 

computer [Farhi et al.,2001] 

what more can quantum computers do? 
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 introduction: 

  the quantum adiabatic algorithm (QAA) 

 satisfiability problems 

 the specific SAT models studied 

 method: quantum Monte Carlo simulations 

 results: complexity of the quantum adiabatic 
       algorithm 

 results: comparison to the classical algorithm    
           WalkSAT 

 3reg Max-Cut: an antiferromagnet on a random graph 

 QAA, applied to the graph isomorphism problem 

 summary, conclusions and future research 

Outline 
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The Quantum  

Adiabatic Algorithm (QAA)  
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 the adiabatic theorem of QM tells us that a physical system  
   remains in its instantaneous eigenstate if a given perturbation    
   is acting on it slowly enough and if there is a gap between  
   the eigenvalue and the rest of the Hamiltonian's spectrum. 

The adiabatic theorem of QM 
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 the adiabatic theorem of QM tells us that a physical system  
   remains in its instantaneous eigenstate if a given perturbation  
   is acting on it slowly enough and if there is a gap between  
   the eigenvalue and the rest of the Hamiltonian's spectrum. 

 example: change the strength of a harmonic potential of a  
   system in the ground state: 

The adiabatic theorem of QM 

𝜓(𝑥, 𝑡) 2 

harmonic 
potential 
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 the adiabatic theorem of QM tells us that a physical system  
   remains in its instantaneous eigenstate if a given perturbation  
   is acting on it slowly enough and if there is a gap between  
   the eigenvalue and the rest of the Hamiltonian's spectrum. 

 example: change the strength of a harmonic potential of a  
   system in the ground state: 

 an abrupt change 
   (a diabatic process):  

The adiabatic theorem of QM 

𝜓(𝑥, 𝑡) 2 

harmonic 
potential 
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 the adiabatic theorem of QM tells us that a physical system  
   remains in its instantaneous eigenstate if a given perturbation  
   is acting on it slowly enough and if there is a gap between  
   the eigenvalue and the rest of the Hamiltonian's spectrum. 

 example: change the strength of a harmonic potential of a  
   system in the ground state: 

 a gradual slow change 
   (an adiabatic process):  
   wave function can “keep up” 
   with the change.  

The adiabatic theorem of QM 

harmonic 
potential 

𝜓(𝑥, 𝑡) 2 
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The quantum adiabatic algorithm (QAA) 

1. take a difficult (classical) optimization problem. 

4. vary the Hamiltonian slowly and smoothly from    

    𝐻 𝑑 to 𝐻 𝑝 until ground state of 𝐻 𝑝 is reached. 

 the mechanism proposed by Farhi et al., the QAA: 

2. encode its solution in the ground state of a quantum  

    “problem” Hamiltonian 𝐻 𝑝. 

3. prepare the system in the ground state of another  

    easily solvable  “driver” Hamiltonian” 𝐻 𝑑. 𝐻 𝑝, 𝐻 𝑑 ≠ 0. 
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𝐻 (𝑡) = 𝑠(𝑡)𝐻 𝑝 + 1 − 𝑠(𝑡) 𝐻 𝑑 

𝐻 𝑝 is the problem Hamiltonian whose 

ground state encodes the solution of 
the optimization problem 

𝐻 𝑑  is an easily solvable  
driver Hamiltonian, which  

does not commute with 𝐻 𝑝   

 the interpolating Hamiltonian is this: 

The quantum adiabatic algorithm (QAA) 

 the parameter 𝑠 obeys 0 ≤ 𝑠 𝑡 ≤ 1, with 𝑠 0 = 0 and     
     𝑠 𝒯 = 1. also: 𝐻 0 = 𝐻 𝑑  and 𝐻 𝒯 = 𝐻 𝑝. 

 here, 𝑡 stands for time and 𝒯 is the running time, or 
   complexity, of the algorithm. 
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 the adiabatic theorem ensures that if the change in 𝑠 𝑡  is  

   made slowly enough, the system will stay close to the  
   ground state of the instantaneous Hamiltonian throughout  
   the evolution. 

 one finally obtains a state close to the ground state of 𝐻 𝑝.  

 measuring the state will give the solution of the original  
   problem with high probability. 

 the interpolating Hamiltonian is this: 

The quantum adiabatic algorithm (QAA) 

 how fast can the process be? 

𝐻 (𝑡) = 𝑠(𝑡)𝐻 𝑝 + 1 − 𝑠(𝑡) 𝐻 𝑑 
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Quantum phase transition 
 bottleneck is likely to be a quantum phase transition (QPT)  
   where the gap to the first excited state is small.  

 there, the probability to “get off track” is maximal. 

0 𝑠 1 QPT 

𝐻 = 𝐻 𝑑  𝐻 = 𝐻 𝑝  

g
a
p
  

∆
𝐸

1
 

a schematic picture of the 
gap to the first excited 
state as a function of the 
adiabatic parameter 𝑠.  
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Quantum phase transition 

𝒯 ∝ 1
Δ𝐸𝑚𝑖𝑛

2  

 Landau-Zener theory tells us that to stay in the ground  
   state the running time needed is: 

 

 exponentially closing gap (as a function of problem size 𝑁)   
   exponentially long running time  exponential complexity. 
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Quantum phase transition 

𝒯 ∝ 1
Δ𝐸𝑚𝑖𝑛

2  

 Landau-Zener theory tells us that to stay in the ground  
   state the running time needed is: 

 

 exponentially closing gap (as a function of problem size 𝑁)   
   exponentially long running time  exponential complexity. 

 it would be interesting to explore what one can do with “Local  
   Adiabatic Evolution”, i.e., by slowing down when approaching  
   the minimum gap etc. for example, the adiabatic  
   algorithm for Grover’s search problem.  
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 most interesting unknown about QAA to date: 

 

 

 

The quantum adiabatic algorithm 

could the QAA solve in polynomial time 
“hard” (NP-complete) problems?  

for which hard problems is 𝒯 sub-exp’ in 𝑁? 
or 
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 most interesting unknown about QAA to date: 

 

 

 

 early studies [Farhi et al., Hogg] on very small systems  
   (number of bits 𝑁 ≤ 24) seemed to indicate that for some  
   problems complexity scales like 𝑁2. 

 later studies on bigger systems showed a “crossover” from  
   polynomial to exponential complexity [Young et al.]. 

 matter is still in debate [Altshuler et al., Knysh and  
   Smelyanskiy]. no clear-cut example. Sergey’s latest result. 

 

The quantum adiabatic algorithm 

could the QAA solve in polynomial time 
“hard” (NP-complete) problems?  

for which hard problems is 𝒯 sub-exp’ in 𝑁? 
or 
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 another interesting unknown: 

 

 

 almost no examples that adiabatic quantum computation is  
   efficient. however there exists an adiabatic version of Grover’s  
   search algorithm that uses “local adiabatic evolution”. 

 also, there is a correspondence between circuit-based  
   computing and adiabatic computing [Aharonov et al., 2005]. 

 also, D-Wave Systems have built operational prototypical  
   quantum annealers based on superconductor flux qubits (still  
   being debated whether really quantum or not). 

The quantum adiabatic algorithm 

what is the future of  
adiabatic quantum computation? 
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Satisfiability problems 
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Satisfiability problems  
 here, we consider certain “constraint satisfaction” (SAT)  
   problems that are known to be hard classically.   

 in SAT problems we ask whether there is an assignment of  
    𝑁 bits (or Ising spins) which satisfies all of 𝑀 clauses (or  

   logical conditions). bits in each clause are chosen at random. 
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Satisfiability problems  

𝑁 bits 

 here, we consider certain “constraint satisfaction” (SAT)  
   problems that are known to be hard classically.   

 in SAT problems we ask whether there is an assignment of  
    𝑁 bits (or Ising spins) which satisfies all of 𝑀 clauses (or  

   logical conditions). bits in each clause are chosen at random. 
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Satisfiability problems  

𝑁 bits 

𝑀 clauses 
factor graph 

 here, we consider certain “constraint satisfaction” (SAT)  
   problems that are known to be hard classically.   

 in SAT problems we ask whether there is an assignment of  
    𝑁 bits (or Ising spins) which satisfies all of 𝑀 clauses (or  

   logical conditions). bits in each clause are chosen at random. 

 an example for a clause containing the bits 𝑥1, 𝑥2, 𝑥3 would  
   be: 𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3 ∨ 𝑥2 ∧ ¬𝑥3 ∧ ¬𝑥1 ∨ 𝑥3 ∧ ¬𝑥1 ∧ ¬𝑥2 . 
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Satisfiability problems  

𝑁 bits 

𝑀 clauses 

0 1 0 1 1 0 0 

√ √ √ √ 

factor graph 

= a “satisfying 
assignment” 

 here, we consider certain “constraint satisfaction” (SAT)  
   problems that are known to be hard classically.   

 in SAT problems we ask whether there is an assignment of  
    𝑁 bits (or Ising spins) which satisfies all of 𝑀 clauses (or  

   logical conditions). bits in each clause are chosen at random. 

 an example for a clause containing the bits 𝑥1, 𝑥2, 𝑥3 would  
   be: 𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3 ∨ 𝑥2 ∧ ¬𝑥3 ∧ ¬𝑥1 ∨ 𝑥3 ∧ ¬𝑥1 ∧ ¬𝑥2 . 
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Satisfiability problems  
 for small 𝑀 𝑁 : easy to satisfy all clauses. exponential  

   number of solutions or “satisfying assignments” (SAT phase).  

 for large 𝑀 𝑁 : no satisfying solution exists (UNSAT phase).   

 we take the ratio of 𝑀 𝑁  to be at the satisfiability threshold, 

   where it is difficult to find a solution. 

 we study random instances with a unique satisfying  
   assignment (USA). numerically more convenient because  
   model is gapped.  

𝑁 bits 

𝑀 clauses 

0 1 0 1 1 0 0 

√ √ √ √ 

factor graph 

= a “satisfying 
assignment” 
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Satisfiability problems  

 the SAT problems we examined:  

 locked 1-in-3:  a clause is a triplet of bits picked at 
random from a pool of 𝑁 bits. it is satisfied if and only if 

exactly one bit is 1 and the other two are 0.  

 locked 2-in-4: same as above only with 2 bits out of 4 in 
each clause that must be 1 [Zdeborová & Mézard, 08]. 

 3-regular 3-xorsat [Jörg et al]:  
here, each bit is exactly in  
3 clauses and a clause is  
satisfied if the sum of the  
3 bits in a clause (mod 2) is a 
value specified (0 or 1).  
this problem is in P.  factor graph 

of 3-regular 3-xorsat 
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The encoding Hamiltonians 

 we choose the simplest possible driver Hamiltonian (e.g.,  
   equal weights): 

 

 this is a simple transverse-field Hamiltonian. it does not  
   commute with any of the problem Hamiltonians. its ground  
   state is unique and its energy is 0. the gap is 1.  

𝐻 𝑑 =  
1

2
1 − 𝜎𝑖

𝑥

𝑖=1..𝑁

 

 the SAT problems are encoded in problem Hamiltonians that  
   are sums of clause Hamiltonians, each of the clauses is a sum  
   of products of 𝜎𝑖

𝑧 matrices.  

 

 the ground state of the problem Hamiltonian 𝐻 𝑝 is a solution  

   to the SAT problem. 𝐻 𝑝 is diagonal in the computational basis.  

𝐻 𝑝 =  𝐻 𝑎 𝜎𝑖
𝑧

𝑎=1..𝑀
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 main goal: 

 

 

 

 study the dependence of the typical minimum gap  

 

 

    on the size 𝑁 (number of bits) of the problem. 

 this is because: 

 

 polynomial dependence  polynomial complexity! 

Method 

determine the complexity of the  
QAA for the various SAT problems 

𝒯 ∝ 1
Δ𝐸𝑚𝑖𝑛

2  

Δ𝐸min = min
𝑠∈ 0,1

Δ𝐸 
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Method 

 for each given problem we study several system sizes,  

   because we are interested in size-dependence. 

 we consider typically 50 instances per problem size. 

   to obtain “typical behavior” we take medians. 

 for each instance, we measure the gap of the system for  

   several values of the parameter 𝑠 in order to obtain an  

   accurate estimation of the minimum gap.  

 for each 𝑠 value, we run a quantum Monte Carlo (QMC)  

   simulation to obtain the gap numerically (and other  

   measureable quantities). 
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 for large system sizes, we can not use exact diagonalization. 

 we employ a continuous-time quantum Monte Carlo (QMC) 

   technique.  

 an additional periodic dimension of imaginary time 0 ≤ 𝜏 < 𝛽. 

   𝛽 is the inverse-temperature obeying 𝛽∆𝐸1 ≫ 1. 

 with QMC we do a sampling of the 2𝑁 states of the Hilbert  

   space. exact-numerical up to statistical errors.  

 QMC enables access to the equilibrium properties of the      

   system but also provides indirect access to the system gap. 

 here, we basically simulate spin-1 2  systems with different  

   interactions and different sizes. 

 we employ parallel tempering (swapping configurations of  

   adjacent 𝑠 values) which speeds up equilibration. 

Quantum Monte Carlo 
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 we use the stochastic series  

   expansion (SSE) algorithm 

   devised by Anders Sandvik      

   [Sandvik, 1991,1992,1994].  

 algorithm is based on a Taylor series  

   expansion of the partition function  

   𝑍 = 𝑇𝑟 𝑒−𝛽𝐻 . no systematic errors.  

 algorithm enables both local and  

   global (cluster or loop) updates  

   which in most cases prove to be  

   more efficient than single-spin-flip  

   (local) updates.  

Quantum Monte Carlo: SSE 
a typical segment of 
an SSE configuration 

1 0 1 0 0 1 1 

𝝈𝒙 

𝝈𝒙 

𝝈𝒙 

𝝈𝒙 

𝝈𝒙 

1 0 1 0 0 1 1 

𝝈𝒛𝝈𝒛 

𝝈𝒛𝝈𝒛 

spin configuration 

𝜏 
(i
m

a
g
in

a
ry

 t
im

e
) 

1 0 1 0 1 1 1 

1 0 1 0 0 1 0 

1 0 1 0 0 1 0 

1 0 1 0 0 1 0 

1 0 1 0 1 1 1 
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 we extract the gap of the system by measuring and  
   analyzing different-imaginary-time correlation functions of  
   certain operators: 

 
      

 if 𝛽Δ𝐸1 ≫ 1 (system is in its ground state) then at long  

   imaginary times we have: 

 

 

 i.e., only the slowest-decaying exponent survives (provided  
   that the corresponding matrix element does not vanish). 

 

  

Extracting the gap 

𝐶𝐴 𝜏 = 𝐴 𝜏 𝐴 0 − 𝐴 
2
 

𝐶𝐴 𝜏 ≅ 0|𝐴 |1
2
𝑒−Δ𝐸1𝜏 
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 if conditions are right, then it is possible we extract the  
   gap of the system. 

 we use a straight line fit on a log-linear scale.  

 however, data becomes very noisy at large imaginary times.  

Extracting the gap 

correlation function of a 
64-spin instance of the 
locked-1-in-3 problem  
(𝑠 = 0.39, 𝛽 = 1024). 
log-linear scale. 
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QMC results 

 main goal: to determine the complexity of the QAA for the  

   various SAT problems. 

 for each of the problems studied, we look at the dependence  

   of the typical (median) minimum gap on the size of the  

   problem.  

 a polynomially decreasing gap would mean a polynomially  

   increasing running time and hence QAA could be called  

   efficient. 

 an exponentially decreasing gap would mean that the QAA is  

   not more efficient than the best classical algorithm.  

 heavy QMC simulations. hundreds/thousands of cores,  

   running in some cases for weeks/months.   



Itay Hen March 6-8, 2013 AQC 2013 

Locked 1-in-3 SAT 

plots of the median minimum gap vs problem size 𝑁 

exponential (log-linear) fit power-law (log-log) fit 

clearly, the behavior of the minimum gap is exponential. 
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Locked 2-in-4 SAT 

plots of the median minimum gap vs problem size 𝑁 

exponential (log-linear) fit power-law (log-log) fit 

clearly, the behavior of the minimum gap is exponential. 
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3-regular 3-XORSAT 

exponential (i.e., log-linear) plot of the median minimum gap 

 median minimum gap is exponential,  
even from small 𝑁, and even though problem is in P. 
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 WalkSAT is a classical, heuristic, local search algorithm. 

 it is a reasonable classical algorithm to compare with QAA  
   [Guidetti and Young, 2010].  

 the algorithm itself is very simple: 

 pick at random an unsatisfied clause and flip a bit in 
that clause. 

 with some probability this bit is chosen to be the one 
which causes the fewest previously satisfied clauses to 
become unsatisfied, and otherwise it is chosen at 
random. 

 repeat until the number of unsatisfied clauses is zero.  

 

Comparison with a classical algorithm 
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Comparison with a classical algorithm 
 WalkSAT is a classical, heuristic, local search algorithm. 

 it is a reasonable classical algorithm to compare with QAA  
   [Guidetti and Young, 2010].  

 the complexity of WalkSAT is determined by the amount of  
   “bit flips” the algorithm performs until it reaches a solution. 

 

 

 for the QAA, we have 

 

 

 we can therefore compare exponent coefficients.  

 

𝒯 ∝ 𝑁flips~ exp [𝜇𝑁]  

𝒯 ∝  exp [2𝑐𝑁]  for  Δ𝐸1 ∝ exp [−𝑐𝑁]  
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 running times are proportional to exp [𝜇𝑁] where 𝑁 is  
   system size.  

 

 

 

 

 

 WalkSAT is better, however we see the same trend. 

 important to remember: we used here the simplest  
   implementation of the QAA for instances with USA.  
   algorithm can certainly be improved.  

a comparison of 
the 𝜇 values 
among the 
different models 
and between 
QAA and 
WalkSAT 

Comparison with a classical algorithm 
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3-regular random antiferromagnet 

 (3-reg Max-Cut) 
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3-regular Max-Cut 

 we have also studied one “MAX” (i.e., optimization) problem.  

 MAX means that we are in the UNSAT phase, and would like  
   to find the configuration with the least number of unsatisfied  
   clauses.  

 3-regular: each bit is in exactly 3 clauses.  

 Max-Cut: sum of two bits (product of two spins) must be a  
   specified value.  

𝑁 bits 

𝑀 = 3𝑁 2  clauses 

factor graph of the 3-regular Max-Cut 
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3-regular Max-Cut 
 in our case, the Hamiltonian of a clause is: 

 

 

 product of spins in a clause must be −1 to satisfy the clause. 

 this is a 3-regular antiferromagnet on a random graph. note  
   the symmetry under bit flips.  

 however, solution is not a simple “up-down” antiferromagnet  
   because of loops of odd length. in fact, this is a spin-glass. 

 after adding a Driver Hamiltonian, there is a quantum phase  
   transition above which symmetry is spontaneously broken.  

 “Cavity” calculations (Gosset/Zamponi) find the transition at  
     𝑠 ≈ 0.36. 

𝐻 𝑎=
1

2
𝜎𝑎1

𝑧 𝜎𝑎2
𝑧 + 1  
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3-regular Max-Cut 

 we observe minima near the expected phase transition 
(where the critical point was determined precisely) 

 there are however additional avoided crossings inside the 
spin-glass phase as well 

gap to the first excited 
state as a function of the 
adiabatic parameter 𝑠 
for one of the instances, 
showing two gap 
minima. here, 𝑁 = 128 
and 𝛽 = 2048. 

phase  
transition  
minimum 

additional 
minimum 
inside the spin-
glass phase 
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3-regular Max-Cut 

median minimum gap in the vicinity of the quantum transition 

exponential (log-linear) fit 
power-law (log-log) fit 
near phase transition 

gap is polynomial near the phase transition, however 
additional avoided level crossings lead to an exponential gap 
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The graph isomorphism problem 
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The graph isomorphism problem 

 are two graphs the same upon  
permuting the indices? 

 how could one use adiabatic  
quantum computation to answer  
this question? 

 conjecture: all non-isomorphic  
graphs can be distinguished by putting a suitable Hamiltonian 
on the edges of a graph: 

 we construct a problem Hamiltonian for each graph. 

 we run the QAA a multiple number of times. 

 we compute appropriate average physically measurable 
quantities by repeated measurements. 
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The graph isomorphism problem 

 if the Hamiltonian and the  
quantities we choose are  
invariant under permutation of  
the indices, isomorphic graphs 
will give the same results.  

 we hypothesize that  
non-isomorphic graphs can always be distnguished.   

 we have tested the hypothesis for some small graphs 
𝑁 ≤ 29  from various families of graphs that are known to 

be hard to distinguish (same adjacency matrices). 

 so far, method seems to work if measurements are accurate 
enough.  
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The graph isomorphism problem 

 we tried the “spin-glass” antiferromagnet on the graph: 

 

 main results are for Strongly Regular Graphs (SRG’s; families 
of similar but non-isomorphic graphs) but not just. we 
considered sizes from 𝑁 =  15 to 29 vertices.  

 we computed energy, 𝑥-magnetization (𝑀𝑥) and the spin 
glass order parameter (𝑄2) for different values of the 
adiabatic parameter 𝑠: 

 

𝐻 𝑝(𝐺)= 𝜎𝑖
𝑧𝜎𝑗

𝑧
𝑖,𝑗 ∈𝐺  

𝑀𝑥 =
1

𝑁
 𝜎𝑖

𝑥

𝑁

𝑖=1

 𝑄2 =
1

𝑁 𝑁 − 1
 𝜎𝑖

𝑧𝜎𝑗
𝑧

𝑁

𝑖≠𝑗
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The graph isomorphism problem 

 the value of 𝑄2, the spin-glass 
order parameter, in the ground 
state for the two non-isomorphic 
SRG’s on 𝑁 = 16 vertices, as a 

function of the adiabatic 
parameter 𝑠. the two graphs are 

clearly distinguished.  

 scatterplot of 𝑄2 against 𝑀𝑥 in 
the 𝑠 → 1 limit for the 41 SRG’s 
with 𝑁 = 29. the QAA 

distinguishes all graphs in the 
family in that limit (although 
some of the values are close 
together). 
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The graph isomorphism problem 
 perhaps there are “better” Hamiltonians than the one chosen 

here. here, we have used “glassiness” to solve the graph 
isomorphism problem. 

 perhaps there are better measurements that can be 
performed in order to distinguish between graphs, e.g., 
susceptibilities. here, we have mainly used the spin-glass 
order parameter.  

 can be tested experimentally on existing D-Wave hardware 
with relatively minor modifications.  

 it is unclear whether or not the algorithm is efficient. what is 
the nature of the quantum phase transition? need to 
investigate size-dependence of minimum gap. 

 clearly more testing is needed.  
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Conclusions and future research 
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 for the SAT problems investigated, we don’t find that QAA is better  

   than state-of-the-art classical algorithms. 

 we find that the harder a problem is for classical algorithms  

   (WalkSAT), the harder it is also for the QAA.  

 for the Max-Cut (random antiferromagnet) problem, results point to  

   a polynomially decreasing gap near the quantum phase transition.  

   it seems however that the overall gap behavior is exponential. 

 QAA seems to be able to solve the graph isomorphism problem  

   (more tests are needed) however the efficiency of the algorithm is  

   not yet known. 

Conclusions 


