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A Venting Gas Trap (VGT) was designed, built, and tested at NASA Johnson Space 
Center to eliminate dissolved and free gas from the circulating coolant loop of the Orion 
Environmental Control Life Support System. The VGT was downselected from two different 
designs. The VGT has robust operation, and easily met all the Orion requirements, 
especially size and weight. The VGT has a novel design with the gas trap made of a five-layer 
spiral wrap of porous hydrophobic hollow fibers that form a cylindrically shaped curtain 
terminated by a dome-shaped distal plug. Circulating coolant flows into the center of the 
cylindrical curtain and flows between the hollow fibers, around the distal plug, and exits the 
VGT outlet. Free gas is forced by the coolant flow to the distal plug and brought into contact 
with hollow fibers. The proximal ends of the hollow fibers terminate in a venting chamber 
that allows for rapid venting of the free gas inclusion, but passively limits the external 
venting from the venting chamber through two small holes in the event of a long-duration 
decompression of the cabin. The VGT performance specifications were verified in a wide 
range of flow rates, bubble sizes, and inclusion volumes. Long-duration and integrated 
Orion human tests of the VGT are also planned for the coming year.   

Nomenclature 
ECLSS = Environmental Control Life Support System  
ISS = International Space Station 
JSC = Johnson Space Center 
LCG = Liquid Cooling Garment 
MPCV = Multi-Purpose Crew Vehicle 
PIST = Pressure Integrated Suit Test 
SWME = Suit Water Membrane Evaporator 
VGT = Venting Gas Trap 
vPIST = variable Pressure Integrated Suit Test 

I. Introduction 
he Multi-Purpose Crew Vehicle (MPCV) gas trap is part of the pump package in the MPCV Liquid Cooling 
Garment (LCG) loop. The gas trap is located upstream of the pump to remove free gas from the cooling water 

during loop operation to prevent de-priming of the pump and loss of coolant flow.  There are a few possible sources 
for free gas introduction to the LCG loop. In preparation for suited operations, connectors within the suit and the 
umbilicals that interface to the vehicle are mated. During mating, gas can be trapped between the mating surfaces 
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and introduced into the LCG loop. Also, permeation of gas through the tube walls of the soft goods leads to 
accumulation of gas in the LCG loop. A third significant source is in the event of a cabin depress event causing 
dissolved gas in equilibrium with the normal cabin pressure to instantaneously come out of solution as the cabin 
pressure drops.   

Small amounts of free gas are tolerable in the system and will not cause de-priming; however, over time, if 
allowed to circulate, these small amounts of free gas may significantly affect the life of the pump. This circulating 
gas does affect the stability of the output and the efficiency of the LCG heat transfer. Therefore, with subsequent 
passes, it is important for the gas trap to eliminate even trace amounts of free gas. 

NASA initially considered a non-venting design concept that would have met all the requirements.1 Existing 
commercial membrane technology for degassing suggests that system requirements could be met with smaller mass 
and volume with a venting technology.2 One such module, which used a shell-flow design, was modified and 
recently ground tested for the International Space Station (ISS) Environmental Control Life Support System 
(ECLSS) coolant loop.3 Custom designs for Suit Water Membrane Evaporator (SWME) also showed excellent 
degassing characteristics with a tube-flow design, typical of their commercial counterparts.4-7 Accordingly, a 
development project was undertaken to design, build, and test a venting gas trap specifically tailored for Orion’s 
requirements that significantly reduce the size and volume compared with non-venting designs. Two shell-flow and 
one tube-flow design concepts were compared. A tube-flow concept that meets all the Orion requirements was built 
and tested. 

II. Requirements 
The current requirements assume that the Venting Gas Trap (VGT) will be physically located within the 

pressurized MPCV cabin, behind a control panel. Therefore, the VGT eventually will be designed to withstand 
launch and landing loads, but not kick loads. Additionally, any biocide-related requirement related to the LCG 
cooling loop is not included in VGT requirement. These and possibly other requirements will be included in future 
designs after this proof-of-concept article has been manufactured and tested. 

 Bubble Removal: 99 percent (by volume) of a 16 cc non-condensed gas (bubble) from a cooling water 
line, which has a flow rate of 298 kg/hr (656 lbm/hr), in 5 minutes. 

 Single-Pass Bubble Removal: 98 percent (by volume) of a 16 cc non-condensed gas (bubble) from a 
cooling water line, which has a flow rate of 298 kg/hr (656 lbm/hr), in a single pass. 

 Maximum Volume: 2556 cm3 (156 in3) or less. 
 Maximum Mass: 3.18 kg (7.02 lbm) or less. 
 Maximum Pressure Drop: 6.87 kPa (1 psi) at 298 kg/hr (656 lbm/hr). 
 Maximum Flow Rate: 298 kg/hr (656 lbm/hr). 
 Maximum Design Pressure: maximum cooling fluid pressure of 240 kPa (35.0 psi). 
 Proof Pressure: 360 kPa (52.5 psi). 
 Burst Pressure: 600 kPa (87.5 psi). 
 Vacuum Compatibility: operate in a vacuum environment for up to 144 hours. 
 Water Loss: less than 1.59 kg (3.5 lbm) over a 21-day mission with a unpressurized cabin for the last 

144 hours. 
 Fluid Temperature Range: 8.3ºC (47ºF) to 27ºC (80ºF). 
 Environmental Temperature Range: 18ºC (64.4ºF) to 27ºC (80ºF). 
 Cycle Life: 308 umbilical mate/demates, and at least 21 continuous days of operation. 

The cycle life assumes a crew of four each conducting umbilical mate or de-mate operations at the same time. 
This results in a free gas introduction of 16 cc for each operation assumed to be done in unison by the crew a total of 
77 times in the pressurized phase of the mission (four crew *77 = 308 umbilical cycles). 

III. Venting Gas Trap Designs and Downselect 

A. Tube-Flow Venting Gas Trap  
Error! Reference source not found. presents a Tube-Flow VGT design based on SWME architecture. Coolant 

water flows into the inlet header and into the hollow fibers and out the outlet header. Gas bubbles enter the tubes 
vent through the hollow fiber micropores into the shell-side free volume bounded by the external housing. The gas 
bubble vents through two 330-micron (0.013-inch) diameter holes. The two holes provide for complete venting of 
the gas bubble from the free volume space within 1.7 seconds while limiting the water loss over the 144-hour cabin 
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