Kennedy Space Center Smart Sensors

presented by Rebecca Oostdyk

Contributors

- NASA Kennedy Space Center
 - Jose Perotti, co-principal investigator
 - Angel Lucena
 - Pamela Mullenix
- NASA Stennis Space Center
 - Dr. Fernando Figueroa, co-principal investigator
- ASRC Aerospace, Contractor
 - Dr. Carlos Mata
 - Rebecca Oostdyk

Outline

- Problems with the current KSC instrumentation systems
- Smart Sensors
 - What they are
 - How IEEE 1451 relates
 - How they can help
- KSC's Smart Sensors
 - Architecture
 - Features and contributions to the state-of-the-art
- Future Research

Introduction

- At KSC, both ground and flight systems are instrumented with sensors to monitor critical processes
- Sensor failure, and the need to regularly calibrate sensors, can cost KSC significant amounts of money

Case Study: Engine Cutoff Sensor

- STS-114 Return to Flight
- 1 of 4 engine cutoff (ECO) sensors indicated the tank was full when it was empty
- The launch was scrubbed resulting in an estimated \$616,000 loss

Source: foxnews.com

Case Study: Calibration Cycles

- Ground support sensors must be removed on a regular basis for calibration (average every 6 months)
- Since KSC has 3000+ transducers in their Ground Support Equipment system, the cost of calibration is sizeable.
- By extending the calibration cycle, technicians would not be required to spend as much time maintaining the sensors

A "Bright" Idea - Smart Sensors

- Some of the challenges that KSC faces may best be solved with smart sensors
- What is a smart sensor?
 - Embedded with a Transducer Electronic Data Sheet (TEDS) as defined by IEEE 1451
 - Perform signal processing and data verification
 - Able to communicate with other sensors
 - Configurable
 - Able to report data and health information to higher level systems

IEEE 1451 Family of Standards

- IEEE 1451.1 Network Capable Application Processor (NCAP) Information Model
 - Network-level, object-oriented model for 1451 devices
- IEEE 1451.2 Transducer to Microprocessor Communication Protocols and TEDS Formats
 - Specification for TEDS
 - Digital interface for accessing TEDS, reading sensors and setting actuators

IEEE 1451 Standards (cont.)

- IEEE 1451.3 Digital Communication and TEDS Formats for Distributed Multidrop Systems
 - Specification for NCAPs with multiple sensors and actuators
- IEEE 1451.4 Mixed-Mode Communication Protocols and TEDS Formats
 - Support for legacy sensors
 - Combining analog and digital communication buses

Why Smart Sensors Make Sense

- Convert analog signals into digital for more reliable communication
- Provide data verification
- Give health information
- Capable of self-diagnosis and self-healing
- Configurable via a network
- Can extend calibration cycles

The KSC Smart Sensor

A.K.A. The Smart Networked Element (SNE)

Smart Sensor Architecture

- Modular architecture
 - Analog and signal conditioning
 - Digital
 - Power and communication

KSC Smart Sensor Hardware Features

- Power and Communication Module
 - Power over Ethernet
 - Data and power on one cable
 - No external power source or battery required
 - Real Time Clock with battery backup
 - Standard RJ-45 connection
- Digital Module
 - TI 200MHz Floating-point Digital Signal Processor (DSP)
 - 512 KB external RAM

Hardware Features (cont.)

- Analog Module
 - Redundant multiplexers, signal conditioning stages, and analog-to-digital converters (ADCs)
 - Digital-to-analog converter (DAC) for feedback
 - · Ability to connect up to eight individual sensors
 - Redundant
 - · Multidiscipline

KSC Smart Sensor Software Features

- IEEE 1451.1 "light" implementation of the network-level object model
- Customizable sampling rate, message contents, and health parameters via a graphical user interface

Software Features (cont.)

- Algorithms for monitoring the health of the sensor
 - Voltage reference/current excitation monitoring
 - Trending
 - Threshold detection
 - Sensor connection status

Contributions to Intelligent Sensing

- Ethernet-based, PoE compliant network sensors
- Perform data verification and health monitoring
- Implementation of a communication protocol between IEEE 1451 devices over Ethernet
- IEEE 1451.1 Protocol Analyzer
- User-defined TEDS the Health Electronic Data Sheet (HEDS)

Future Research

- IEEE 1588 Precision Time Protocol (PTP)
 - Time synchronization with sub-µs accuracy
- Addition of a control module for closed-loop feedback control
- Firmware to exploit multi-sensor array capability
- Real-time downloading of algorithms to the smart sensor

An expert knows all the answers – if you ask the right questions.

Author Unknown