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The Functional Breakdown Structure (FBS) is a structured, modular breakdown of 
every function that must be addressed to perform a generic mission. It is also usable for any 
subset of the mission. Unlike a Work Breakdown Structure (WBS), the FBS is a function-
oriented tree, not a product-oriented tree. The FBS details not products, but operations or 
activities that should be performed. The FBS is not tied to any particular architectural 
implementation because it is a listing of the needed functions, not the elements, of the 
architecture. The FBS for Space Transportation Systems provides a universal hierarchy of 
required functions, which include ground and space operations as well as infrastructure - it 
provides total visibility of the entire mission. By approaching the systems engineering 
problem from the functional view, instead of the element or hardware view, the SPST has 
created an exhaustive list of potential requirements which the architecture designers can use 
to evaluate the completeness of their designs. This is a new approach that wifi provide full 
accountability of all functions required to perform the planned mission. It serves as a giant 
check list to be sure that no functions are omitted, especially in the early architectural design 
phase. 

A significant characteristic of a FBS is that if architecture options are compared using 
this approach, then any missing or redundant elements of each option will be ' identified. 
Consequently, valid Life Cycle Costs (LCC) comparisons can be made. For example, one 
architecture option might not need a particular function while another option does. One 
option may have individual elements to perform each of three functions while another option 
needs only one element to perform the three functions. 

Once an architecture has been selected, the FBS will serve as a guide in development of 
the work breakdown structure, provide visibility of those technologies that need to be 
further developed to perform required functions, and help identify the personnel skills 
required to develop and operate the architecture. It also wifi allow the systems engineering 
activities to totally integrate each discipline to the maximum extent possible and optimize at 
the total system level, thus avoiding optimizing at the element level (stove-piping). In 
addition, it furnishes a framework that wifi help prevent over or under specifying 
requirements because all functions are identified and all elements are aligned to functions. 
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Nomenclature 

CONSIZ = Configuration Sizing (A LaRC vehicle sizing code) 
DDT&E = Design, Development, Test and Evaluation 
DoD	 = Department of Defense 
ESR&T	 = Exploration System Research and Technology 
ETO	 = Earth-to-Orbit 
FBS	 = Functional Breakdown Structure 
HDBK	 = Handbook 
KSC	 = NASA Kennedy Space Center 
Li = Earth-Moon Lagrange point 
LaRC = NASA Langley Research Center 
LCC = Life Cycle Cost 
MIL STD = Military Standard 
NASA = National Aeronautics and Space Administration 
NGLT = Next-Generation Launch Technologies 
SPST	 = Space Propulsion Synergy Team 
WBS = Work Breakdown Structure

I. Introduction 

T
HE evolution of rockets is an evolution of complexity, and increasingly complex systems present many 
(squared) opportunities for errors, omissions, or bad assumptions. Decomposing complex systems is the science 

of Systems Engineering; a science which matured alongside the complex systems of the Apollo era. However, like 
most true scientific knowledge, the origins of the science of Systems Engineering can really be found in the thinking 
and actions of those early engineers and logisticians from the 1600's era of exploration. As they studied the 
problems before them, the successes in exploration added continents to the map, identified the currents in the ocean, 
and solved the problems of navigation. Today, the field of Systems Engineering allows the engineer to deal with 
increasing complexity using a disciplined analysis of the problem to be solved or the goal to be achieved. 

The problem of this paper is the problem of exploration, which has similar aspects if one is venturing from 
Europe across the seas in the 1600's, exploring the polar regions in the late 1800's or exploring space in the here and 
now. Each of these exploration ages has dealt with the same system issues - how to predict the equipment and 
supply requirements for the unforeseen experiences that will be encountered by the explorers. Civilian and military 
applications of space transportation have been pursued for 50 years and there has been, and still is, a need for safe, 
dependable and affordable space transportation systems, both in the regimes of Earth-to-Orbit (ETO) and in-space. 
Safety, dependability, and affordability must be met to enable sustainable space exploration or conunercial space 
development to occur. In the recent past, several approaches which focused on performance while trying to satisfy 
these needs have been explored. Fully expendable and partially reusable space transportation systems have been 
developed and put in operation. However, all current space transportations systems have major shortfalls. More 
importantly, the design process tools have major shortfalls for focusing on the goals of safety, dependability, and 
affordability.

IL The Current Problem 

This Nation's ability to provide the development and operation of safe, dependable, affordable and sustainable 
space transportation systems is still not being achieved. Access to space is technically achievable, but presently very 
expensive. 

The life cycle cost (LCC) of the entire space transportation system necessary to enable an exploration 
architecture consists of the development and acquisition costs and the operations and disposal costs. For space 
transportation systems that will be in place for a long time, typical for current space systems, the operations and 
disposal costs will dominate the LCC. New programs must be "sustainable", i.e., they must be within their specific 
budget and within their yearly budget caps both during procurement and throughout their long operating life. For 
this to be achievable, operability must be designed into the architectures and elements from the very beginning. 
Failure to achieve the budgeted transportation costs will squeeze the exploration budget and has the potential to 
severely impact the sustainability of the entire program. 

During conceptual defmition and DDT&E phases, the only major objective (system attribute) controlled in past 
and present programs by a structured engineering management process has been performance closure by managing 
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flight systems weight. The present cost estimating process bases cost on flight system dry weight and performs all 
trade studies optimizing each single flight system function, with no effort to address integrating the total systems 
considering all desired attributes. As an example, objectives were set for LCC for the Shuttle, but no engineering 
management processes were exercised to provide control (only the DDT&E cost was tracked). Because the objective 
was not treated as a requirement, but only as a goal, it was not achieved. 

The SaturnlApollo lunar exploration program was terminated early because the recurring transportation cost was 
not sustainable while supporting the exploration efforts. The reusable Shuttle transportation system was developed 
to replace the Saturn launch vehicle in an effort to greatly reduce the recurring cost of transportation. Even though 
the recurring cost of space transportation systems operation was reduced approximately 75 to 80 percent', the 
reduction was not sufficient and did not approach the target goal. 

A major lesson identified from the Saturn/Apollo and Shuttle experience is that much improved, innovative 
processes must be developed and rigorously applied to effectively control LCC. Any future space transportation 
system LCC must be controlled throughout the entire design concept phase, DDT&E phase, and the operations 
phase to provide a sustainable space exploration program. Since a major part of LCC for a space transportation 
system is the recurring or operational phase cost, this cost must be defined in the design concept phase and 
rigorously controlled throughout that and subsequent phases. 

The primary lesson learned from studying the past programs is that if the industry always does what it has done 
before, then the industry will always get the same result. Therefore, achievement of major reductions in LCC will 
not be accomplished using the same existing processes and approaches. 

Although many specific problems have been identified in the approaches and tools used in the past to achieve 
affordable LCC, this paper will concentrate only on two past problems: 

1. architecture options have not been compared on the same level in early concept studies resulting in the 
inability to choose architectures based on believable LCC comparisons, and not all needed mission 
functions have been fully identified at program initiation; 

2. there has been much less functional integration across elements than would be desirable for lowering LCC. 
Part of the problem is the lack of good approaches and good tools to identify and assess all of the needed 

functions of a specific mission. 

A. Architecture Comparisons and Mission Function Definition 
The operations and disposal costs are determined, often without specific planning, during the system architecture 

definition and the individual element developments. It has been estimated that 80 percent of the design decisions are 
irreversibly made in the system architecture definition and the individual element development design phases 

It is very difficult during architecture defmition to balance and minimize, or even compare, the overall LCC, 
including both development and acquisition costs and operations costs. This is primarily due to the lack of full 
defmition of all the necessary functions of the potential architectine options. Different options have different levels 
of definition but still must be compared. And often not all of the supporting elements necessary for each architecture 
are identified at all. It is also very difficult during element developments, primarily due to schedule and budget 
pressures, to maintain the design discipline to ensure that operations costs will not escalate due to design decisions 
addressing immediate design, weight, performance, or development problems. The emphasis in design is to get the 
job done (i.e., achieve weight and performance) within the schedule and hopefully within the budget. When 
problems must be solved there is seldom the budget or schedule available to properly consider the operations cost 
impacts of the design options examined. Consequently, the future operations and disposal costs escalate to improve 
the currently incurred development costs. 

There is a need to assure that concepts are equally defined, described, and complete to allow fair comparisons. 
One of the major problems in these comparisons is the lack of credible operations models. Each concept compared 
must be responsive to all performance, safety, and cost needs or be brought up to compliance before being 
compared. 

B. Functional Integration Across Elements 
It is important to establish a structured process to control recurring costs across multiple levels and elements of a 

program. Figure 1 shows that at any particular level in the program there are elements being designed for that level. 
Each of the elements has requirements for mass, performance, and, non-recurring, and recurring cost. Note carefully 
the flow of impacts shown in the figure. Level X can impose requirements on Suppliers A, B C, and D and on the 
Operations. And they can all give information on requirement compliance back to Level X. However, Operations 
and each of the suppliers have no ability to modify requirements to each other. Nonetheless, many of the decisions 
made by Suppliers A, B, C, and D directly impact and change the requirements on Operations. For example, each of 
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the suppliers may require a heat exchanger of some sort. That heat exchanger will require a working fluid. Each of 
the suppliers will optimize its heat exchanger to best meet its own mass, performance, non-recurring, and recurring 
cost requirements (allocations). Unfortunately, since the internal environments of each supplier are probably 
different, the optimum working fluid choice will probably be different. If four working fluids are chosen (or even 
very different conditions of the same fluid, e.g., different types of purified water), then both the non-recurring and 
the recurring costs incurred by Operations will increase by about a factor of four in the area of building and 
maintaining the facilities and supplying the heat exchanger fluids. 

Figure 1. Requirements and Information Flow. 

The point is that unless Level X uses its information flow from all the suppliers and operations to modify the 
choices of the suppliers, the resulting system may be far from meeting its recurring, and maybe even non-recurring, 
cost requirements, even though the system does meet its mass and performance requirements and each of the 
suppliers met their non-recurring and recurring cost requirements. If costs are requirements and not goals, and thus 
enforceable and tradable amongst the other requirements, then Level X can seek the optimum system choice 
regarding number of heat exchanger working fluids. The answer may be one or more depending on the degree of 
sub-optimal design needed to use specific fluids and the relative impact on the mass, performance, and cost of the 
choices. 

To make this approach work, Level X must have the ability and will to modify the requirements to each supplier 
and operations in an expeditious manner to quickly reflect the system level trades. Thus, Level X must have the 
analytic tools, such as utility analysis, to trade between dissimilar requirements; the contract mechanisms to quickly 
modify requirements; and the budget to flow-down for re-design as necessary. 

The current approach to the development of systems lacks integration to achieve the minimum total hardware.. 
This occurs because the approach is focused only on each flight element without regard to the impacts on support 
infrastructure. There is a need for a structured engineering guide that provides the functional definition necessary at 
all levels to allow integration at all levels such that the architecture design can achieve the desired support 
infrastructure and labor costs consistent with the overall affordability requirements. There is also a need to provide 
visibility of duplication of functions within the overall architecture, across all elements, so that better integration can 
be achieved and the goal of significantly reduced LCC can be achieved. 

Ill. Potential Solution 
A critical need for improved communications between the user and the developer led to NASA's Code R and 

Code M chartering the Space Propulsion Synergy Team in 1991, as a team of propulsion and multidiscipline experts 
(Research and Technology, Concept and Design Development, Testing and Operations, and Program Management) 
with extensive contractor, government, and academic experience assembled to "bridge the communication gap" 
between technology developers and users. Many of the members have vast libraries of past performance, cost, and 
operational information that NASA, Industry, and other Governmental organizations have difficulty in acquiring and 
applying. SPST members (some retired) have proven that we will invest time and talent to be beneficial to NASA, 
industry and other governmental organizations having a strong need of this extensive knowledge and experience. 
SPST team members have participated in the development and application of the classical "Systems Engineering 
Process." All have "real" space systems design, development and launch operations experience. Several have been 
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through the entire systems acquisition process, some more than once. The SPST concluded its first task should use 
its member's diversified expertise toward developing new "Management Decision Making Tools" or innovative 
approaches and processes in the architectural design, development, and operations of space transportation systems to 
satisfy the challenging requirements of the transportation operators and the payload customers while providing a 
bridge to commercializing space travel. 

The SPST has developed a new approach for formulating requirements that will provide full accountability of all 
functions required to perform the planned missions. The approach is to develop a top-level functional breakdown 
structure (FBS) with modular subsets that may be utilized as a basis for defining the desired "functional 
requirements" in any system. 

The FBS developed by the SPST evolved out of efforts started at NASA. In an effort to determine where in the 
design sequence opportunities are being lost to perform early systems integration, the analysis team reviewed typical 
weight statements used by such popular weights and sizing programs as CONSIZ. The team found relatively 
detailed functional breakdowns for engine systems and primary structures. Not found was an equivalent level of 
definition and identification for the other design disciplines, such as thermal management, communications, 
guidance and flight control, and power management. While much of this functional hardware may have been 
"covered" at higher indentured levels in the weight breakdown structures, the generic design functions are not being 
treated homogeneously during the design process for attributes other than weight; such as total subsystem count, 
relative order of magnitude of ground interfaces, number of separate working fluids, propellants and gases, and so 
forth. Thus, the conceptual design process is likely to be left blind to these key design characteristics. Further, in 
some weight breakdown structures being used, functional hardware required for the integration of flight elements 
and stages was going unidentified (such as ordnance subsystems, attach hardware, and thermal protection). For the 
operations specialist participating in concept reviews or for the operations modeler, these non-homogeneously 
defined system weight breakdown structures were the best available. 

The question was raised as to whether one could generically define vehicle and flight element design functions 
homogeneously across all the design disciplines, similar to the way the ground functions were generically defined. 
This might provide a pathway to reform traditional weight statements into more uniformly defined system 
statements that would inherently possess more conceptual-level definition and insight than just mass, volume, and 
center of gravity. A cataloging of generic ground functions had already been created and refined several times (see 
Section 3 and the FBS in Appendix A of Reference 2). It seemed reasonable to perform a similar, start-from-scratch 
exercise for generic flight system definition. 

Thus, a Functional Breakdown Structure (FBS) effort was organized in the Systems Engineering Office at KSC 
in 2003 in support of NASA's Next-Generation Launch Technologies (NGLT) program. By 2004, the government, 
industry, and academia Space Propulsion Synergy Team began actual development work on a FBS. During the 
formative stages of the work, the FBS was significantly broadened in scope to support advanced technology life 
cycle analysis for NASA's Exploration Systems Research and Technology (ESR&T) effort as part of the Vision for 
Space Exploration. 

The SPST Functional Breakdown Structure (FBS) has evolved from over 10 years of analyzing the functional 
requirements of space transportation systems, including Earth-to-Orbit, and in-space oriented systems. Based on that 
experience, the SPST began to see a repeatable pattern of system developments which excluded major requirements 
in the early planning, for a variety of reasons. The result of excluding requirements in the early planning, and 
attempting to address them later in the system design program has always been significant growth in total life cycle 
or system acquisition cost, decreases in system performance, increased development schedule, or all three. Previous 
products of the SPST efforts include the "A Guide for the Design of Highly Reusable Space Transportation 3 , the 
"SPST Collaborative Prioritization of Advanced RLV Technologies" 4, and the Space Shuttle Shortfalls 
Assessment5.

IV. The Functional Breakdown Structure as a Systems Engineering Tool 
The SPST FBS is a structured, modular breakdown of every function that must be addressed to perform a generic 

mission, or any subset of that mission. It is an indentured listing of the system's functions for an architecture from 
the very top level down to where the last function identified cannot be further decomposed uniformly The FBS leads 
an early Program Team into the requirements necessary to accomplish the perceived and known missions that the 
future system must be capable of accomplishing. 

The Space Propulsion Synergy Team has developed a generic FBS for the problem of future space exploration 
and transportation system. While typical Work Breakdown Structures (WBS), as defined in both DoD and industry 
Project Management literature, strive to describe all the elements of a systems, the SPST FBS strives to describe all 
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the things a space exploration system or space transportation system would have to be capable of doing. The FBS 
emphasizes the "what's" that an architecture must do, while the WBS emphasizes the "how's" that the architecture 
uses to achieve the "what's". By approaching the systems engineering problem from the functional view, instead of 
the element or hardware view, the SPST has created an exhaustive list of potential functions that the various 
architecture designers can use to evaluate the completeness of their design concepts. 

If one considers the typical aspects of a systems engineering process, such as the "Vee" diagram of Buede 6, the 
systems engineering process is only halfway complete if it doesn't address ways to verify and test the design's 
ability to achieve the requirements. If affordability or life cycle cost targets are treated as requirements, then the 
Systems Engineering process needs to include verification of these requirements as well. By distilling the basic 
problem down into the individual capabilities required, architectural details are not brought into the debate until the 
appropriate time. Examples abound in everyday life of architectural differences in accomplishing the same function 
as one trip through the parking lot will demonstrate. Every five passenger car in the lot meets the same basic 
functional requirements, with greatly varying levels of Life Cycle Cost. When the U.S. astronauts first saw the 
Soyuz hardware and launch structures during the Apollo/Soyuz Joint Program in the early 1970's, they commented 
on the differences of the hardware between the two systems; "The Russians entered the project with equipment 
decidedly backward compared with the American hardware and systems."7 

V. The Functional Breakdown Structure Applied to the Space Exploration Problem 
A FBS differs in intent from a WBS. For those Systems Engineers and Program Managers familiar with DoD 

guidance, the SPST FBS will not fit the expected concept of a Program WBS. According to MIL Handbook 881, 
formerly MIL STD 88 1B, the guidebook on Work Breakdown Structures, 

"The Program WBS provides a framework for specifying the objectives of the program. It 
defmes the program in terms of hierarchically related product-oriented elements. Each element 
provides logical summary points for assessing technical accomplishments and for measuring cost 
and schedule performance.... The work breakdown structures summarize data for successive 
levels of management and provide the appropriate information on the projected, actual, and 
current status of the elements for which they are responsible. The WBS keeps the program's status 
constantly visible so that the program manager, in cooperation with the contractor, can identify 
and implement changes necessary to assure desired performance."8 

Mil HDBK 881 defines a WBS as "A product-oriented family tree composed of hardware, software, services, 
data, and facilities. The family tree results from systems engineering efforts during the acquisition of a defense 
materiel item."7 

The SPST FBS is not a product oriented tree, but a function oriented tree. From Level 1 to the lowest levels, the 
FBS details not products, but operations, activities, and functions that must be performed. The SPST FBS precedes 
the development, or conceptualization of the Space Exploration Architecture, just as the sample WBS templates in 
the Appendices of MIL HDBK 881 precede the system concept exploration phase for a defense material item. In 
this respect, the functions identified in the FBS must be evaluated by the Space Exploration system engineer and a 
judgment must be made as to the applicability of the function to the current architecture mission requirements. 

The SPST FBS provides a universal hierarchy of space transportation operational functions which include 
ground and space operations as well as infrastructure. It provides a structured, indentured breakdown for use in 
providing guidance to architectural concept design developers and visibility and definition in accounting for all 
functions; i.e., a giant check list to be sure that no functions are omitted especially in the early architectural design 
phases. 

In place of starting with the hardware system/subsystemicomponent Weight or Work Breakdown Structure 
(WBS), the FBS approach accomplishes several important objectives. It ensures that the operational requirements 
(both ground and flight) are addressed in the design conceptual process, providing accountability for the total 
flight/ground system acquisition and operation and will result in lower manpower (labor) and material cost; 
therefore, much lower Life Cycle Cost with improved safety and dependability. 

Additionally, the SPST FBS furnishes inputs for analysis of any concept and provides a systematic source for 
determining and documenting the requirements and life cycle cost necessary to achieve the Program/Project goals 
and objectives. When used correctly, the FBS furnishes a framework for defining requirements which will preclude 
over or under specifying the requirements. 

As has been discussed, since FBS's and WBS's are not the same, a single item in a WBS may address multiple 
items in a FBS while multiple items in a WBS may be needed to address a single item in a FBS. 
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Because a traditional WBS is an indentured list of systems/sub-systems/parts, by its nature it needs to reflect a 
technical solution to reach deep levels of indenture. Consequently, WBS's are necessary and ideal for weight 
management and control and performance comparisons, managing contractors and sub-contractors, and some types 
of non-recurring cost comparisons. 

On the other hand, because a FBS is an indentured listing of the system's functions for an architecture from the 
very top level down to where the last function identified cannot be further decomposed, it is especially useful for 
concept definition and trade studies. The FBS is ideal for requirements defrnition because it isolates the functions 
from the technical solutions/subsystems/parts. The FBS allows imposition of true functional requirements versus 
using constraints due to particular technical solutions, it helps to keep requirements at the same level throughout the 
architecture. The FBS is ideal as a filter for concept comparison because it facilitates the use of two criteria: it 
checks concepts a, b, c, etc. against the requirements defined at given function levels; and it checks-off functions 
implemented by the concept. Fair LCC comparisons require that concepts only be compared when they satisfy both 
of these criteria. Concepts that do not satisfy both of these criteria are leaving out some systems/subsystems/parts. 

VI. The Use of the FBS Developed by the SPST 
This SPST FBS workbook has been developed with tabs established at different levels of the Space 

Transportation System breakdown structure to allow the ease of use to matrix this FBS with other intended functions 
being analyzed. The FBS is established at the 3rd, 4th, and 5th composite levels and at the 6th level for the generic 
flight element. Also the FBS is established with tabs for the "Generic Ground Node" at the 3rd, 4th, and 5th levels. 
This 'Generic Ground Node" is intended to represent the Earth, Moon, and Mars surfaces as well as space 
operations nodes that conduct ground-like functions that might be in Mars orbit, Moon orbit, Li, Earth orbit, etc. 

In place of starting with the hardware systemlsubsystemlcomponent Weight or Work Breakdown Structure 
(WBS), the SPST proposes using this FBS. This will assure that the early design phase will address all of the 
functions by using the FBS as a "giant check list". The FBS allows accommodating many discipline functions into a 
uniform, comprehensive, and fully integrated solution. This will enable the minimizing of total part count, ground 
and vehicle interfaces, and make visible the accumulation of operations labor (both direct and the large indirect 
infrastructure support). 

Space operations experience shows that recurring cost are driven by labor costs. Thus, the SPST Functional 
Requirements Sub-team has devoted time and energy to the developing of this FBS during the past decade. Lesson 
learned: The SPST has shown that labor is the largest part of the LCC for the Space Shuttle Operational Program. 

The FBS will provide an excellent guide to determine personnel discipline skills required to accomplish the new 
space initiative DDT&E and operations. 

The FBS will serve as a guide to perform an assessment of existing government and industry facilities during the 
DDT&E phase and the operations phase of the any space exploration initiative. It will also help determine the 
surplus or shortfalls to allow determining the investment needed. This is also needed to determine the LCC for the 
system investors or government sponsors. 

The FBS will serve to evaluate the planned WBS's being considered to manage the Space Exploration Initiative 
development and for determining the "technology shortfalls" in the planning process for the Space Transportation 
System elements as well as for different scenarios under consideration. 

The space transportation system needed for the exploration mission can be addressed with the FBS already 
significantly developed by the SPST. Figure 2 shows a screen shot of one of the tabs in the SPST developed FBS. 

As more clearly shown in Figure 3, the exploration system is broken into three categories: vehicle functions, 
element integrations functions, and ground infrastructure functions. "Ground" is used generically to apply anywhere 
infrastructure needs are met. The category applies to infrastructure on the earth, or on a non-earth body, or even in 
space - basically anywhere a needed service function is to be performed. 

Notice that the FBS structure is very general and modular. Each second level function can be used as many times 
as needed by a particular architectural approach. The FBS can be applied to the space transportation needs of a low 
earth orbit launch system, of an in-space orbit transfer system, of a Mars exploration mission, or of an entire 
exploration architecture.
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Figure 2. Screen Shot of Third Level of Space Exploration System Functional Breakdown Structure. 
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1.1.1	 twfmme Structure & Mechanisms 

1 .1.2	 Propulsion 

1 1,3 Power Management 	 .	 .	 . . - _________ - 

1 1,4	 Therrrral Management 

1 .1.5 Guidance. Navtgatrorl and Control	 _________________ - 

1 1.6 Communications, Control and Health Management 

INTERFACE 11.7	 Lrte Support	 . 

1 1.8 Environmental and Safely Management 

Vehicle Elements lnteU'ation )Booster, Orbiter, TLI element, Planet or Moon Decent/Ascent element) 

1.2.1	 Element to element structural attaciment 

1.2.2 Element to element commiwication 

GROU Ft1 D

1.2.3 Provide morviorirrg & control of safe environment between elements 	 -_____________ 

1,2.4 Element to Element Separatron	 _____________ 

Ground Infrastructure Element)s( L I 
1.3.1	 Flight Element Processing , - I_1,....._ I_I - 
1 .3.2 Payload Element Processing I I 1 1 
1.3.3 Integrated Processing	 ________ I - I I - 

1.3.4 Flight and Ground TraffIc Control and Safety Management 1 11 1
1.3.5 Ground Infrastructure Support and Manament '	 , ]	 1'	 T1 

Figure 3. Third Level FBS is General and Modular. 
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As an example of the content in the spreadsheet, one third level function will be followed through its deeper 
levels in the following figures. Figure 4 shows the fourth level functions decomposed from the third level function 
"1.1.2 Propulsion". It was decomposed into five lower level functions. 

1.1.2	 Propulsion 

1.1.2.1	 Booster/Planetary Ascent Propulsion 

Orbital Maneuvering Propulsion (insertion/circularization, de-orbit & 
1.1.2.2	 Trans-lunar/mars injection) 

1.1.2.3	 Reaction Control Propulsion 

1.1.2.4	 Powered Landing Propulsion 

1.1.2.5	 Crew Escape or Element Separation Propulsion 

Figure 4. 1.1.2 Propulsion Was Decomposed into Five Functions. 

The example continues and shows that one of the fourth level functions, "1.1.2.1 Booster/Planetary Ascent 
Propulsion", was decomposed into 21 fifth level functions as shown in Figure 5. 

1.1.2 Propulsion	 ___________________ 
1.1.2.1 Booster/Planetary Ascent Propulsion 	 ___________ 

1.1.2.1.1 Fill&Drain _____	 _____________ 
1.1.2.1.2 On-BoardPropellantStorage 

-	 1.1.2.1.3 Cryogenic On-Board Propellant and hardware Condi : for Enne Start 
-	 1.1.2.1.4 Storable Propellant Conditioning for Engine Start 	 - 

-	 1.1.2.1.5 On-Board Pur9e	 -


1.1.2.1.6 Pressurization 
1.1.2.1.7 Tank Feed 
1.1.2.1.8 FluidPump/PressureTransfer 	 __________ 
1.1.2.1.9 Combustion	 _______________ 

1.1.2.1.10 Propellant inlet/intake management____________ 
- - 1.1.2.1.11 Noze Exhaust Gas Management	 - - - - 

-	 - 1.1.2.1.12 Propellant Management (Residuals, Fuel Bias, Margins) 
-	 1.1.2.1.13 Engine start 	 __________	 -


1.1.2.1.14 Engine shutdown 
1.1.2.1.15 Propellant flow and thrust interaction control (POGO suppression) 

1.1.2.1.16 Mti-geysering control 

-	 1.1.2.1.17 Propellant acquisition/settling 	 _________	 - -


1.1.2.1.18 Propellant/hardware thermal management 
- - 1.1.2.1.i9Engjnecontrol& health management	 - - - - 

-	 1.1.2.1.20 Propulsion power generation 
1.1.2.1.21 Hardware contamination/flush for start/restart 

Figure 5. The Fifth Level Decomposition of 1.1.2.1 Booster/Planetary Ascent Propulsion. 

Finally, Figure 6 shows the sixth level functions that resulted from the decomposition on the first six of the fifth 

level functions shown in Figure 5.
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= CD	 E	 F	 G	 I	 HI 

229 1.1.2	 Propulsion 
1.1.2.1 Booster/Planetary Ascent Propulsion 

1.1.2.1.1	 Fill& Drain
______ ______ 

1.1.2.1.1.1	 Oxidizer F&D system
_____ ______ 

1.1.2.1.1.2	 Fuel F&D system
______ ______ 

234 1.1.2.1.2 On-Board Propellant Storage
______ ______ 

1.1.2.1.2.1	 Oxidizertank
______ ______ 

______ 1.1.2.1.2.2	 Fueltank
______ 

1.1.2.1.3 Cryogenic On-Board Propellant and hardware Conditioning for Engine Start ______
______ 
______ 

238 1.1.2.1.3.1 Oxidizer bleed or bubbling system to provide thermal conditioning ________
1.1.2.1.3.2 ________ Fuel bleed and fluid circulating system to provide thermal conditioning

_______ 
_______ 

1.1.2.1.4	 Storable Propellant Conditioning for Engine Start 
24i 1.1.2.1.4.1	 Engine oxidizer feed system fill & bleed _______

______ 
______

_______ 

242 ________ 1.1.2.1.4.2	 Engine fuel feed system fill & bleed ______
______ 
_______ 

1.1.2.1.5 On-Board Purge 
244 1.1.2.1.5.1

______ 
Engine oxidizer system purge & conditioning to remove contamination

______ 
_______

1.1.2.1.5.2 Engine fuel system purge & conditioning to remove contamination
______ 

246

________ 

1.1.2.1.6 Pressurization
_______ 

1.1.2.1.6.1 Oxidizer tank pressurization
______ ______ 

1.1.2.1.6.2 Fueltank pressurization
______________ 
______________

Figure 6. Example Sixth Level Functions. 

Looking at the sixth level functions in Figure 6, it would be possible to further decompose these functions to 
even lower levels. In general, it will be possible to decompose functions to different levels for various fourth or fifth 
level functions. How far this is done depends on the use of the FBS. For architectural LCC comparisons, the FBS 
may only need to be taken to level three or four. On the other hand, for WBS development, or for technology gap 
analysis, or for defining functional requirements, it may be desirable to take the functional decomposition as far as 
possible.

VII. Conclusions 

Low life cycle costs for space transportation systems have not been achieved in the past. Part of the cause for this 
failure is that: 

1. architecture options have not been compared on the same level, 
a. derivative options often have most functions well defined, 
b. new options often leave out needed functions, 
c. but the options are compared anyway; 

3. not all mission required functions have been identified at program initiation, 
a. late identification added unexpected costs, 
b. late identification prevents overall system optimization; 

2. there has been a sub-optimal level of functional integration across elements, 
a. in architectures to be compared, 
b. in the chosen architecture, 

i. leads to "stove-piping", 
ii. leads to lack of developed components and designs being available to later programs. 

Part of the problem is the lack of good approaches and good tools to identify and assess all of the needed 
functions of a specific mission.

Recommendations 
The SPST recommends that a Functional Breakdown Structure be generated at the beginning of architecture 

studies and comparisons, that the FBS be used to ensure the level comparison of architecture options, that the FBS 
be used to fully identify all needed functions, and that the FBS be used to identify and manage functional integration 
across elements within the architecture. The FBS can also be used to help generate the initial set of \VBS's. The 
space transportation system for the exploration mission can be addressed with the FBS already developed by the 
SPST.
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