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Executive Summary 

CanSat is an international student design-build-launch competition organized by the 

American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics 

(AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the 

National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, 

Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is 

funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat 

competition is to complete remote sensing missions by designing a small autonomous sounding 

rocket payload. The payload designed will follow and perform to a specific set of mission 

requirements for the 2009 competition. The competition encompasses a complete life-cycle of 

one year which includes all phases of design, integration, testing, reviews, and launch.



Table 1: Applicable Documents 

Document Title Description of Document 
2009 CanSat Competition Design Guide [1] Outlines the requirements and missions for the 

competition. 
Practice Standard for Work Breakdown Provides guidance and universal principles for 
Structures (Second Edition) [2] the initial generation, subsequent development, 

and application of the Work Breakdown 
Structure. 

Oberndorf, T. Software Engineering Institute: Website that provides information on open 
Carnegie Mellon. Open Systems. from systems architecture. 
http://www.sei.cmu.edulopensystems/faq.html 
[3]
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1 Introduction 
1.1 Objective 

CanSat is a unique space design competition because it allows teams to actually 

implement their designs through construction and competition. Sponsored by the AIAA and the 

AAS, the annual CanSat competition features a remote sensing theme for the 2009 competition 

year. Teams of up to ten students have the mission of designing and building a CanSat that is 

launched and deployed from about 900 meters altitude and autonomously navigates to a 

predefined landing coordinates. In order to meet these requirements, the team is responsible for 

designing, constructing, and testing' structures, mechanisms, communications devices, and 

automated control devices. 

1.2 Background Information 

The CanSat is literally what its name implies; a satellite the size of a soda can. The 

team's mission is to create a small landing module, which fits in an amateur rocket payload bay 

(refer to Figure 12 in the Appendix), measuring 72 mm in diameter and 280 mm in height. The 

CanSat is launched to an apogee of approximately 900 meters, where it is released from the 

rocket payload section (see Figure 1). A ram-air parachute is used to control the decent, and 

upon landing, mechanisms are activated to place the CanSat in its upright position. Our design 

has the CanSat coming to rest on its side, then employing spring loaded arms to rotate the CanSat 

so its top side and solar panels are facing up. During the entire flight, altitude, GPS, and 

housekeeping telemetry will be communicated to the ground station at regular intervals. These 

requirements; descending at a controlled rate, functioning autonomously, and transmitting 

telemetry, make up the CanSat primary mission.
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When the front section tips or, 
nose cone falls off and the cansat 
falls out of the payload section. TI 
cansat parachute now inflates ova 
the caisat. 

Ejection charge separates pa4oad 
nose section from rocket. When 
front section separates from rocket 
the shock chord between them pulls 
the rocket parachute from the 
rocket

Cansat rests on its parachute. 
The nose cone parachute rests on the 
bottom of the cansat

The cansat, nose cone, and rocket 
descend under parachutes 

Figure 1. Concept of Operations for CanSat Deployment [1]. 

The primary mission is successfully completed if all minimal CanSat requirements are 

met. In addition points are next awarded for completing bonus missions. The bonus missions 

include autonomous navigation to a predefined set of coordinates downwind of the launch site, 

additional housekeeping telemetry, landing image, and solar powered system. Our design will 

implement an autonomous navigation system, five additional telemetry data, and solar panels to 

power the CanSat's operation after landing.
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2.1 Systems Engineering Process Planning 

Figure 2 shows the "Systems Engineering 'V' Diagram" for decomposition, definition, 

integration, and recomposition of a system over its entire lifecycle. Figure 2 is used throughout 

the design process to develop verification planning for subsystems of the CanSat. 
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Figure 2. Systems Engineering Decomposition and Integration 'V' [2]. 

2.1.1 Major Products and Results from Process 

The major products and results for the CanSat system are the competition deliverables. 

Table 2 describes the competition deliverables. 

Table 2. CanSat Deliverables for 2009 Competition.

Deliverable Description Deadline 
Master Schedule Gantt chart to be used to track all progress toward January 16, 2009 

completion of CanSat development.  
Preliminary Design A multi-disciplined technical review February 13, 2009 
Review (PDR) (teleconference) to ensure that the system under 

review can proceed into detailed design and can 
meet stated requirements.
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ESMD Space Grant A technical paper prepared for NASA that focuses March 2, 2009 
Systems Engineering on the systems engineering lessons learned by 
Paper participating in the 2009 CanSat competition.  
Hardware Review Review (teleconference or email) of the hardware March 13, 2009 

selection and procurement to ensure successful 
of the CanSat.  

Critical Design A multi-disciplined technical review April 10, 2009 
Review (CDR) (teleconference) to ensure that the system under 

review can proceed into fabrication, integration, 
and testing.  

CanSat (Quality Unit) Completed quality unit for system requirements May 1, 2009 
verification.  

CanSat (Flight Unit) Completed flight unit to be delivered for May 13, 2009 
competition.  

Flight Sounding rocket launch of CanSat in Amarillo, June 13, 2009 
Texas.  

Post Flight Review Assessment of flight operations and remote June 14, 2009 
sensing data collected during mission.

2.1.2 System Constraints 

The CanSat must meet constraints set by the CanSat Competition as outlined in the 

CanSat Competition Design Guide [1] and chosen by the team (refer to Figure 12 in the 

Appendix for the Launch Vehicle Layout). The constraints set by the CanSat Competition Guide 

are much like the constraints that would be given to a design team by a customer, and are non-

negotiable. These constraints are driven by real world conditions, such as payload volume on the 

launch vehicle, power of the launch vehicle, and existing communications infrastructure. 

Constraints chosen by the team are driven by bonus mission objectives outlined by the CanSat 

Competition Design Guide and dictate detailed design choices much more than the baseline 

design. The CanSat mission is admittedly simpler than many NASA missions, primarily because 

it does not travel in space, but the lessons learned from its design are directly applicable. The 

space industry is increasing interested in micro-craft that perform one function at little cost (cost 

being fuel, power, size, money) to the mission. The CanSat mission is a useful abstraction of the 

same problem at much lower risk.
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2.1.3 Verification Planning 

A position on the design team allocated exclusively to make sure that all components of 

the CanSat comply with all constraints, design goals, compatibility requirements, etc. The 

Assembly, Integration and Testing engineer (AI&T) will oversee the manufacture and assembly 

of each component as well as dictate the' order at which the subsystems are integrated into the 

Quality and Flight units. The AT&T position was also created to write and oversee all testing for 

the CanSat from the subsystem level to the master, full system test. It is the job of the AT&T 

engineer to relay test results the appropriate team members and keep track of the status of each 

component in the system. Concurrently, the AT&T engineer also acts as a consultant to each sub-

system team with regard to system compatibility and ease of integration. For instance, if a 

design idea performs a task appropriately but integrates poorly with the CanSat, the AI&T 

engineer will use their knowledge of the full system architecture to suggest a superior interface 

for the sub-system with the rest of the CanSat. 

2.2 Requirements Analysis and Validation 

2.2.1 System Requirements 

Table 3 is a verification matrix that outlines the Master Requirements (MR) for the 

competition. The first column of Table 3 shows the unique requirement identification (i.e MR-

1). The second column is a description of the requirement. The third column describes the 

rationale of the requirement. The fourth column details the priority of the requirement, or the 

impact that the requirement has on the system. The fifth column shows the "parents" or higher 

level requirements that the requirement is derived from. The sixth column shows the "children" 

or lower level requirements that have been derived from the stated requirement. The last column 

shows the Verification Method (\TM) of the requirement (i.e. I - Inspection, T - Test, A - 

Analysis, and D - Demonstration; for a detailed explanation of these methods refer to Table 24 

in the Appendix).
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Table 3. Master Requirements (MR) for CanSat. 

ID Requirement Rationale Priority Parents Children VM 

MR- Launch Vehicle
SSD-02, EPS- 

CanSat shall not exceed 600g mass* High --- 04, DCS-02, I 
01 Constraint

MS-07 

MR-
CanSat shall not exceed 279mm in length

Launch Vehicle
High --- DCS-03

- 

02 Constraint  

MR- CanSat shall not exceed 72mm in Launch Vehicle
High --- 

03 diameter Constraint  

MR-
The CanSat, while in flight configuration,

Launch Vehicle
SSD01, EPS-

shall have no protrusions that exceed High -- 03, DCS-04, I 
04

dimensions outlined in MR-02, MR-03
Constraint

 MS-06 

MR- Descent rate shall be between 2.2 m/s Mission

- 

05 and 4.6rn/s Requirement  
High --- DCS-09 T,D 

MR- During flight, CanSat shall transmit data at Mission
High --- T,D 

06 0.02Hz Requirement  

During flight, CanSat shall telemeter GPS 
position, number of satellites tracked, 

MR-
altitude by means other than GPS, and

Mission
High ---  

SSD-03, COM-
TD 

07
housekeeping telemetry at rate specified

Requirement 03 

in MR-06  

Upon landing, CanSat shall switch 
MR-

communications to channel 0-000 with a
Mission

High --- T,D 
08

57600 bit/sec data rate
Requirement 

MR- CanSat shall collect science data for 3 Mission
High --- EPS-02 T,D 

09 hours Requirement  

MR- CanSat shall measure ground Mission
High ---

SSD-04, MS-
T,D 

10 temperature via direct contact Requirement  04 

MR- A time stamp shall accompany all Mission
High --- FSW-03 TD 

11 temperature measurements Requirement  

CanSat shall respond to unique telemetry 
MR-

requests with collected science data at
Mission

High --- COM-04 TD 
12

least 10 times an hour
Requirement - 

MR-
The apogee altitude in meters and the

Mission 
landing coordinates shall be provided as High --- SSD-05 T 

13 Requirement 
part of the post flight review  

SSD-06, COM-

MR- The Cansat and GCS shall be less than 05, EPS-09, 

14 $1000 (US)
Cost Limit Low ---

DCS-11,	 MS-

_____ 09



Table-4. Sensor System Design (SSD) Requirements. 

ID Requirement Rationale Priority Parents Children VM 

SSD-
The SSD shall be no more than TBD in size

Internal Space
Medium MR-04 

01 Constraint 

SSD-
The SSD shall have a mass no more than TBD

Mass
Low MR-01 

02 Constraint 

SSD-
The GPS unit shall be accurate to within lOm

Mission
High MR-07 I,T 

03 Requirement 

SSD- The method of determining temperature shall Mission 
04 be accurate within 2 deg Celsius Requirement

High MR-10 T 

SSD-
The altimeter shall be accurate within 4m

Mission
High MR-13 T 

05 Requirement 

SSD-
The SSD shall cost less than TBD Cost Limit Medium MR-14 

Table 5. Communications (Corn) Requirements. 

ID Requirement Rationale Priority Parents Children VM 

CanSat communications shall utilize an 
COM- Aerocomm AC4790-200 transceiver Mission 

01 configured to operate on an assigned Requirement
High ---

channel 

Within ten (10) seconds of landing, the 
CaM- Mission 

CanSat shall configure to meet MR-08, MR- High --- FSW-03 T 
02 Requirement 

12 1 
COM- GPS data shall be communicated in NMEA 

03 formatted data packets
GPS Standard Medium MR-07 FSW-03 D 

All data shall be transferred to and 
COM-

processed by the ground station within five
Mission

Medium MR-12 T,D 
04

seconds of a telemetry request
Requirement 

COM- The communications system shall cost less 

05 than TBD  
Cost Limit Medium MR-14



Table 6. Electrical and Power System (EPS) Requirements. 

ID Requirement Rationale Priority Parents Children VM 

The CanSat shall have external power
- EPS-

control with confirmation of the
Mission

High l,D 
01 Requirement 

cansat power state 

The EPS shall provide power to all 

CanSat systems and components EPS-05, EPS-06, 
EPS-

through launch, descent, and the
Mission Time

High MR-09 EPS-07, EPS-08, I 
02

post landing operation time or as
Requirement

DCS-07 
needed 

EPS- The EPS shall be no more than TBD Internal Space 

03 size Constraint
Low MR-04 I 

EPS- The EPS shall have a mass less than
Mass Constraint Medium MR-01 

04 TBD  

EPS- The EPS shall provide TBD Watts of System
High EPS-02 1,1 

05 power Requirement 

EPS- The EPS shall provide power at TBD System
High EPS-02 1,1 

06 Volts Requirement 

EPS- The EPS shall provide power at TBD System
High EPS-02 I,T 

07 Amps Requirement 

Once on the ground, the EPS shall 
EPS-

provide power by converting the Bonus Mission Medium EPS-02 1,1 
08

energy of sunlight  

EPS-
The EPS shall cost less than TBD Cost Limit Medium MR-14 

09 

Table 7. Flight Software (FSW) Requirements. 

ID Requirement Rationale Priority Parents Children VM 

FSW-
FSW shall control DCS Bonus Mission Medium DCS-01 A,T 

FSW shall operate within FSW-04, 
FSW-

constraints of selected Size and Speed High --- FSW-05, A 
02

microprocessor FSW-06 

FSW- FSW shall comply with all Communication
MR-11,

Medium COM-02,
 03 communications protocols Standards

COM-03 

FSW- FSW shall be programmed in Software/Hardware
Medium FSW-02 I 

04 C Constraint 

FSW shall not exceed 16KB 
FSW

when compiled to machine Hardware Constraint High FSW-02 I,A 
05

code



FSW- Data memory shall not 

06	
exceed 1KB at any point in	 Hardware Constraint 	 High	 FSW-02	 l,A 
time

Table 8. Descent Control System (DCS) Requirements. 

ID Requirement Rationale Priority Parents Children VM 

DCS- CanSat shall autonomously navigate
FSW-01, DCS- 

01 to within lOm of specified GPS Bonus Mission Low
--- A,T 

coordinates 05, DCS06 

DCS- The DCS module shall NOT exceed 1/3 of mass budget High MR-01 I 02 200g 

DCS- The DCS module shall NOT exceed 20% of length 
03 55.8mm in length budget

Medium MR-02 I 

DCS- Deployable structures shall not Launch Vehicle 
04 protrude MR-02, MR-03 while stowed Constraint Medium MR-04 I 

DCS- The DCS shall determine and control
Bonus Mission High DCS- A,T 05 direction of CanSat 01 

DCS- The DCS module shall be released DCS-
06 within 1 meter of the ground Risk Mitigation Medium 01 A,T 

DCS- The DCS shall NOT exceed TBD
Power Constraint High EPS-02 DCS-08 A,T 07 Watts of Power  

DCS- DCS components shall not exceed DCS-
08 TBDVDC Voltage Constraint Medium 07 I,T 

DCS- DCS operation shall not exceed 8
DCS constraint Medium MR-OS A,T 09 minutes  

DCS- The DCS shall sustain 20 g's of shock Launch Vehicle High MS-01 A,T Environment

DCS- The DCS shall cost less than TBD Cost Limit Medium MR-14 I 

Table 9. Mechanical System (MS) Requirements. 

ID Requirement Rationale Priority Parents Children VM 

MS- CanSat shall sustain 20 g's of Launch Vehicle DCS-10, 
Medium --- A 

01 shock Constraint MS-02 

MS- CanSat shall safely carry all Critical to Mission 
02 mission components Life

High MS-01 I 

Mechanical System shall deploy 
Ms-

solar arrays for power Bonus Mission Medium EPS-08 MS-06 D,T 
03

generation  

Mechanical System shall deploy 
Ms-

sensory equipment to collect
Mission

Medium MR-la MS-06 D,T 
04 Requirement 

______ science data I



MS- Mechanical System shall Safety, Risk 
05 jettison DCS module Mitigation

High DCS-06 MS-06 D,T 

MS- CanSat shall achieve a ground Accommodate
MR-04,	 MS- 

06 configuration MS-03
High 03,	 MS-04, D,T 

MS-05, 

Mechanical System and internal 

structure shall have a mass less Mass Constraint Medium MR-01 
07

than TBD  

CanSat shall maintain
Safety, Risk 

reasonable internal Low
 08 Mitigation 

temperature  

Mechanical System and internal 

Structure shall cost less than Cost Limit Medium MR-14 
TBD

2.2.2 Reliability, Maintainability, and Survivability 

Reliability of the flight unit will depend greatly on the testing and evaluation outlined in 

section 2.2.6. Maintainability is not of utmost importance due to the fact that the CanSat only has 

to perform a single flight lasting approximately three hours. Survivability will rely on the design 

changes made after testing. 

2.2.3 Electromagnetic Compatibility 

Strong signal strength and flawless microcontroller performance are crucial to completion 

of the mission. Therefore electromagnetic interference (EMI) has been taken into consideration 

throughout the design process. We replaced our original carbon fiber design with a fiberglass one 

after extensive research on carbon fiber's radio signal blocking properties. 

Upon completion of the quality model extensive EMI testing will be conducted. Initially 

the CanSat will be tested without any artificial interference to ensure that its structure and 

components do not cause any kind of internal interference. Once the basic test is complete 

artificial sources of interference will be introduced. The CanSat will be tested in the lab placed 

inside a rocket similar to that used in the competition. This is to test if the rocket will cause any 

kind of physical interference with the GPS signal and data transmissions from the CanSat. Once 

any physical interference issues are worked out the final test will consist of a rocket launch. This 

is to ensure there are no problems keeping a GPS signal lock while in flight. In previous years 
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many teams had issues with loosing the signal during the high speeds of takeoff. We do not want 

to encounter these problems, therefore testing will be crucial. 

2.2.4 Human Engineering and Safety 

Most safety issues arise from the fact that CanSat construction primarily takes place 

within a machine shop. Saws, drills, and other tools pose potential safety hazards. Several 

precautions have been taken to reduce the risk of bodily injury. Every team member was required 

to take a safety course run by the head of the shop. Members were educated in proper use of 

tools and their safety features such as guards and kill switches. 

At the competition high altitude rockets and CanSats returning to earth are the major 

safety hazard. The Panhandle of Texas Rocket Society (POTROCS) will be on site to supervise 

this aspect of the project. POTROCS is a Tripoli affiliated prefecture #92 with members 

possessing National Association of Rocketry certifications ranging from Level 1 to Level 3. 

2.2.5 Producibiity and Product Support 

Producibility is a major concern when designing the CanSat because it will be 

constructed by students with limiting machining experience. Proper functioning of the flight 

model will rely heavily on producibility. The design uses Common off the Shelf (COTS) 

components whenever possible. This minimizes the need for custom parts reducing both cost 

and assembly time. It also allows the team to do most of the construction themselves and reduces 

outsourcing. 

The CanSat will be extremely supportable. All of the microprocessor coding is done in C 

which most members are familiar with. It Utilizes a slot modular product architecture that allows 

for broken or malfunctioning parts to be quickly and easily replaced. The ultimate goal is to 

make the CanSat supportable enough that if anything breaks at the competition it can be repaired 

onsite with little difficulty. 

2.2.6 Test and Evaluation 

Initial tests will consist of testing individual components in the lab. One of the most 

important component tests will be the ram-air parachute. It will be tested in the Virginia Tech 
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Open-Throat Wind Tunnel to gain a better understanding of its flight characteristics as well as 

tune the Proportional-Integral-Derivative (PID) controller. Once an adequate understanding of 

how each component works is obtained they will be integrated into the quality unit. This unit 

will then be tested in the lab as a single system to ensure that all systems are working together 

properly. 

Upon completion of the system test in the lab EMI testing as described in section 2.2.3 

and drop testing will begin. Initial drop tests will consist of dropping the CanSat from the third 

floor of an indoor atrium and timing it to ensure that the ram air parachute provides the proper 

descent rate. When the results are satisfactory drop tests will be conducted off an eight story 

building on campus. In these higher drops the Descent and Control (DCS) system will be tested. 

It will be programmed to land at specific GPS coordinates. 

After working out the bugs in the drop tests the CanSat will be ready for the rocket test. 

This will simulate the exact circumstances of the competition launch. Every system will be 

tested simultaneously. A successful rocket launch will verify that the CanSat has met its system 

requirements and is ready for competition flight. 

2.2.7 Integrated Diagnostics and Transportability 

The "housekeeping telemetry" bonus mission will take care of integrated diagnostics. It 

will consist of sensors placed throughout the CanSat to monitor its overall health. The sensors 

will measure temperature of various parts, voltages, forces exerted upon the can, and anything 

else essential to the survival of the CanSat. 

Transportability will not be a major issue with the CanSat. It is small and compact in the 

first place and will be transported folded up in its launch configuration. This allows the outer 

shell to protect the internal components from damage. The team will be driving to the 

competition so the risk of damage during airline travel will be avoided.
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2.3 Functional Analysis and Allocation 

Functional Analysis and Allocation is an essential initial step in the design and synthesis 

of a complex system such as the CanSat. Before decomposing a system into subsystems, the 

functions of the original system as a whole must be understood. A valuable preliminary tool is to 

consider the system as a "black box" and outline only the inputs and outputs. This technique is 

shown in Figure 3 for the CanSat project. By starting with a completely blank concept of the 

system, the team is better able to pursue all viable ideas after functional analysis has concluded. 

The next logical step in this method is to decompose the "black box" into several main functions. 

At this stage, it is still important to avoid limiting the final design with the functions; however, 

predetermined constraints may be incorporated. To achieve higher detail for complex systems, 

this method could be repeated for each function introduced in Figure 3 until a sufficient 

description has been synthesized. With this method, the CanSat functions are organized by their 

relation to the overall system's external interactions, but not necessarily to the system's Concept 

of Operations. Furthermore, functions that do not have a direct impact on inputs and outputs but 

are still critical (such as structural support) will not arise in this functional analysis method. 

Therefore, it is beneficial to use multiple techniques to ensure the system has been analyzed from 

all perspectives.
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Figure 3: Functional Analysis: Input/Output Method.
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This is not the only method by which a function can be decomposed, however. Another 

technique is to look at the system in terms of time. For this method, it is more beneficial to start 

with the system already divided into major blocks; so it is necessary to already have a Concept of 

Operations defined. This step should also use large, general divisions and not attempt to solve 

the problems, but merely describe them in a time flow manner. The second step of this 

technique is to decompose each of the primary functions into their own Functional Flow Block 

Diagrams (FFBD). This process can be iterated until the precision of the functions has reached a 

satisfactory level. Figure 4 shows the entire CanSat top level FFBD as well as the first 

decomposition of function 6.0 (Generate/Supply long term power). For this function, one 

decomposition is sufficient and the next stage, functional allocation, can begin. 

Top Level 

Second Level - 5.0 GenerateiSupply Long Tenn Power 

6.3

Store excess 
solar power 
(Electrical) 

(5.0) Ref 6.1	 6.2 6.5	 (7O)Ref. 

Upright CanSat Deploy Solar	 Generate and ,:a Distribute power 	 Collect Temp. 
chassis Panels on pound	 monitor output to systems	 and astern Data 

(Ivlechanical) (Mechanical)	 (Electrical) (Electrical)	 (Electrical) 

6.4 

Supplement solar 
with stored 
(Electrical)

Figure 4: Functional Analysis: Time Flow Block Method 

Once the functions are generated and organized using both the FFBD and Input/Output 

methods, the team now has sufficient knowledge to effectively allocate the functions and sub-

functions into sub-systems. By using both methods sub-system divisions can be created more 
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effectively by the consideration of both the physical proximity (one function relies on another for 

input) and time proximity (one function cannot start until the other has completed). For the 

CanSat project, the effects of both methods are evident. For the Electrical major sub-system, 

functions were allocated based on their reliance on the generation and storage systems for power 

(thus all functions that have an input of power are allocated to or interface with the electrical 

sub-system). For the minor sub-system of long-term energy generation, however, the sub-

functions were allocated by time since each had to wait for or relied on the previous to complete. 

Figure 5 outlines the system divisions for the CanSat project. 

System Level:	 CanSat 

Major Sub- 
I 

rilechanical	 Descent Control 	 Electrical System Level: Structural 

Minor Sub- Autonomous Au 
System Level:	 Upright Landing 	 Control	 IRommumtcon1 F-I Component H  

Protection 

	

Parachute	 Speed Control	 Data Aquisistion P-I 
Component

Release Support 

	

I  Panel	 Parachute	 Power 
Distribution and

	

HDeployment	 Deployment	 Generation 

Temperature
Sensor

Deployment 

Figure 5: System Divisions and Allocation 

2.4 Synthesis 
2.4.1 Commercial-Off-The-Shelf (COTS) vs. Developmental Items (DI) 

COTS items are defined as either software or hardware, that are ready-made and 

available for sale, lease, or license to the general public. COTS items are advantageous to any 

design project, especially CanSat, due to the financial savings they provide from general testing 

and maintenance of the product. The only testing needed with a COTS item is the interaction 

between the COTS product and the other systems within the design. The COTS item's 

functionality has already been solidified through the vendor's development of the product and
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thus does not require testing concerning its operation. However, the major disadvantage to any 

COTS item is its limiting nature to the design. This is especially true concerning future changes 

of a design. To change a design, a team is now constrained and must change around the COTS 

item which can present a conflict to the overall efficiency and perhaps completion of the design. 

COTS items reduce the overall system development cost and development time of a 

design project. Eliminating the need for developing new systems that could require many trial 

and errors further helps reduce the possibility of failure in the project. This is because a team 

can better prepare for potential difficulties in a design be catching them earlier before 

competition. Because of these advantageous characteristics, this year's CanSat team has taken 

certain key components necessary for the completion of mission objectives, and researched 

certain COTS items to be utilized for them. This is especially true concerning the parachute and 

servo needed for the autonomous landing bonus mission this year's team has decided to 

undertake. Because of the team's inexperience all together concerning autonomous landing, the 

more COTS items used for the descent control system leads to a more simplified and thus a more 

approachable design. 

Though there are many advantages to the use of COTS items, disadvantages can also 

arise. A reliance on COTS products can lead to problems with the overall systems integration of 

the design. This problem can lead to a dependence on third party vendors to replace certain 

components. This could be disadvantageous because the need for components adds to the cost, 

but time, counteracting the immediate advantages COTS items presented. This proved to be a 

major problem with the teams from the past two years. For example, because of an inefficient 

time allotted to the integration of systems, the team from two years ago (2006-2007 CanSat 

Team) was left with the need to pay for a hundred dollar overnight shipping bill for a camera 

only costing ten dollars to the competition site. To reduce this dependence, a balancing in the 

use of COTS items and DIs are essential not only to provide for a more simple design but also 

prevent such dependence and see the full advantages that COTS products incorporate. A 

comparison of COTS items used between the three teams from the past three years can be seen in 

tables three through five. Table 10, Table 11, and Table 12 lists the team's use of COTS items 

and DIs over the past three years of participation in the competition.

17



Table 10. COTS vs. DI (2006-2007 Competition). 

COTS DI 
Servos Release Mechanism	 . 
Microcontroller Ram-air Parachute 
Structural Components (Outer Shell) 	 • Camera Controller 
Digital Cameras 
Batteries 
Arduino (Open - Source) Software 
Communications

Table 11. COTS vs. DI (2007-2008 Competition). 

COTS	 DI 
Servos	 Release Mechanism 
Microcontroller	 Drilling Tool (Bonus Mission) 
Parachute	 ..-. --	 Structural Components (Outer Shell) 
Cameras	 Software 
Batteries 
Communications

Table 12. COTS vs. DI (2008-2009 Competition). 

COTS	 DI 
Servo	 Module Release Mechanism 
Microcontroller	 Partition Bracket 
Arduino (Open - Source) Software	 Payload Partitions 
Batteries	 Descent Control Software (PID Controller) 
Communications	 .-'---	 Solar Panel Doors Release Mechanism	 I 
Remote Sensing Sensors 	 Ram-air Parachute 

Solar Panels (Bonus Mission) 

2.4.2 Open Systems Architecture 

The Open System Joint Task Force (OSJTF) defines an open system architecture as "a 

system that implements sufficient open specifications for interfaces, services, and supporting 

formats to enable properly engineered components to be utilized across a wide range of systems 

with minimal changes, to interoperate with other components on local and remote systems, and 

to interact with users in a style that facilitates portability" [3]. This also implies that open system 
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architecture is essentially any layered structure or configuration in which a system can be 

distributed, so that each layer can be implemented without affecting the implementation of other 

layers. Furthermore, any changes needed to the system can be performed at any given layer 

within the structure. The CanSat's design for the upcoming competition incorporates an overall 

modular design providing for an open systems architecture and thus lead to a more efficient 

integration of each system within the CanSat. 

The modular design developed by the mechanical team facilitates partitioning the CanSat 

into three sections with a central spinal column between each partitioning. The three sections 

allow for easy movement and placement of electronic parts exhibiting an open system 

architecture within the CanSat. This central spinal column allows space for wires providing a 

distribution of power to the various subsystems as needed. Because of this spinal column, each 

subsystem can be freely moved to any part of the CanSat and still be provided with power. 

Essentially, the CanSat structure does not dictate where each electronic part has to go, giving 

freedom to the design and easy maintenance to each part. This modular design can best be seen 

in Figure 6.

11 
Figure 6. CanSat Modular Design. 

2.4.3 Reuse 

A major advantage in any design project is experience. Experience provides a team with 

essential information on components that work, but more importantly, components that do not 

work. The advantage to reusing certain components in a design is the development time. Having 

participated as a team for the past two years in the CanSat competition provides us with this 

opportunity.
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Due to this year's goal of implementing an autonomous landing system, the team is not 

able to reuse certain important components that have proved to be essential in previous year's 

designs. However, one physical component that could be reused is the ram air parachute due to 

its stability in descent. The use of servos is another component that has proved to be essential in 

the design and will be implemented in the CanSat's autonomous landing. Reusing components 

are not limited to physical components however because certain ideas can be reused. One 

important idea that is being reused is the position the CanSat will be in upon landing. A 

sideways configuration proved to be most efficient and has thus been implemented for this year's 

design. 

2.5 Systems Analysis and Control 
2.5.1 Trade Studies 

The first trade study performed was for the Global Positioning System (GPS) receivers. 

The functional divisions involved in the trade study were the Electrical and Computer 

Engineering (ECE) Team and the Descent Control System (DCS) Team. The GPS receiver is 

used to determine the position and direction of the CanSat from the landing zone. The selection 

matrix shown in Table 13 was used to determine the GPS receiver for the CanSat system. 

Table 13. Selection Matrix for GPS Receivers

Concept 

(Reference)  

Parallax GPS MN 1010 GPS 

Selection Criteria Weight Rating Weighted Score Rating Weighted Score 

COTS 15% 3 0.45 3 0.45 

Accuracy 25% 3 0.75 4 1 

Size 20% 2 0.4 4 0.8 

Mass 15% 3 1	 0.45 4 1	 0.6 

Power Consumption 15% 3 0.45 3 0.45 

NMEA Standard 10% 3 0.3 3 0.3 

Total Score 2.8 

2 

No

3.6 

1 

I	 Develop 

Rank 

Continue?
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From Table 13, it is clear that the MN1O1O GPS receiver has a better performance than 

the Parallax GPS receiver. The only criteria where the Parallax GPS receiver has better 

performance than the MN 1010 GPS receiver is the team's previous experience. 

The Parallax GPS receiver has been used for the past two years by the CanSat Team and 

has had limited success. In 2007, the Parallax GPS receiver performed well during testing but 

was not proven to work in competition due to a failure with the communications system. In 

2008, the Parallax GPS receiver performed as expected during testing but had a failure before 

prelaunch due to poor wiring and soldering. Therefore, the team has selected the MN 1010 GPS 

receiver for further study and testing. 

The next trade study performed was to determine a method for measuring the ground 

temperature via direct contact. The functional division directly responsible for conducting this 

trade study was the ECE Team. Table 14 shows the selection matrix used to determine the 

ground temperature method. From Table 14, it is clear that the thermocouple method is the 

preferred method for determining the ground temperature via direct contact. 

Table 14. Selection Matrix for Ground Temperature Sensor. 

Concept  

(Reference)  

Thermocouple Infrared Temperature Sensor Thermistor 

Selection Criteria Weight Rating Weighted Score Rating Weighted Score Rating Weighted Score 

COTS 15% 3 0.45 3 0.45 3 0.45 

Low Cost 10% 3 0.3 1 0.1 3 0.3 

Low Mass 10% 4 0.4 2 0.2 3 0.3 

Small Volume 15% 4 0.6 3 0.45 2 0.3 

Durability 20% 4 0.8 3 0.6 3 0.6 

All Inclusive 10% 3 0.3 3 0.3 2 0.2 

Accuracy 20% 3 0.6 3 0.6 2 0.4 

Total Score 3.45 

1 

Develop

2.7 

3 

No

2.55 

2 

I	 No 

Rank 

Continue?

The next trade study was to determine a close-range sensor method for the CanSat. The 

close range sensor is used to determine when the CanSat is near the ground. The functional 

divisions involved in the trade study were the ECE Team and the DCS Team. Table 15 is the 
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selection matrix used to determine which method the CanSat would use for determining when it 

is close to the ground.

Table 15. Selection Matrix for Close-Range Method. 

Concept  

(Reference)  

Ultrasonic Infrared Triangulation Based 

Selection Criteria Weight Rating Weighted Score Rating Weighted Score Rating Weighted Score 

COTS 10% 3 0.3 3 0.3 2 0.2 

Large Range 25% 3 0.75 3 0.75 2 0.5 

Low Mass 20% 3 0.6 3 0.6 3 0.6 

Small Volume 15% 3 0.45 3 1	 0.45 3 0.45 

Experience 15% 3 1	 0.45 2 0.3 2 0.3 

Low Cost 10% 3 0.3 2 0.2 2 0.2 

Needs Reference Distance 5% 3 0.15 3 0.15 2 0.1 

Total Score 3 

1 

Develop

2.75 

2 

No

2.35 

3 

No 

Rank 

Continue?

Table 15 determined that both ultrasonic and infrared methods have good performance 

and that both should be further researched and tested to determine the best option for a close-

range sensor. Thus, the team selected both the ultrasonic and infrared sensors for further study. 

The next trade study performed was to establish CanSat's method for altitude 

determination. The functional divisions involved in the trade study were the ECE Team and the 

DCS Team. Table 16 is the selection matrix for the altitude determination method.
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Table 16. Selection Matrix for Altitude Determination Method. 

Concept  

(Reference)  

Digital Barometric Pressure 

Sensor

Mechanical Pressure 
 Sensor Laser Altimeter 

Selection 
Criteria Weight Rating Weighted Score Rating Weighted Score Rating

Weighted 

Score 

COTS 15% 3 0.45 3 0,45 2 0.3 

Low Power 20% 3 0.6 3 0.6 2 0.4 

Low Mass 20% 4 0.8 2 0.4 2 0.4 

Small Volume 15% 3 0.45 2 0.3 2 0.3 

Experience 15% 4 0.6 3 0.45 3 0.45 

Low Cost 10% 3 0.3 2 0.2 2 0.2 

Needs 

Calibration 5% 3 0.15 3 0.15 3 0.15 

Total 

Score 3.35 

1 

Develop

2.55 

2 

No

2.2 

3 

No 

Rank 

Continue?

Table 16 shows that the altitude determination method with the best performance is the 

barometric pressure sensor. The 2007 and 2008 both CanSat teams used a barometric pressure 

sensor for determing altitude. In 2007, the barometric pressure sensor performed well during 

testing but was not proven to work in competition due to a failure with the communications 

system. In 2008, the barometric pressure sensor worked perfectly in the competition and 

transmitted accurate atmospheric pressure data back to the ground station for analysis that was 

presented in the post-flight debrief. Due to last year's success and the results from the selection 

matrix, the team has selected the barometric pressure sensor for determining altitude during the 

descent of the CanSat. 

The ECE Team the performed the trade studies for the power system. Both the 2007 and 

2008 CanSat Teams used one lithium ion battery to power all the systems on the CanSat. The 

2007 and 2008 CanSats required to be powered for at least one hour. The 2009 CanSat will 

require more than three hours of power. Table 17 shows the selection matrix used to determine 

a power system that would be able to support a three hour mission.
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Table 17. Selection Matrix for Power System. 

Concept  

(Reference)  

Solar Panels with 

Lithium Polymer Nickel Metal Solar Panel with Lithium Polymer 

Battery Hydride Battery Solar Panels UltraCap Battery 

Selection Weighted Weighted Weighted Weighted Weighted 

Criteria Weight Rating Score Rating Score Rating Score Rating Score Rating Score 

COTS 10% 4 0.4 3 0.3 3 0.3 2 0.2 4 0.4 

No Additional 
Mechanisms 

Required 10% 4 0.4 4 0.4 3 0.3 3 0.3 3 0.3 

Low Mass 15% 3 0.45 2 0.3 3 0.45 2 0.3 3 0.45 

Experience 5% 3 0.15 3 0.15 2 0.1 1 0.05 2 0.1 

Large Voltage 

Range 15% 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45 

Large Current 

Range 20% 3 0.6 2 0.4 2 0.4 2 0.4 3 0.6 

Large Power 
Capacity 15% 3 0.45 2 0.3 2 0.3 2 0.3 3 0.45 

Solar 

Powered 10% 1 1	 0.1 1	 1 1	 0.1 5 1	 0.5 4 1	 0.4 4 0.4 

Total 
Score 3 2.4 2.8 2.4 3.15 

Rank 2 4 3 5 1 

Continue? No No No No I	 Develop

Table 18 determined that the solar panel and lithium ion battery combination performed 

the best. Additionally, a selection matrix specific to the solar panels performance was performed 

by the ECE and Mechanical Engineering (ME) Teams to determine the optimization of the 

power system. Table 18 shows the selection matrix for the solar panels. Table 18 determined 

that the best optimization for the power system was to use rigid panels.
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Table 18. Selection Matrix for Solar Panels. 

Concept  

a) Flexible Panel b) Rigid Panel
c) Rigid Supported by 

 Flexible 

Selection Criteria Weight lRating
Weighted 

Score Rating
Weighted 

Score Rating Weighted Score 

Weight 20% 3 0.6 5 1 4 0.8 

Mounting Flexibility 20% 2 0.4 3 0.6 3 0.6 

Durability 10% 5 0.5 2 0.2 2 0.2 

Complexity of Mount 10% 4 0.4 4 0.4 2 0.2 

Volume / Surface Area 
Required 40% 2 0.8 4 1.6 3 1.2 

Total 
Score 2.7 

3 

No

3.8 

1 

Develop

3 

2 

No 

Rank 

Continue? 

The DCS Team performed the trade studies for the descent control hardware. The main 

system driver for the descent control hardware was the ability to navigate the CanSat to a 

specified set of landing coordinates. Table 19 shows the selection matrix used to determine the 

descent control hardware for the CanSat. 

Table 19: Selection Matrix for Descent Control Hardware. 

Criteria/Options Ram-air 
parachute

Deployable 
Wings

Ram-air 
with a 
Fan  

Round 
Parachute

Paraglide 
with a Fan 

COTS Product Yes No No Yes No 

Low Mass Yes No No Yes No 

Experience Yes No No Yes No 

No Propulsion Yes Yes No Yes No 

Controls direction 

of CanSat  

Yes Yes Yes No Yes

Table 19 shows that the best performance for descent control hardware that will control 

the direction of the CanSat is the ram-air parachute. In 2007, the CanSat team attempted 

controlling the direction of the CanSat with a ram-air parachute and the design showed 

promising results. In 2008, the CanSat team was more cautious and decided to use a standard 
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round parachute and focus on the primary requirements of the CanSat design. Thus, the team has 

selected the ram-air parachute as their primary descent control hardware and the round parachute 

as a backup. 

The last trade study performed by the ME and DCS teams was to determine the DCS 

actuator. Table 20 describes the options and criteria used to determine the actuator with the best 

performance.

Table 20: Selection Matrix for CanSat Actuator. 

Metal Geared Servo Linear Actuators Nylon Geared Servo 

Selection 
Criteria

Weight Rating Weighted 
Score

Rating Weighted 
Score

Rating Weighted 
Score 

COTS Item 25% 3 0.75 2 0.5 3 0.75 

Strength 30% 3 0.9 3 0.9 1 0.3 

Low Mass 20% 2 0.4 1 0.2 3 0.6 

Complexity 15% 3 0.45 1 0.15 3 0.45 

Volume 10% 2 0.2 1 0.1 1 0.1 

Total 

Score

2.7 1.85 2.2 

Rank 1 3 2 

Continue? Develop No No

Table 20 confirms that the metal geared servo has the best performance of the three 

options. Metal geared servos come in a wide variety of sizes, torque, masses, and brands. The 

team will be required to purchase and test multiple types so that the metal geared servo is 

optimized. 

Additional selection matrices performed were Table 21 for the material selection and 

Table 22 for the up-righting system.
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Table 21. Material Selection Matrix for CanSat Interior and Exterior. 

Carbon Fiber 610 Fiberglass 6061 Al Alloy Wood 

Selection Criteria Rating Score Rating Score Rating Score Rating Score 

Strength 30% 5 1.50 5 1.50 4 1.20 2 0.60 

Price 15% 2 0.30 3 0.45 4 0.60 5 0.75 

Workability 10% 3 0.30 3 0.30 4 0.40 5 0.50 

Experience 5% 3 0.15 5 0.25 4 0.20 4 0.20 

Fatigue Resistance 20% 5 1.00 5 1.00 2 0.40 1 0.20 

EM safe 20% 1 0.20 4 0.80 3 0.60 4 0.80 

Total Score 3.45 4.30 3.40 3.05 

Rank 2 1 3 4 

Continue? No Develop No No 

Table 22. Selection Matrix for Up-righting System. 

Weighting Spring 

loaded 

hinge

Three legged 

up righting

Two legged 

up righting 

Rating Score Rating Score Rating Score 

Up righting force 35% 2 0.7 3 1.05 3 1.05 

Ability to correct 

inverted landing

35% 2 0.7 4 1.40 3 1.05 

Weight 20% 4 0.8 1 0.2 3 0.6 

Ease of construction 10% 4 0.4 1 0.1 3 0.3 

Total 100% 2.60 2.75 3. 

Develop No No Yes

2.5.2 Budget Management 

The Virginia Tech CanSat Team received funding for the 2008 - 2009 academic year from 

BAE Systems, Inc. in Manassas, Virginia. A proposal for $3,000 to BAE Systems, Inc. was 

completed in September and was accepted in October. The total expenses for the 2008 CanSat 

team and the projected expenses for the 2009 CanSat team are described on pages 28 and 29.
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2008 Summary: 

Flight Unit: 

Mechanical/Structural Subsystem: $104.87 

Electrical & Computing: $420.86 

Power: $35.90 

Recovery: $15.95 

Subtotal: $577.58 

Ground Station and Testing: 

Ground Station Equipment: 	 $284.80 

Testing:	 $131.00 

Subtotal:	 $415.80 

Travel Costs for Competition: 

Hotel:	 $840.00 

Vehicle Rental & Gas: 	 $660.00 

Subtotal:	 $1,500.00 

Total Cost of CanSat Project: 	 $2,493.38 

2009 Projections: 

Flight Unit: 

Mechanical/Structural Subsystem: $100.00 

Electrical & Computing: $450.00 

Power: $150.00 

Recovery: $200.00 

Subtotal: $900.00

Ground Station and Testing: 

Ground Station Equipment: 	 $250.00 

Backup Supplies:	 $150.00
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Testing Equipment: 	 $200.00 

Subtotal:	 .	 $600.00 

Travel Costs for Competition: 

Hotel:	 $840.00 

Vehicle Rental & Gas:	 $660.00 

Subtotal:	 $1,500.00 

Projected Cost of CanSat Project: $3,000.00 

2.5.3 Data Management 

The data management for the CanSat is formatted by competition requirements. 
"Requests for science data packets shall be generated by the competition science Ground Control 

Station (GCS)" (CanSat Competition, 2008). The commands shall be addressed for specific 
CanSats via the CanSat identification (ID) number. The science data packet request command 
shall be an ASCII text string formatted as shown in Table 23. 

Table 23: Science Data Packet. 

*Number of characters 

The following list describes the abbreviations and acronyms used in Table 23. 

1. SPcharacter and start of package (stands for Science Package), (cc)* 
2. <ID> - unique CanSat ID (##)** 
3. T-5 1h  character (stands for time), (c) 
4. <TIME> - time tag, (hhmmss)*** 
5. N - 12th character (stands for North), (c) 
6. <LAT> - latitude, (##.####) 
7. W - 20th character (stands for North), (c) 
8. <LON> - longitude, (###.####) 
9. H - 291h character (stands for Height), (c) 
10. <ALT> - altitude in metes, (###.##) 
11. C - 34 1h character (stands for Celsius), (c) 
12. <TEMP> - temperature, (##.###) 
13. U - 40th character (stands for start of housekeeping telemetry), (c) 
14. ; - data package terminated 

* "c" stands for a letter character
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** "#" stands for a number (0 - 9) 

* * * "h" stands for hour, "m" stands for minute, and "s" stands for second (all numbers) 

Figure 7 illustrates the method in which multiple CanSat teams will be able to transmit 

science data packets during the mission. The Mission Data Relay Configuration consists of a 

weather balloon that has a data relay attached to it, CanSats from all the teams, the ground 

stations for all the teams, and the central ground station.

ReDvLI* Setuo 
TX pm comocted b Rx pm 

Data Relay 
Cel RadioSetup 

SvteinID OxOO 
cinneisot a

Groiivi S1lmn Rntho Se Chennet OxOQ  
Syeni ID 00 
Channel Set 0 
Cflermet DoUG 

	

C )	
/Cansat 01

() 

Cansat 02	
C8OtTOI	 j	 teem 2 Ground Statan 

Figure 7: Mission Data Relay Configuration. 

Figure 8 shows the mission timeline for the science data collection. After landing, the 

CanSats will transmit science data for one hour to the relay weather balloon which will relay data 

to the team ground stations. After one hour has passed on the ground, CanSats will be able to 

transmit the optional landing image data for one hour. After two hours have passed on the 

ground, teams will transmit the science data packet as described in science data collection (2) 

part of Figure 8.
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Figure 8: Mission Data Collection Timeline.

31



2.5.4 SE Master Schedule 

The SE Master Schedule is a required deliverable of the CanSat Competition. For clarity, 

the SE Master Schedule is organized by functional division (i.e. Systems, Descent Control 

System, Electrical and Power System, and Mechanical System). Refer to the Appendix to view 

the Gantt charts of the SE Master Schedule. 

3 Transitioning Critical Technologies 

3.1 Mechanical Engineering Subsystem 

3.1.1 Criteria 

The CanSat project requires the utilization of many items that are either not readily 

available or are not optimum in terms of cost, weight, or performance. Therefore, the designs 

and technologies to implement these functions must be developed or modified. From the 

mechanical side, this usually focuses on the modification of existing technologies or products to 

satisfy the requirements. The main concerns in this case are that the design is feasible to 

fabricate and that the new product does not exceed or dramatically change (in which case the 

results of the modification would be unpredictable) the loading on the original part. From the 

structural perspective, this process may center more on the selection of the optimum material as 

it is very unlikely that anything resembling the required structure is being produced. In this case, 

the primary concerns are the mechanical performance of the technology as well as its interactions 

with other systems. An excellent illustration of the importance of analyzing the effects across 

systems occurred with the structural team this year. Initially, carbon fiber was chosen as the best 

combination of weight, cost, and strength. However, upon further analysis (and thanks to some 

members with remote control plane experience) it was realized that extensive use of carbon fiber 

could shield or significantly reduce the range of the radio system. With this new information, the 

team resumed research into other materials and selected G 10 fiberglass due to its excellent 

mechanical performance and no significant radio disruption. 

3.1.2 Activities and Risks 

To describe the Critical Technology Transitioning methodology the team implemented, I 

will present our process in terms of the mechanical team's selection and development of the



release for the solar panel doors. Initially, the team explored the use of a COTS item (such as a 

positive lock pin) to simplify the process. Although several promising products were found, 

when the team tried to create designs around them it was determined that they required a 

disproportionate amount of volume and weight of the can. Furthermore, all products would have 

required significant modifications to the current designs (and thus necessitate more integration 

time). From this, the team decided to focus on new technology that would work in unison with 

the existing bulkheads, mounts, and the solar panels themselves. From here, we determined the 

major potential risks: unit jamming, releasing prematurely, and interfering with other 

components. With these in mind, the team turned to choosing a COTS component to be the 

center of the design and selected a solenoid due to its very low mass and reasonable size. While 

the team did not have extensive experience with solenoids, we did know from our previous 

year's competition that even small shear forces on the plunger could result in the solenoid 

jamming. Since our goal was to minimize this risk, we designed the mechanical aspect of the 

release to support the plunger and increase the horizontal displacement of the release pin while 

keeping the solenoid in its optimum force range as shown in Figure 9. 

Lever Arm

t 

Lever Arm

Pivot/Support

Plunger 

Door Pin

(When retracted

doors open)

Level of

Solar Panels 

Figure 9. Mechanical Critical Technology Transitioning - Solar Door Release Mechanism. 

While this mitigates the risk of the release jamming to an acceptable level, it does nothing 

to alleviate the second major risk that is for the unit to release prematurely. To address this, we 

first determined that the most likely way for this unwanted release to occur was by a force or 

vibration that would cause the plunger to drop. Although testing is required to confirm our 

plans, we currently think that the shear forces in the door pin will create a sufficient amount of
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friction to keep the release locked. If this is not the case, the team will add a plunger restoring 

spring to ensure that the system stays locked until desired. Finally, this design addresses the 

space and mass requirements we set so that it does not interfere with other components. One of 

the key features of this design, the supported lever arm, not only improves the mechanical 

durability of this design, but it also allows the team to place the solenoid below the solar arrays 

and firmly attached to the can central structure and thus reduce interference and improve 

strength. With the critical technologies of the solar release now designed and transitioned, we 

can now focus on fabrication, integration, and testing of this component. 

3.2 Electrical and Computing Engineering (ECE) Subsystem 
3.2.1 Criteria 

This CanSat electrical system is required to interface with many different components. In 

order to collect and transmit the required data the minimal system had to include GPS, altimeter, 

processor, transceiver, and temperature sensor. However, because we chose to pursue both an 

autonomous landing and solar power missions the electrical system was expanded to include 

components needed to collect additional data and add additional outputs to control the 

autonomous landing system. Most of the system is made up of COTS components including the 

processor, altimeters, GPS and temperature sensor. 

3.2.2 Activities 

Due to the nature of the power system required to implement the autonomous landing 

and the solar power missions a COTS power system was not available and one had to be 

developed (Refer to Figure 13 in the Appendix). The power system requires a battery, to provide 

power during the autonomous landing, and solar panels to provide power while on the ground. 

While the battery needed was a COTS lithium polymer battery with an output of 7.2V, a 

comparable solar panel with a similar output was not available off the shelf that would fit within 

the mechanical structure of the CanSat. Because a COTS solar panel was not available one ad to 

be developed from COTS materials. By using small rigid solar panels, shown in Figure 10, and 

combining them in series we were able to achieve the needed voltage and current levels to supply 

power to the electrical system while on the ground.
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Figure 10: Solar Panel System. 

Another aspect of the power system needed to address the issue of different electrical 

system components requiring different voltage levels to power the devices. Some devices 

required a nominal voltage of 3V and others required a nominal voltage of 5V. By placing the 

limit of these two voltage levels, which are the most common for small electronics, we avoided 

having to use a different voltage regulator for each component. With this design only two 

voltage regulators are required one to regulate the 3V and one to regulate the 5V. 

3.2.3 Risks 

There are inherent risks associated with not using an entirely COTS power system. 

While most of the components of the power and electrical systems are COTS items the power 

system includes the solar panel design which is not. The risk of not using a COTS solar panel 

was outweighed by the customizability of using the individual panels in a way that custom fits 

within our system. In order to minimize the risk of the solar panel not working or not 

performing to the standards we have set, extensive testing will be done on the custom solar panel 

to ensure proper function. 

3.3 Descent Control Subsystem (DCS) 
3.3.1 Criteria 

The DCS is a system meant to provide controlled descent for the CanSat while 

autonomously guiding it to a predetermined target location. To complete this overall objective 

the DCS uses a combination of sensors and actuators to control the system. Because of the 

complex nature of the small autonomous system, the DCS team developed stringent criteria that 

will ensure the success of the system. By keeping the overall objective of the DCS in mind, the 

DCS team developed the three main criterions that will guide the design and development of the 
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DCS. The DCS must first be small enough to fit the CanSat payload and the two inch module 

allocated by the mechanical team to the DCS. Secondly, the DCS must minimize power usage. 

The last criterion is the DCS must function without propulsion. 

3.3.2 Activities 

Taking the above DCS criteria into consideration we were able to decide upon certain 

sensors and actuators that would best suit the CañSat. To minimize volume, power usage, and 

make the DCS independent of propulsion the team decided on using a metal geared servo. The 

servo will control deployable arms that will be attached to the ram air and thus control direction 

of the CanSat. We also decided on the sensors needed to provide the necessary data to the DCS 

to complete the fully controlled descent while still meeting the above criteria. We decided to use 

a barometric sensor for our altimeter while deciding to use a GPS to determine CanSat location. 

Because the competition requires telemetry data to be provided during descent we can minimize 

power usage by using barometric sensor and GPS for both DCS and telemetry functions. A 

sensor specific to DCS is the ultrasonic sensor for close ground detection from about 20 ft. from 

the ground. This sensor is meant to provide extra data in order to properly dislodge the DCS 

module before ground impact to avoid the ram air from being entangled with the CanSat and 

preventing base missions of the CanSat from being accomplished. 

3.3.3 Risks 

There are always inherit risks with any system being developed. One of the biggest risks 

related to the DCS is the unpredictability of the ram-air parachute. The ram air's full 

deployment is essential to the success of controlling descent rate, which is a requirement of the 

CanSat. Having one cell of the ram air not inflate could cause the loss of the rigid wing needed 

to control such descent and thus cause the CanSat to descend to the ground at an uncontrollable 

rate and would result in the loss of the CanSat. With the addition of turning during descent due 

to autonomous control, descent rate can be even more unpredictable and thus fall out of the 

allowable requirement range provided by the competition. 

Risks are further presented with the additional mass and volume contributed by the DCS. 

These extra factors place further constraints on base features of the CanSat and thus could cause 

a better probability of failure concerning the base missions of the CanSat.
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4 Integration of Systems Engineering Effort 

4.1 Expectation of Reviews and Frequency of Reviews 

The CanSat competition has three reviews; a Preliminary Design Review (PDR), a 

Hardware Review (HWR), and a Critical Design Review (CDR). These allow the team to inform 

the judges about what we have been working on and what direction our design is moving in. The 

preliminary design review's purpose is to demonstrate that the team understands the rules, and is 

able to meet the mission requirements within the budget, time, and risk constraints. The PDR 

took place in February and the judges agreed that our design is sound and ready for further 

development. The hardware review is a more informal review that takes place in March to prove 

to the team's mentor that hardware selection and procurement is leading the team to the 

successful completion of the CanSat. The critical design review is a multi-disciplinary technical 

review that takes place in May and allows the team to show the judges that we have a solid final 

design that is ready for production. 

4.2 Organization and Integration of Design Disciplines 

The design of the CanSat was organized by sub-system, as outlined in section 2.3, and 

illustrated in Figure 3, to facilitate greater efficiency in the design phase of the project and a 

better product through specialization of tasks. This team and system break-down worked as 

intended and the outcome was a strong design that should work well and is expected to be 

competitive in the long run. In the short run, this organization breakdown creates an integration 

task more involved, but one that will ultimately improve the quality of the CanSat. 

It was with this foreknowledge that the CanSat was designed and the result was a 

modular structure that favored component integration. The design allows the team to assemble 

and test sub-system components off the main structure and then mate them quickly and easily to 

the main structure. As discussed earlier, a major facet of the design is an electrical spine that 

runs up the center of the CanSat allowing components to be attached and immediately access 

power wherever they are mounted. In addition, panels in the payload module of the CanSat that 

act as mounting plates for electrical and mechanical components can be slid in and out of

37



mounting brackets on either end of the module so components can be mounted to the plate with 

plenty of room for tools and hands, and then simply slid into place and anchored on the main 

structure. 

Software integration was also a strong consideration when choosing components for the 

computing sub-system. Software integration will be handled by the software engineers. 

Hardware was chosen to assist with software integration and components were chosen that 

already had native control libraries and were capable of running higher level code such as C and 

C++. Hardware integration will be fairly simple and overseen by the AI&T engineer who will 

direct wire routing and placement inside the payload module - yet another reason for the central 

electrical spine. 

5 Implementation Tasks 
5.1 Electrical and Computing Subsystem 
5.1.1 Proof of Concept 

The electrical and power system had several design goals. These goals were split up into 

electrical system goals and power system goals. The main electrical system goal was to collect 

all of the science data required to be transmitted back to the ground station and to use this data to 

control the autonomous descent system. The power system goal was to integrate a solar panel 

system into the mechanical design of the CanSat and provide continuous, reliable power to the 

electrical system. In order to design an overall system that would accomplish these goals the 

design was dispersed within the team so each goal could be focused on individually. The 

electrical system was designed by the electrical sub-team in conjunction with the descent control 

team in order to ensure that all the necessary sensors were included in the design to collect and 

transmit the data required for the science mission and control the autonomous landing system. 

The power system was designed by the electrical sub-team in conjunction with a subset of the 

mechanical team. Together they were able to design a solar power system that would fulfill the 

power needs of the electrical components and physically fit within the CanSat. 

5.1.2 Electrical System Software Development 

The electrical system is heavily dependent on software. The software to control the 

processor, sensors and transceiver was developed in the C language. By modifying and using 
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open source code provided by the component manufacturers we were able to communicate with 

all of our sensors and translate their data outputs into the information that we are required to 

transmit back to the ground station. By using these provided sections of code rather than 

developing an original code to accomplish the same task from scratch we are able to ensure that 

the code correctly communicates with the different components. The entire program will first be 

tested in sections, to ensure that each component individually is functioning correctly. Once we 

confirm that each section is working individually we will begin to test the program and the 

electronic system as a whole. 

5.1.3 Electrical Power System Development 

Once a couple of design concepts were developed for the solar power system some 

materials were ordered so we could do concept testing on them. One of the designs was to use 

sheets thin-film solar panels rolled up within the CanSat that would deploy upon landing. 

However, when we got the material and began testing it, it was found that the sheets were not 

pliable enough to be rolled tight enough to fit inside the CanSat. Then the second design idea of 

using multiple rigid solar panels and mounting them inside the CanSat was tested. A conceptual 

model was built to test this structure and it was found to be a viable concept. 

5.1.4 Electrical and Power System Testing 

The electrical and power system is composed of many individual sensors and other 

components; because of this it is very important to compartmentalize the testing procedure of 

this system. Each sensor and component will be tested individually before being integrated into 

the CanSat to ensure proper function. This testing of each component before it is integrated will 

greatly reduce and simplify the troubleshooting of the system once it is entirely installed and 

tested as a whole. Another design implementation that will greatly reduce the time and effort 

required in testing is the use of connectors between many of the components rather than 

soldering the components directly to the connective wires. This use of connectors will make it 

simple to remove a component for further individual testing or for replacement. 

After the concept of rigid panels was proven to be the most viable option the design was 

further developed. The panels will be assembled together and mounted within the structure of 
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the CanSat. The mechanical sub-team is developing a mechanism to control the opening of the 

solar panel bay doors. This mechanical system will be tested to ensure proper opening of the 

solar panel bay. Additional testing will be done on the solar panels themselves to test their 

construction and power output. Once the power output of the panels is confirmed the solar 

panels will be connected to the rest of the power system and the whole system will be tested 

under multiple temperature and sunlight conditions. It is important to test the power and 

electrical system in multiple temperature and sunlight environments because the high 

temperatures reached in the summer could have an effect on the electrical components and the 

amount of sunlight reaching the solar panels can greatly affect their power output. 

5.2 Mechanical Subsystem 

The implementation of each component of the CanSat can be classified into three 

categories: purchase, make, or reuse. For illustration purposes, I will continue with the product 

introduced in the Mechanical section of the Transitioning of Critical Technologies (Section 3), 

the Solar Door Release, we see that two of the implementation types are utilized. The solenoid is 

a purchased COTS item while the mount and lever system is a unique fabricated item. While 

each of these presents distinctive challenges to employ successfully, they both have the same 

basic goal: to reproduce the functions of our idealized design as accurately as possible. To 

ensure that this is the case the COTS solenoid needs to be tested to confirm that it meets the 

manufacturer's specifications (or at least is sufficient for pulling the door pin). For the fabricated 

unit similar tests must be conducted, however they are conducted in several phases. First, the 

team assembles the unit in a test rig to ensure the concept works (and this is repeated under 

various conditions to determine reliability). After we complete these tests successfully or make 

necessary changes, we assemble the component in the final unit and test again to ensure that 

there are no conflicts with the other systems in the can. 

The critical step in the implementation stage is designing the tests to accurately simulate 

(or are) the real conditions that the CanSat may experience. If the tests are not correct 

representations, then our confidence in the probability of success we found from the tests is low 

and the data we collected meaningless. For the Solar Deployment system, the primary potential 

causes of failure were determined to be landing on the door, vibrations, and the acceleration at
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launch, apogee, and landing. Therefore, once the test unit is created, the team will focus on these 

situations. To ensure realism in the tests, the unit will be dropped for the tests analyzing the 

effects of door landings or shocks and launched in a rocket (or have launch vibrations simulated 

if possible) to test vibrations. By utilizing tests such as these, the team ensures that the result we 

obtain is robust and that we can be confident in the performance of the component. 

The realization of the design is of course the goal of the vast majority of projects, and 

standing at the front end of a project can seem like a daunting task. With the proper preparation 

and organization however, the implementation of the countless hours of work put into the project 

up to this point is quite straight forward. It is important to point out that while, typically up to 

this point project teams are divided into subsystem task groups, all task groups need to reconvene 

into a single unit, with their specialized perspectives on the implementation, for the overall 

process to run smoothly. For the CanSat project, the perspective on implementation brought to 

the table by the mechanical engineering group primarily concerns the verification of the physical 

integration of all the subsystem components. 

During integration, at the direction of the AI&T engineer, the ME group oversaw the 

assembly of all system components onto the main CanSat structure. At implementation the ME 

group, again at the direction of the AI&T engineer, is responsible for the verification of not only 

the mechanical tasks the CanSat must perform, but for the verification of its structural ability to 

transport and protect all the components (mechanical and otherwise) during operation. 

Tests at this stage no longer evaluate the viability of a technology but the performance of 

the final design. Drop tests no longer verify the selection of a material or the strength of a part, 

but verify the ability of all the subsystems to work together control descent. Drop tests verify the 

ability of the structure survive protect the components that are now integrated onto it rather than 

the ballast that was used before. Vibration tests verify the torques on fasteners are adequate to 

resist backing out. Additionally, processes are now tested vigorously to affirm that components 

perform as designed and do not interfere with other subsystems that may be operating 

concurrently and that all contingencies are accounted for. Even routine electrical tests are of 

concern to the ME group because the tests are being performed while mated to the structure - 

which could alter the results from the sub-system verification tests done before integration.
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5.3 Descent Control Subsystem 

5.3.1 Proof of Concept 

The focus of the DCS design was the completion of the autonomous landing bonus 

objective. To achieve the best and most appropriate design, the DCS team worked together to 

create a design through collaboration and can be seen in Figure 11. To control AoA and the 

descent of the CanSat, the design introduced the use of ram-air control arms (RCA) to translate 

the servo arm movement over a longer area to better control the ram air. To prevent unwanted 

movement in the RCAs (past 90), a partition was fitted to the RCA's connection with the servo 

arm. Therefore the only movement experienced by the RCAs is the upward movement provided 

by the upward force of the ram air, and once deployed they remain stiff to provide the needed 

ram air control. To insure design quality for the DCS, a proof of concept was developed and can 

be seen in Figure 11.

Figure 11. DCS Strategy Overview Diagram. 

5.3.2 Development and Testing 

The second stage of the design process for the DCS will be testing of the proof of 

concept. Through appropriate testing we can verify functionality of the separate parts making up 

the DCS and better understand design failure points. Identifying failure points within the design 

allows the DCS team to identify any challenges with construction or components which may 

need to be replaced.
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It is important to develop and test two key components within the DCS which is the 

software and hardware of the system. Testing of these two components will allow the team to 

verify the system meets the CanSat competition requirements for the autonomous bonus mission 

and verify the design concept. To best do this the DCS must undergo five tests concerning many 

aspects of the entire system. 

5.3.2.1 Controlled Environment Drop Tests 

The first of many tests is meant to test four hardware aspects of the DCS in a controlled 

no wind environment. 

The first DCS hardware component being tested is the deployment of the ram air control 

arms (RCAs). Testing of this component will give the team a better picture of the friction the 

arms may experience upon deployment from the CanSat and the upward force the arms will 

experience. This test will verify the connection strength and the structural integrity of the RCAs. 

The second and third aspect of the DCS tested will be the determination of the RCA 

lengths which is directly related to testing of the ram air. Determining the best combination of 

ram air to DCS connection can provide for the best control over the CanSat upon descent. Each 

RCA have 0.5m spaced out holes along the entire length of the arm in order to test different 

positions the chord lines of the ram air can be tied off to. This test will help verify the best 

length of the RCA and where the ram air will be connected to the RCAs. 

The last and perhaps one of the most important aspects being tested and analyzed is the 

vertical velocity, horizontal velocity, and the angle of attack. Understanding these three aspects 

can better prepare integration of the software with the hardware concerning the DCS. This test 

will verify that the CanSat will have a vertical descent velocity between 2.4 mIs - 4.6 m/s, a 

requirement set by the CanSat competition. The test will further verify that we have a horizontal 

velocity of around 0.5 m/s, a value determined by the DCS team. In completion, the test will 

also verify the angle of attacks the CanSat will experience upon drop and help the team better 

understand the movement of the CanSat under certain angle of attacks.
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5.3.2.2 Variable Wind Drop Tests 

The variable wind drop test will be performed outside with the presents of wind to provide a 

more real time scenario. The test will verify all the results from the controlled environment drop 

test with the presents of wind. 

5.3.2.3 Wind Tunnel Tests 

The wind tunnel test in a more hardware aspect of the DCS is meant to test the servos 

capabilities and verify its functionality under real scenario conditions. From a software 

perspective, the wind tunnel test will allow the DCS team to perform PB) tuning and determine 

angular rates for control. This test will verify the overshoot and steady state error the CanSat 

will experience and thus provide values the team can use for competition. 

5.3.2.4 Remote Control Drop Tests 

Further along in testing and once determining positioning of the ram air, remote controlled 

testing will take place. This will verify the controllability of the ram air and further test the 

capability of ram air aerodynamics. 

5.3.2.5 Rocket Launch Tests 

To verify the entire DCS system before competition, a rocket launch test and deployment of 

the CanSat will take place. This will test the entire autonomous system under real conditions and 

verify the results of previous testing. 

6 Additional Systems Engineering Activities 

Working on a set budget of one thousand dollars makes design to cost and value 

engineering plays a large role in CanSat development. It has been essential to minimize cost 

wherever possible in order to be able to fund more expensive aspects of the launch unit. One of 

the largest design changes that have been made in order to save money is altering the internal 

structure design. It initially depended upon machined aluminum base plates to hold the CanSat 

together. It would have cost over five hundred and fifty dollars to have a machine shop produce 
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the plates. This was unacceptable since that was over half of the budget. Therefore we opted for 

a simpler fiberglass base plate design that can be built by the team in house for less than twenty 

dollars. By eliminating the need for skilled labor we were able to drastically reduce construction 

costs. Use of common of the shelf components whenever possible has played a critical role in the 

value and design to cost engineering efforts. 

Long-Lead items were also minimized by keeping as many construction aspects as 

possible in house. By not relying on custom out of house components the team is able to remain 

in complete control of when and how components are produced. The few long-lead items that 

were encountered (mostly shipping times for certain components) were accounted for by 

ordering early in the design process as soon as it was established that they would be needed. 

This allowed plenty of shipping time while the team finalized the design. This minimized the 

time spent by the team waiting on parts. 

7 Conclusion 

The CanSat project is a complex systems engineering project which spans many technical 

disciplines. Through the application of system engineering tools; however, a complete solution 

to the 2009 mission has been developed. Currently, the team is on schedule to meet all of the 

competition requirements necessary for a successful mission. 

8 APPENDIX
Table 24. Verification Method Definitions [1].

Verification Method Definition 

Analysis Verification method that utilizes evaluation of data 

generated by accepted analytical techniques or 

simulations under defined conditions to show the item 
will meet the specified requirements. 

Demonstration Verification method that utilizes a qualitative exhibition 

of function performance, usually accomplished with no 
or minimal instrumentation. 

Inspection Verification method that utilizes an examination of the 

item against applicable documentation to confirm 
compliance with requirements. 

Test Verification method utilizing operation of all or part of 

the item under controlled conditions, either real or 
simulated, to determine that the quantitative design or 

performance requirements have been met.
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