Space Shuttle Program-Tin Whisker Mitigation

Labor Hour Rough Order of Magnitude (ROM) Estimate
Resources:

NASA Orbiter Avionics and Electrical Systems, Orbiter Sustaining Engineering Office

USA Space Systems Engineering, GN&C Hardware Subsystem Area Manager

http://nepp.nasa.gov/whisker

NASA Shuttle Logistics Depot - Tin Whisker Video
Background

- In March 2006, a Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly
- Internal inspection of the box revealed tin whisker growth visible without magnification

- Space Shuttle Program implemented tin whisker remediation strategy following discovery of tin whiskers in Orbiter hardware
- Complex investigation and planning involved cooperation among many disciplines and geographical locations

- Whiskers grew from pure tin plated circuit card retainers, not from electrical components
 - Intent of tin plating in original design was for corrosion protection of Beryllium-Copper (BeCu) retainers
Flight Control System (FCS) avionics box with cover removed

Background Continued

- NASA formed multi-disciplinary Tiger Team to investigate extent of findings and develop recommendations
 1. Detailed investigation of Flight Controls hardware from same vendor (12 per vehicle)
 2. Broad investigation of 100+ other high-criticality Orbiter hardware
- Functional diversity: design engineering, logistics, test engineering, materials & processes (M&P), ground operations, research
- Geographical and corporate diversity: multiple NASA centers (JSC/KSC/GSFC), prime and major subcontractor sites, hardware vendor and supplier

- Flight Control System (FCS) avionics boxes:
 ▪ 52 total quantity across fleet = 12 per vehicle plus spares
 ▪ All from same manufacturer, using same card retainer design
- Sampled 15 of the 52 boxes across four different types
- Tin whiskers only growing from card retainers; up to 18 mm
- Some loose tin whiskers present
- Newer built boxes (~1989) from Endeavour’s initial assembly generally contain longer and more dense tin whisker growth
- One box found to have no tin plating on card guides
Flight Control System Remediation Plan

- Avionics Lab: Remove tin plating and tin whiskers
 - Expedite procurement of non-plated card retainer assemblies from vendor
 - Cycle boxes through lab
 - Incoming testing, disassembly / card removal
 - Assess gross order-of-magnitude quantity of loose whiskers
 - Clean chassis and circuit cards
 - Cards pass magnified inspection
 - Conformal coating touch-up via brush coatings as needed
 - Reassemble with non-plated card retainers
 - Full acceptance testing at box level: vibration, thermal, functional
<table>
<thead>
<tr>
<th>FCS Tin Whisker Mitigation Effort ROM Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
</tr>
<tr>
<td>Contractor Operations, Scheduling & Project Management</td>
</tr>
<tr>
<td>Contractor Logistics</td>
</tr>
<tr>
<td>Contractor Technicians</td>
</tr>
<tr>
<td>Contractor Quality & Safety</td>
</tr>
<tr>
<td>Contractor Engineering</td>
</tr>
<tr>
<td>ROM Total Labor Hours</td>
</tr>
</tbody>
</table>
Title: Space Shuttle Program-Tin Whisker Mitigation

Subtitle: Labor Hour Rough Order of Magnitude (ROM) Estimate

Author: Kurt Kessel

Dates Covered: March 2006 - April 2007; May 2009

Abstract:
Space Shuttle Program implemented tin whisker remediation strategy following discovery of tin whiskers in Orbiter hardware.

Subject Terms:
Lead-Free, Pb-Free, Tin Whisker, Shuttle

Security Classification:
U

Limitation of Abstract:
UU

Number of Pages:
7

Telephone Number:
321-867-8480