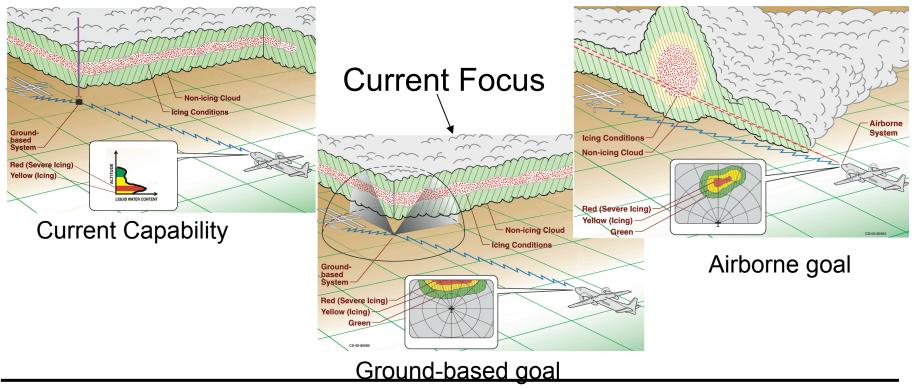
National Aeronautics and Space Administration

NASA Icing Remote Sensing

Andy Reehorst (GRC)

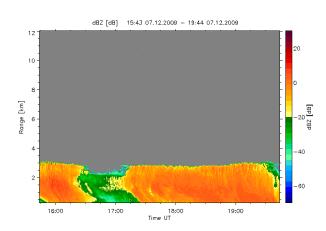

Topics

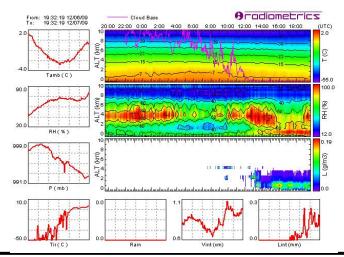
- 1. Goals
- 2. Past Achievements
- 3. Current Status
- 4. Planned Testing

1. Goals

Develop technologies that will enable terminal area sensing and airborne sensing. Implement through incremental development starting at ground-based vertical staring.

www.nasa.gov


2. Past Achievements



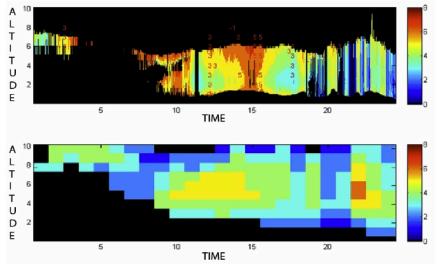
2.1 Vertical pointing Icing R-S

- NASA Icing Remote Sensing System (NIRSS) Technologies
 - Radar
 - Provides cloud boundaries
 - Multi-frequency Microwave Radiometer
 - Provides Temperature Profile
 - Provides Integrated Water Content
 - Ceilometer
 - Refines cloud base boundary

2.2 NIRSS algorithm

Simplified NIRSS algorithm:

- Radar provides cloud profile
- Radiometer provides temperature profile
- Radiometer provides integrated liquid water path
- Distribute liquid water over cloud extent for LWC
- Derive droplet size
 - Reflectivity is a function of both cloud droplet size and liquid water content
 - Can do this because our water content and radar reflectivity are independent measurements
- Use temperature, water content, droplet size to determine icing hazard



2.3 NIRSS Assessment

Recent comparison of NIRSS and CIP relative to PIREPS
Deced upon 2 years of NIRSS data (operating at CDC)

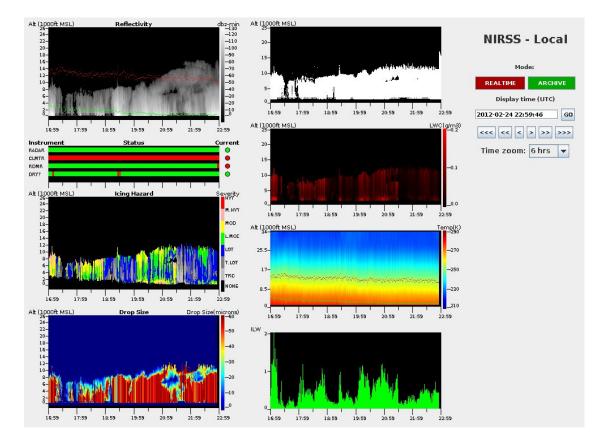
	N vs. P	C vs. P
PODy	0.78	0.90
POD _n	0.71	0.29

NIRSS (left) and CIP (right) Probability of Detection (POD) (positive and negative) compared to PIREPS.

Altitude/Time plots of NIRSS (top), PiReps (top, red numbers), and CIP (bottom)

Note the larger warning band for CIP

"NIRSS detected almost 80% of positive PIREPs and over 70% of negative PIREPs in a relatively smaller warning volume. CIP detected slightly more positive PIREPs than NIRSS but did fairly poor in detecting negative PIREPs." From: Johnston, C.J., et al, "Comparison of In-Situ, Model and Ground-Based Inflight Icing Severity", NASA /TM-2011-217141, Dec 2011.


3. Current Status

3.1 Ground-based Systems

Revised NIRSS software/display

Algorithms and display modified to output an equivalent cloud droplet size based on calculated LWC and reflectivity.

Narrow-beam Radiometer Development

NASA Narrow-beam Multi-frequency Microwave Radiometer (NNMMR)

Developed by Radiometrics, Inc. of Boulder, CO under an SBIR and Aviation Safety Program funding

OBJECTIVE

- Beam widths matched with NOAA's NEXRAD weather radars.
- Using recently derived algorithms from Dr. Ulrich Lohnert from the University of Cologne, can measure integrated liquid water.
- Elevation and azimuth scanning capability provides potential for terminal area icing detection and warning.

ACCOMPLISHMENTS

- System fabrication completed summer 2009
- Field test assessment performed cooperatively with NCAR at CSU radar site in Greeley CO summer 2009.
- Operational assessment located at NASA GRC, 2010-11
- Positioner and beam alignment mod, 2012
- · System reinstalled at NASA GRC for winter checkout

TECHNICAL SPECIFICATIONS

Freq/Channels:21 in Ka-band (22-30 GHz)
2 in W-band (89V, 89H GHz)Antenna Beam:1°

3.2 Radiosonde Instrumentation

- Desired to have an alternative to aircraft for in-situ calibration/ validation
- Anasphere, Inc, of Bozeman, MT developed SLWC sonde with SBIR and Aviation Safety Program funding.
- Phase I version tested by NCAR/ NOAA/Radiometrics team in Feb/ Mar 2012
- Current version development completed in November 2012
 - Hardware redesign
 - Preliminary calibration
 - Delivered 40 to NASA
- NASA procuring InterMet sonde system

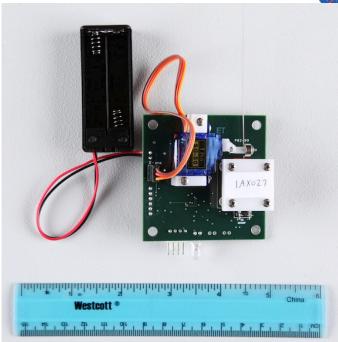
4. Planned Testing

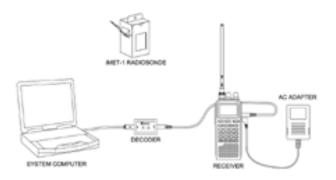
- NASA is defining a new flight campaign to support lcing Remote Sensing.
- NASA's Icing Remote Sensing activity needs detailed, accurate in-situ data for development/ calibration/validation of ground-based systems.
- Our Remote Sensing needs can be satisfied with a limited duration flight test with the NASA Twin Otter
- Targeting Winter of 2014-15
- Specific dates and flight hours YTBD

Twin Otter Test Scope

- Plans include operations from and in the area of Cleveland Hopkins airport (CLE).
 - NASA's GRC is located at CLE
 - CLE has an updated (dual polarization) NEXRAD system
- Instrumentation needs satisfied by AIRS II-type equipage.
 - Expect an updated suite of similar instruments
 - Require: LWC, droplet sizing spectra , temperature, humidity, 4-D position/time
- Flight maneuvers will likely include:
 - terminal area transects (constant heading/altitude overhead passes at multiple altitudes)
 - climbing or descending spirals
 - missed approach (low altitude) passes.

Currently planned primary Twin Otter instruments


PMS OAP-2DGrey Particle Sizing 15-960 µm PMS FSSP-100 Particle Sizing 3-45 µm Liquid Water Content **SEA WCM** Edgetech Vigilanet 137 Dewpoint Rosemount 871FA2188 Ice Detector Aero Service Pitot/Static w/ Rosemount Transducer Air Speed/ Altitude Rosemount OAT Air Temperature Garmin 430 Position **SEA M300** Data System



Radiosonde System

- Anasphere SLWC Sonde Sensor (40 in-hand)
- InterMet iMet-3150 Ground Station
- InterMet iMet-1-RSB Sondes (20 ordered)

