OPTICAL DIAGNOSTICS FOR HIGH-TEMPERATURE THERMAL BARRIER COATINGS

Jeffrey I. Eldridge, NASA Glenn Research Center, Cleveland, OH

Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.

Optical Diagnostics for High-Temperature Thermal Barrier Coatings

J.I. Eldridge NASA Glenn Research Center

2009 MRS Spring Meeting Symposium J: High-Temperature Photonic Structures San Francisco, CA April 15, 2009

Contributors

NASA Glenn

- Chuck Spuckler
- Tim Bencic
- Dennis Fox
- Mike Cuy
- Dongming Zhu
- Robert Miller
- Joy Buehler

Cleveland State University

• Rich Martin

Penn State University

- Doug Wolfe
- Jogender Singh

Thermal Barrier Coatings (TBCs) Provide Thermal Protection for Gas Turbine Engine Components

- Ceramic oxide TBCs, e.g., yttria-stabilized zirconia, can increase engine temperatures, reduce cooling, lower emission, and improve engine efficiency and reliability
- TBCs provide thermal protection by sustaining a thermal gradient between the TBC surface and underlying metal component.

Motivation

• Need to monitor the performance and health of TBCs so that the thermal protection provided by TBCs is not compromised.

Approach

- Develop "diagnostically friendly" thermal barrier coatings (TBCs) by incorporating rare-earth-doped luminescent sublayers without sacrificing TBC performance. Produce multifunctional TBCs that integrate the following functions:
 - Thermal protection
 - Effective radiation barrier
 - Luminescence-based erosion and delamination indication
 - Luminescence-based temperature monitoring.

TBC Translucency Provides Window for Optical Diagnostics Light Transmission Through YSZ

1 mm thick 13.5 YSZ single crystal (transparent) 135 μm thick Plasma-sprayed 8YSZ (translucent)

Backlit by overhead projector.

TBC Microstructure Plasma-Spray vs. EB-PVD

Plasma-Spray Microstructure

Electron Beam – Physical Vapor Deposition (EB-PVD) Microstructure

Highly Scattering

Weakly Scattering

Effect of Wavelength on Luminescence Attenuation EB-PVD vs. Plasma-Sprayed TBC

TBC Transmittance Plasma-Sprayed vs. EB-PVD

Erosion Detection

Coating Design for Erosion-Indicating TBCs

Coating design

Erosion monitoring by luminescence detected from exposed YSZ:Eu and YSZ:Tb sublayers

Erosion Depth Indication Using Eu- and Tb-Doped YSZ Luminescent Sublayers Produced by EB-PVD

coating surface, UV illumination

coating surface, white light illumination

Erosion produced by alumina particle (50 μ m) alumina particle jet through 5 mm diameter nozzle

Luminescence reveals location and depth of coating erosion."

Cross-Section of Erosion Crater in Erosion-Indicating TBC

Coatings deposited at Penn State

Cross-section, white light illumination

Cross-section, UV illumination

Delamination Monitoring

- Er³⁺ produces strong NIR luminescence which is much less strongly scattered by TBC than visible wavelengths ⇒ much better depth probing.
- Yb³⁺ absorbs 980 nm excitation and excites luminescence in Er³⁺ by energy transfer.
- Er³⁺ produces upconversion luminescence at 562 nm with near-zero background for strong delamination contrast.

NIR and Upconversion Luminescence Imaging

Upconversion Luminescence Images During Interrupted Furnace Cycling for EB-PVD TBC with YSZ:Er(1%),Yb(3%) Base Layer

Change in Upconversion Luminescence Intensity with Furnace Cycling to TBC Failure

Effect of Er + Yb Co-Doped Base Layer on TBC Cyclic Life

Plasma-Sprayed TBCs

Coatings deposited at NASA GRC

NIR Luminescence Time-Lapse Imaging of Unstable Delamination of Plasma-Sprayed TBC

0 min 40 cycles 50 cycles

7 hr time lapse

Remote Temperature Monitoring

Coating Design for Temperature-Indicating TBCs

substrate

Depth-Probing Temperature Measurements From Buried Eu-doped YSZ Sublayer

Radiation Barrier

Apply concept of constructive multilayer interference of reflected beams

Fixed Layer Thickness High Reflectance Coatings

High Reflectance Stack

H = high index of refraction(2.1 for YSZ) $L = \text{low index of refraction}(1.62 \text{ for Al}_2\text{O}_3)$

Coatings deposited at Penn State

Coating Design

400 layers Alternating layers of high refractive index material YSZ (n = 2.1) and low refractive index material Al_2O_3 (n = 1.62)

 Al_2O_3 layer thickness = 100 nm YSZ layer thickness = 400 nm

Total thickness ~100 µm

Design & prediction by Chuck Spuckler

Multilayer TBC Increases IR Reflectance

27

Variable Layer Thickness High Reflectance Coatings

High Reflectance Stack

H = high index of refraction(2.1 for YSZ)

 $L = \text{low index of refraction}(1.62 \text{ for } \text{Al}_2\text{O}_3)$

Design & prediction by Chuck Spuckler

Coating Design

Alternating layers of high refractive index material 262 layers YSZ (n = 2.1) and low refractive index material Al_2O_3 (n = 1.62) First layer next to substrate n = 2.187.86 nm thick each succeeding n = 2.1 layer increased by 4.88 nm Second layer from substrate n = 1.62115 nm thick each succeeding n = 1.62 layer increased by 5.0 nm 722.38 nm thick Second last layer n = 2.1765 nm thick Last layer n = 1.62Thickness of all n = 2.1 layer 53 μ m Thickness of all n = 1.62 layer 57.6 μ m Total thickness 111 µm

Increasing TBC Reflectance By Multilayer Design

EB-PVD TBCs

Variable spacing Al2O3/7YSZ multilayers Fixed spacing Al2O3/7YSZ multilayers

Standard 7YSZ

Increased reflectance due to increased scattering, not constructive interference.

Radiation Barrier Lessons Learned

- Multilayer design does increase reflectivity, but much of reflectivity gain is due to increased scattering.
- Non-optical quality multilayers result in underperformance with respect to predicted reflectivity from constructive interference.
- Preferred approach would be to increase reflectivity by engineered porosity.
 - Effects of porosity not sensitive to angle of incidence or coating erosion.

Conclusions

- Multifunctional TBCs incorporating luminescent sublayers can provide:
 - Thermal protection
 - Erosion indication by luminescence from exposed sublayers.
 - Delamination indication by reflectance-enhanced luminescence.
 - Temperature monitoring by luminescence decay time measurements from subsurface layers.
- Multilayer design makes TBC a more effective radiation barrier.
 - A better, more robust approach may be using engineered porosity.

Acknowledgment

• Funding by the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project.