TECHNOLOGY INNOVATION OF POWER TRANSMISSION GEARING IN AVIATION

by

Dr. Robert F. Handschuh
Army Research Laboratory, NASA Glenn Research Center
Cleveland, Ohio, USA

Overview

An overview of rotary wing evolution and innovations over the last 20 years was presented. This overview is provided from a drive system perspective. Examples of technology innovations that have changed and advanced drive systems of rotary wing vehicles will be provided. These innovations include full 6-axis CNC gear manufacture, face gear development to aerospace standards, health and usage monitoring, and gear geometry and bearing improvements. Also, an overview of current state-of-the-art activities being conducted at NASA Glenn is presented with a short look to fixed and rotary wing aircraft and systems needed for the future.
Technology Innovation of Power Transmission Gearing in Aviation

Dr. Robert F. Handschuh
U. S. Army Research Laboratory
Vehicle Technology Directorate
NASA Glenn Research Center
Cleveland, Ohio, U.S.A.
Drive Systems:

The Necessary Evil
or they can’t succeed
without us!
Topics

• Fixed and rotating wing aircraft evolution / innovation
 – Types of aircraft
 – Engines
 – Drive system
• Technology innovation - drive system perspective
• Current NASA / GRC research
 – Structures and Materials Division
 – Tribology & Mechanical Components Branch
• Future, what is next ?????
• Questions?
Materials and Structures Division

Propulsion and Power System Components

<table>
<thead>
<tr>
<th>Aeroshells</th>
<th>Surface mobility systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS; Cooled strs.</td>
<td>Nozzles</td>
</tr>
<tr>
<td>Cryogenic tanks</td>
<td>In-space & on-surface modules</td>
</tr>
<tr>
<td>Nacelles</td>
<td>Rotor discs and systems</td>
</tr>
<tr>
<td>Combustors</td>
<td>Turbine vanes</td>
</tr>
<tr>
<td>Engine fan system</td>
<td>Energy absorbing systems</td>
</tr>
<tr>
<td>Mechanisms</td>
<td>Mechanical drive systems</td>
</tr>
<tr>
<td>Oil-Free engines</td>
<td>Human health systems</td>
</tr>
<tr>
<td>Injectors</td>
<td>Thrusters</td>
</tr>
<tr>
<td>High-power motors</td>
<td>Bearings and flywheels</td>
</tr>
<tr>
<td>Space lubricants</td>
<td>Solid oxide fuel cells, batteries</td>
</tr>
<tr>
<td>Protective Coatings</td>
<td>High temp. and cryogenic seals</td>
</tr>
<tr>
<td>Sensors</td>
<td>Porous membranes</td>
</tr>
<tr>
<td>Thermoelectrics</td>
<td>BN nanotubes</td>
</tr>
</tbody>
</table>

Core R&T Capabilities

<table>
<thead>
<tr>
<th>Probabilistic methods</th>
<th>Matl. and strl. Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical power transfer</td>
<td>Health prognostics</td>
</tr>
<tr>
<td>Impact dynamics</td>
<td>Blast mechanics</td>
</tr>
<tr>
<td>Structural mechanics</td>
<td>Structural dynamics</td>
</tr>
<tr>
<td>Material modeling</td>
<td>Joining technology</td>
</tr>
<tr>
<td>Material characterization</td>
<td>Failure and damage growth</td>
</tr>
<tr>
<td>Functional materials</td>
<td>Processing technologies</td>
</tr>
<tr>
<td>Metallic alloys</td>
<td>Shape memory alloys</td>
</tr>
<tr>
<td>Computational materials</td>
<td>Protective coatings</td>
</tr>
<tr>
<td>Surface science</td>
<td>Extreme environment effects</td>
</tr>
<tr>
<td>Materials science</td>
<td>High temperature chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design technology</th>
<th>Experimental methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement technology</td>
<td>Aeroelasticity</td>
</tr>
<tr>
<td>Durability and life</td>
<td>Fatigue and fracture</td>
</tr>
<tr>
<td>High temp. and cryo seals</td>
<td>Ceramic materials</td>
</tr>
<tr>
<td>Multifunctional Materials</td>
<td>Lubricant chemistry</td>
</tr>
<tr>
<td>Friction and wear</td>
<td></td>
</tr>
</tbody>
</table>
• Airplane / rotorcraft evolution

• Engines (piston to gas turbine to …..)

• Drive systems
Civil Aircraft Evolution

- Douglas DC-3
- Boeing 707
- Boeing 737, 747
Civil Aircraft Evolution

- Airbus 380
- Boeing 787
Helicopter Evolution

• Piston engine RC’s (1950’s)
• Turbo – shaft powered RC’s (Huey, OH-58…)
• Multi-engine RC’s CH-46, UH-60,…
• Civilian use for medivac, border patrol, law enforcement, television news, sightseeing…….
Helicopter Evolution
Engine Innovation

- Piston engines (radial)
- Turbo-jet engine
- Turbo-fan / turbo-shaft engines
Engine Innovation

- High By-pass Turbofan engines
- Geared turbo-fan…
Drive “System” Evolution

- Higher speed engines
- Multi-engine main drive systems
- Advanced concepts
 - Non-traditional arrangements & gear types
 - Split torque – multipath
 - Advanced manufacture
 - Advanced analysis
 - Advanced testing
Example Rotorcraft Transmission
Drive System Stress Analysis

- Beam models
- AGMA, ISO, DIN and other methods
- FEA – assumed loading, single gear mesh
- FEA – tooth contact, multi-component contact, …..

Leads to better understanding of what is found in practice.
Drive System Vibration / Noise

- Simple dynamic models – rigid body – lumped mass
- Profile modification effects, helical effects,…
- More complex – multi-element analysis
- Shafting – bearings – damping
- Complete end-to-end dynamic simulation
Gear Geometry

- Involute gear geometry
- Extrapolation to other non-involute gearing
- Computer kinematic manufacture process for surface geometry – details of surface only graphical
- Gear geometry analysis – Dr. Faydor Litvin, kinematics of manufacture, equation of meshing, principal surface orientation, exact surface information
- Techniques applied to many types of gear systems
Gear Manufacturing

- Manual machine tools
- Gear geometry
- Coordinate measuring machinery
- Combination of gear measurement – manufacture machine tool settings
- Full CNC manufacture with feedback from manufactured parts
Gear Performance

- Gear meshing efficiency – sliding & rolling losses: NASA - Anderson & Lowenthal models
- High speed gearing requirements
- Gear windage – empirical models
- Gear windage – CFD analysis & high speed experimental capability
Examples of Technology Innovation of Power Transmission Gearing in Aviation
Spiral Bevel Gear Manufacturing

Gleason Works
463 Machine
Manual

Spiral Bevel Gear Grinding

Gleason Works
463 CNC Machine
Partial CNC

Gleason Works
Phoenix
Full CNC
Face Gears

MDHS/Lucas Face-Gear, Split-Torque Configuration Concept

- Output to rotor
- Planetary mesh
- Combiner gear mesh
- Input from engine 2
- Input from engine 1
- Torque-splitting face-gear mesh

- 40-percent weight reduction
- 9.6 dB noise reduction
- 6270 hours MTBR
Face Gears

Face Gear Development for Rotorcraft Drives
5000-hp Demonstrator Transmission

Conventional baseline configuration (Apache-type)

Split-torque, face-gear configuration
40% weight reduction
Condition Based Maintenance

Lubricant Analysis

Chip Detectors

Metallic Debris Monitors

Vibration Sensing

Vibration Algorithms

Fuzzy Logic & Data Fusion used for Improved condition determination
Vibration Algorithm Development

[Images and graph showing data over time or cycles]
Data Fusion Applied to Spiral Bevel Gear Bearings

Unanticipated bearing failure reinforces importance of data fusion
Spiral Bevel Gear Development

Gleason Works
Geometry – Machine Settings

Improved Contact Conditions,
Fillet Geometry with
Litvin Machine Tool Settings

Lower Cost Formate Design
with
Low Noise and Stress
Results: Decreased noise, vibration, stresses
1. Surface Finish Improved
 - ground
 - superfinished
 - Surface Finish Improved: 1 μm vs. 100 μm

2. Power Loss Reduced
 - Graph showing power loss (W) vs. speed (rpm)
 - Ground vs. Superfinished

3. Scoring Load Increased
 - Graph showing scoring load (N) vs. sliding speed (m/s)
 - Ground vs. Superfinished

4. Surface Fatigue Life Increased
 - Graph showing percent specimens failed vs. millions of stress cycles
 - Ground vs. Superfinished
Technology Innovation has resulted in the transmission system design power going from 300 hp to over 600 hp
Current Activities of Tribology and Mechanical Components Branch at NASA Glenn Research Center in Support of Future Innovation
Branch Organization:

- Oil-Free Turbomachinery - Air Bearings for Aeronautic and Space Applications
- Space Mechanisms & Lubrication – Basic Research for Space Applications
- Aerospace Seals – Seals for turbine engine and aerospace / space structures
- Aero Drive Systems – Power Transfer (Gears, Bearings, etc.) for Aeronautic & Space Applications
Aerospace Seals Research
- Space habitat seals for extreme environments
- Structural / thermal protection seals
- Non-contacting turbine seals

Heat Shield Interface Seal
Docking Seal

Oil-Free Turbomachinery
- Aero / Space application
- World-leading bearing experts
- Advanced modeling methods
- Foil bearing predictive design

From basic research to application

Space Mechanisms & Lubrication
- Accelerated space lubricant life testing under vacuum
- New mechanism concepts for planetary environment
- New space lubricant development
- Terramechanics modeling & testing for efficient wheels

Aero Drive Systems
- Gear fatigue research
- High speed gear lubrication
- Drive system diagnostics
- Fatigue crack modeling
- Dynamic mechanical components
- Rotorcraft transmission systems
- Advanced rolling element and wave bearing technologies

From basic research to application
Oil-Free Turbomachinery

CAD

Foil air bearings

PS304
For cryogenic to 800°C sliding contacts

Oil-Free enabling technologies

PM304 bushings for industrial furnaces and valves

TGIR Award for Level I Milestone: “Core Hot Bearing Tests” (OFTET)
Space Tribology & Materials

SPIRAL ORBIT TRIBOMETER
Accelerated Lubricant Life Testing Under Realistic Conditions

VACUUM 4-BALL
Accelerated Bulk Property Testing of Lubricants

BEARING RIG
Full Scale Bearing Tests

Other Facilities:
• Vapor Pressure of Fluids
• Radiation Damage of Polymers
NASA GRC Seal Research:

- Shuttle main landing gear door environmental seals
- Thermal barrier (braided carbon fiber rope) for nozzle joints of Shuttle and Atlas V SRM’s
Seal Test Facilities

Exploration Systems Seals Lab (B5, C-9/SE-14)

Structural Seals Lab (B5, SW-17)
- Actuator
- Load frame
- 3000 °F furnace
- Laser extensometer
- Test fixturing
- Load cells & alignment fixture
Drive Systems Team

Current Research Activities

(Future Innovation)
Drive System Test Facilities

- Spur Gear Fatigue Test Rigs
- Spiral Bevel / Face Gear Test Facilities
- Gear Noise / Dynamics Test Facility
- Split Torque Test Facility
- OH-58 Transmission Test Facility
- High Speed Helical Gear Train Facility
Drive System Analytical Capabilities

- Finite Element Based Structural - Thermal
- Planetary Gear Dynamics
- Fracture Mechanics - BEM
High Speed Gearing - Windage

\[P_{\text{Windage}} = C_3 C' \rho N^{2.85} D^{4.7} v^{0.15} \lambda \]
Objectives: Increase reliability and decrease false alarms for mechanical component diagnostics. Demonstrate integration of oil debris and vibration based damage detection techniques results in improved capability.

Approach:
Instrument and monitor all GRC gear fatigue test facilities and work with other govt. agencies, university, and industry.
Condition Based Maintenance

Vibration Techniques (FM4, NA4) and Oil Debris

Output of Fuzzy Logic Model

Model Output

Damage
Inspect
Normal

Reading Number

0 500 1000 1500 2000 2500 3000 3500
Wave Bearing Technology

Bearing Concept

- Improved stability and cooling
- Ability to tailor stiffness and damping
- Use of hard sleeves

Test Facility
Advanced Gear Material

Surface Fatigue Results

<table>
<thead>
<tr>
<th>Gear Material</th>
<th>Number of failures</th>
<th>Number of tests completed</th>
<th>Median life (million cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS 6308B [Ref. 10]</td>
<td>15</td>
<td>21</td>
<td>134</td>
</tr>
<tr>
<td>AISI 9310 [Ref. 13]</td>
<td>25</td>
<td>33</td>
<td>200</td>
</tr>
<tr>
<td>Ferrium® C69 [present study]</td>
<td>5</td>
<td>10</td>
<td>361</td>
</tr>
</tbody>
</table>

- **Ferrium® C69**
 - Excellent Contact Fatigue
 - Poor Fracture Toughness

- **AISI 9310**

Fracture Toughness
Space Mechanism Wear

Dither Damage Assessment
Low Cycle Bending Fatigue
Where are we headed in aviation?

(Still need drive system technology to make configurations possible)
Future Aircraft
Blended Wing Propulsion Schematic

Tri-Fan Configuration
Civil Tiltrotor Drive System Configuration

Hover Ratio 131.4 : 1 Forward Flight Ratio 243.6 : 1
In-Line Two Speed Drive System

Star Planetary

Input

Over-Running Clutch

Wet / Dry Clutch

Output

High Speed Operation: Wet / Dry Clutch engaged, Over-Running Clutch over-running
Low Speed Operation: Wet / Dry Clutch disengaged, Over-Running Clutch driving
What’s Next?

Drive system R&D – still much to be done

Full System modeling & simulation

On-condition maintenance

Improved efficiency of drive systems
Questions?

Thanks for your attention!