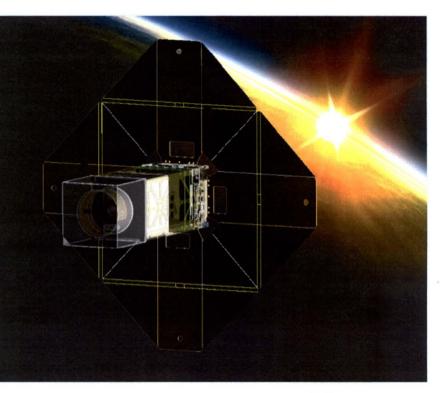
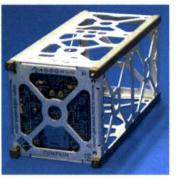


KEA

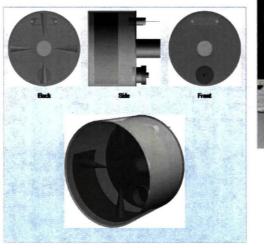

CryoCube-1: A Cryogenic Fluid Management CubeSat

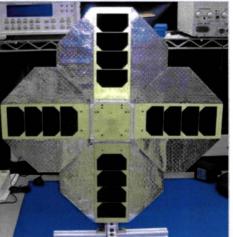

Jared Berg

CryoCube Project Intro

- CubeSat platform
- Cryogenic fluid management experiments
 - Fluid location sensing
 - Slosh characterization
 - Cryogenic fluid transfer
- Cooperative effort between private industry and NASA
 - SLI: Design, fabrication, major component procurement
 - KSC: Analysis, radio communications hardware
- Principle Investigators
 - Jared Berg– NASA
 - Phil Putman Sierra Lobo

2

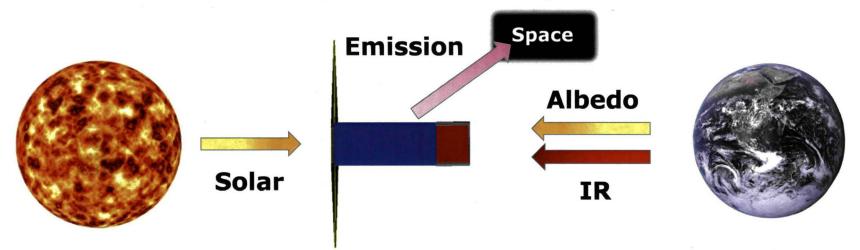

CryoCube Project Intro


- CryoCube-1 (CC-1)
 - Liquid oxygen (LOX) working fluid
 - Solid-to-gas generator
 - Low temperature experiment tank
- Instruments
 - Cryo-Tracker sensor
 - In-tank camera
- Features
 - Combination sun shield / solar cell array
 - Magnet-torquer attitude control
 - Majority commercial off the shelf (COTS) components
- Selected for CubeSat Launch Initiative (CSLI)
 - Launch manifested 2014

CryoCube Project Intro

- Goal: Analyze thermal performance of CC-1
 - Reduce experiment tank temperatures into regime appropriate for LOX condensation (< 119 K @ 1 MPa)
 - Passive cooling only
 - Low weight
 - Small size
 - Investigate design sensitivity to material and optical properties
 - Determine effects of different orbit parameters
 - Develop preliminary operational guidelines

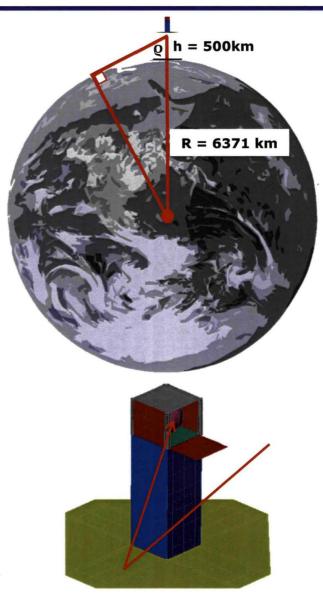
(ev) every service of the service of


Oxygen Phase Plot

4

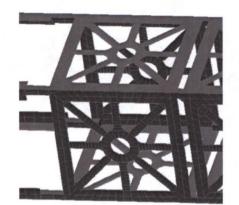
Energy Balance

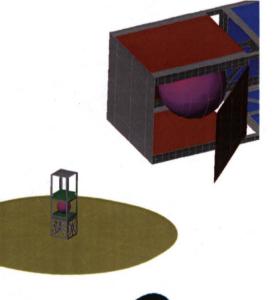
• Radiation follows Stefan-Boltzmann relation $q = \varepsilon \sigma A \Delta T^4$


$G_s A \alpha_t$ +	$-q_{IR}A\varepsilon_b(\sin\rho)^2$	$+ \underbrace{G_s a A \alpha_b K_a(\sin \rho)^2}_{} =$	$\sigma \varepsilon_b A \Delta T^4 - \sigma \varepsilon_t A \Delta T^4$
Solar	Earth IR	Albedo	Emission

 G_s = Solar radiation ρ = Earth view angle α_t = Solar absorptivity of top K_a = Albedo factor (0.664 + 0.521 ρ - 0.203 ρ^2) α_b = Solar absorptivity of bottom a = Average albedo of Earth q_{IR} = Earth IR A = Area ε_t = Emissivity of top T = Temperature ε_b = Emissivity of bottom

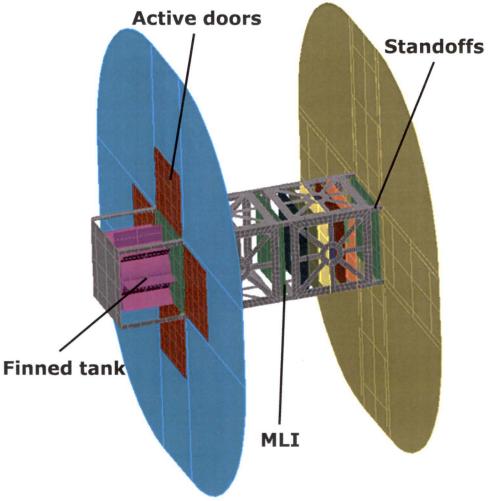
Considerations


- Angular size of Earth
 - Like having face 10" away from 55" TV and trying not to look
 - $2\varrho = 136^{\circ} at h = 500 km$
 - High relative temperature (250K)
 - Sun shield ineffective for Earth IR
- Reflections
 - Reflective insulation bounces radiation into unwanted areas
 - Complicated arrangements hard to visualize mentally
- Materials comparison
 - Intuitive "best" choice may not be optimal
 - Absorption and re-emission

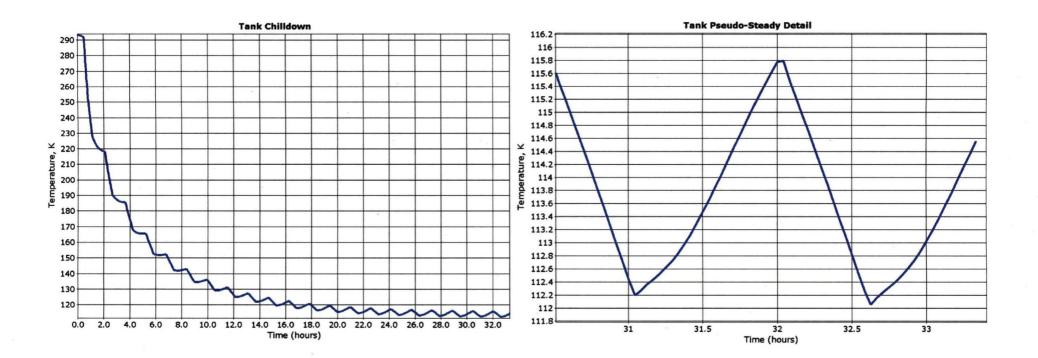


Design Space

- Actuated doors
 - Must expose tank directly to deep space
 - Permanently exposed tank absorbs too much Earth IR
 - Active doors can open in eclipse, closed rest of orbit
 - Optical properties of inside and outside of
- Shield
 - Rounded edges
 - Single regular shield will not block Earth IR
 - Large shield, middle mounted tank?
 - Double shield?
 - Shields can reflect radiation back onto tank
- Tank
 - Round or cylindrical?
 - Effectiveness of fins
- Isolation between segments
 - Material
 - Length



Current Design


- Cylindrical tank
 - Better view factor than sphere
 - Number of fins optimized
- Double shield
 - Blocks all Earth IR in eclipse
 - Small stowage space
- Active doors
 - Open during eclipse
 - Adaptable behavior
 - Requires power and control
- Isolation
 - Long G-10 standoffs separate structure
 - Multi-layer insulation (MLI) between segments
 - More complicated structure

Results

- Pseudo-steady state reached at 100,000-120,000 s from 293K
- Below 119K limit
- Slight cooling trend continues asymptotically

9

Future Work

- Model refinement
 - Adjusting materials, conductors, and geometry based on prototype testing
 - Adding additional components
 - Adding fully-coupled fluid system model of gas generator system to capture condensation (Feasibility determined by hand calcs)
- Testing
 - Precisely measure heat loads and parasitic sources
 - Determine coefficients for contact conduction
 - May reduce conduction but increase radiation
 - Qualify systems for vacuum operation
- Validation
 - Full system testing in vacuum chamber
 - Check model accuracy
 - Refine margins

