

SLS Dual Use Upper Stage (DUUS) Opportunities

Steve Creech, Strategic Development Manager XP01 / SLS Program Office

Jon Holladay, SLS Evolvability Chief Engineer EE03 / SLS Chief Engineer's Office

> Davey Jones, Stage Engineering Lead ED04 / Advanced Concepts Office

> > April 23, 2013

Objective

 Provide an overview of SLS DUUS type capability requirements to provide context for possible International Partner collaboration

DUUS Overview Approach

- DUUS Capability
- DUUS Generic Requirements
- DUUS Development Timeframe
- Typical SLS/DUUS Design Reference Mission
- DUUS Description Overview
- Primary Structure, Exploded View
- Cryogenic Fluid Management
- Main Propulsion System
- Electrical Power System
- Thermal Control System

DUUS Significantly Enhances Exploration Capability

- Current SLS Block 1 configuration delivers ~90t to LEO and ~25t to Trans Lunar Injection (TLI)
- Addition of a DUUS would greatly increase exploration mission capture and performance margin for cis-Lunar and Near Earth System exploration campaigns
- Exploration Mission Capability Provided by a DUUS
 - Low Farth Orbit Mission Class
 - LEO delivery capability, 105 130t delivery
 - Stage life/duration, 10 min 5 hours
 - Destination Injection Mission Class
 - Trans-Lunar, 40 50t delivery
 - Trans-Mars, 25 35t delivery
 - Stage life/duration, 5 hours
 - Cis-Lunar Mission Class
 - EM-L2 or Low Lunar Orbit, 30 35t delivery
 - Stage life/duration, 5 days

Generic Mission/Stage/Engine Requirements

Stage provides multiple propulsion functionality

- Ascent burn (to range of LEO)
- Trans-Destination Injection Burn (from LEO to Destination)
- Insertion (Braking) Burn at Destination

Stage design considerations (Usable Propellant Mass Fraction is a Priority)

- Minimal Dry Mass
- Minimal and Efficient Functionality
- Maximum Usable Propellant

• Stage description guidelines

- 130t Propellant Load (Oxygen / Hydrogen)
- 100-120K lb Total Thrust Class
- 8.4m maximum diameter
- 8.4m H₂ Tank / 5m O₂ Tank (5.5m and 6.4m O₂ Tank Options)
- 18.3m maximum height

Engine description guidelines

- 500-700s maximum single engine burn
- 1100-1300s total mission burn time for single engine
- 2-3 mission starts
- 30 to 60K lb thrust per engine; 462 465 sec I_{sp}
- Throttle TBD
- Extendable Nozzle Option

Typical Lunar Surface DRM Profile

DUUS provides the propulsive capability to deliver payloads from SLS Core separation to Low Lunar Orbit

US MECO/Orbital Insertion

Time to MECO = ~1100 sec Perigee alt = 130.00 nmi Apogee alt = 130.00 nmi Inclination = 28.50° Injected mass = 257869 lb

Perigee alt = 130.00 nmi Apogee alt = 130.00 nmi Inclination = 28.50°

dv = 10761.15 ft/s (3280 m/s)

5 day Lunar Coast

US Disposal

RCS manuever

dv = 49.2 ft/s (15 m/s)

Dispose to Surface

Payload Separation

Mid Coure Correction dv = 114.83 ft/s (35 m/s)

Lunar Orbit Insertion (LOI)

Perilune alt = 100 km

Apolune alt = 100 km dv = 3031.5 ft/s (924 m/s)

LOI burn time= ~160 sec

RCS manuever

· RCS performs course correction maneuvers and stage disposal

. DUUS provides control authority for payload MPCV has command override authority

- Assumptions:
 - Velocity vector orientation during LEO loiter
 - Solar inertial orientation during Lunar transit
 - No power sharing capability
 - Passive thermal control of propellants

Booster

Liftoff

Splashdown

Splashdown

Typical Mission Campaign Requirements

Design Reference Mission Description and Phasing	Payload Mass (t)	DUUS Mission Duration	Primary Propulsion System Burns	Delta V (m/s)
Tactical / Lunar Vicinity	25 t	5 hr	2	2900 - 3100
Strategic Class Exploration	20 - 30 t	5 hr / 5 days	2/3	3300 - 4500
Architectural Class Exploration	25 - 32+ t	5 hr / 5 days / 50+ days	2/3	3300 - 4700
Low Lunar Orbit Delivery	25 - 30 t	5 days	3	4300 - 4500

^{*} All numerical values are representative approximations and not to be used for actual mission design.

DUUS Description Overview (Notional)

DUUS Description (Exploded View)

DUUS Primary Structures

Primary structures:

- Dry Structure (Composite)
- Tanks (Aluminum)
- Optimized for SLS Launch Loads
 - Ascent Load Relief

Ortho-Grid Stiffened

- LOX Forward Skirt
- LH2 Barrel
- LH2 Aft Skirt
- Isogrid Stiffened Intertank
- Monocoque Tank Domes
- Forged Y-Rings
- Composite Strut Thrust Structure
- Primarily driven by thermal considerations (boil-off reduction)

DUUS Subsystem: Cryogenic Fluid Management

- Propellant Management and Conditioning
 - Boil-off reduction
- Thermal Insulation System
 - Spray-On Foam Insulation (SOFI)
 - Ground Environments
 - Multi-Layer Insulation (MLI)
 - In-space Environments
- Thermodynamic Vent System (TVS)
 - Mixing device
 - Heat exchanger
 - Allows venting in micro-gravity
- Bulk Boiling Fluid Control Option

DUUS Subsystem: Main Propulsion System

- MPS provides up to 99K lbf of mainstage thrust required for the LOR-Lunar Mission
 - Four notional engines with the extendable nozzle operating at a 5.88 MR
 - Thrust per engine: 25K to 60K lbf class
 - Engine I_{sn}: 462 to 465 seconds

- MPS supplies liquid propellant to the four notional engines at the flowrates, temperatures and pressures required for nominal engine operation.
 - Two 5.0 inch runducts are connected to the fuel tank via a sump.
 - Each runduct supplies LH₂ to a manifold which connects two 3.5 inch propellant feedlines.
 - Four 2.5 inch propellant feedlines are connected to the LOX tank via a sump.
 - The feedlines carry propellant from the manifold and sump to the engine LH2 and LOX interfaces, respectively.
- MPS supplies regulated gaseous helium for MPS and RCS pneumatics, and pressurant gases for the propellant tanks.
 - Ten COPVs carry ~ 240 lbm gaseous helium.
 - Helium is regulated through a helium regulator package containing two parallel legs for redundancy.
 - Each parallel leg contains an electronically actuated isolation valve in the event a regulator fails open.
- MPS supplies the LH2 tank with GH₂ pressurant gas during engine mainstage.
 - Hot GH₂ is bled off the engines and used for autogenous pressurization.

DUUS Subsystem: Electrical Power System

Power Generation

- Capability similar to one 6.5m diameter UltraFlex solar array with two-axis tracking
- Provides up to 7.7kW at EOL

- Two lithium ion batteries
- Single fault tolerant
- Each battery provides up to 6.9kW-hr to loads

Power Management and Distribution

Single fault tolerant electronics

DUUS Subsystem: Thermal Control System

- Provide thermal conditioning for avionics components
- Active TCS is required for long, in-space duration
- Maintain RCS propellant & MPS pressurant within acceptable temperature range
- Minimize heat leak into propellant tanks
- RCS & Helium Tanks Thermal Conditioning Subsystem
- Inputs to Cryogenic Fluid Management (Orbital Environments)

