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This paper reports the results of an empirical study on the tooth breakage failure mode in spur gears. Of four dominant

gear failure modes (breakage, wear, pitting, and scoring), tooth breakage is the most precipitous and often leads to

catastrophic failures. The cracks were initiated using a fatigue tester and a custom-designed single-tooth bending fix-

ture to simulate over-load conditions, instead of traditional notching using wire electrical discharge machining (EDM).

The cracks were then propagated on a dynamometer. The ground truth of damage level during crack propagation was

monitored with crack-propagation sensors. Ten crack propagations have been performed to compare the existing con-

dition indicators (CIs) with respect to their: ability to detect a crack, ability to assess the damage, and sensitivity to

sensor placement. Of more than thirty computed CIs, this paper compares five commonly used: raw RMS, FM0, NA4,

raw kurtosis, and NP4. The performance of combined CIs was also investigated, using linear, logistic, and boosted

regression trees based feature fusion.

Introduction

The U.S. Army has the goal of transitioning from time-

based to condition-based maintenance for its fleet of vehicles

in an effort to improve safety and reduce costs. The premise

is that critical components are serviced when indicators re-

veal that they can no longer function as designed. A major

focus has been on the helicopter transmission and researchers

have proposed vibration-based CIs to detect faulty compo-

nents, particularly bearing and gears. (Refs. 1–10) However

the availability of damage cases to evaluate and validate them

are scarce. This research addresses the need for seeded fault

data, as it pertains to gear tooth cracks, by developing a well-

documented, statistically significant database of monitored

cracks from inception to failure.

Gear service life can be divided into two phases: crack ini-

tiation and crack propagation. (Refs. 11–13) Because crack

initiation takes considerably longer than propagation, an ac-

celerated method was employed by subjecting a single tooth

to a cyclic force above its intended operating range. (Refs. 14,

15) Traditional crack seeding uses wire Electrical Discharge

Machining (EDM), where a gear is notched. (Refs. 16, 17)

However, in this study, a single tooth was subjected to fatigue

crack initiation. A potential advantage of the fatigue-based

crack seeding vs. notching is that the radius of curvature of the

initiated cracks are considerably smaller. The smaller cracks

propagate faster and better represent real field failures. Seed-

ing cracks have an additional advantage: it isolates the loca-
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tion of breakage and thus enables manageable monitoring of

the ground truth.

The objective of the current study is to compare the per-

formance of vibration based CIs to detect incipient cracks in

gear teeth. It is an extension of a methodology described

in (Ref. 15) in which crack initiation was conducted on a

high cycle fatigue test rig and propagated on a 4-square spur

gear fatigue test rig. This current study also employed crack-

propagation sensors (CPS) to obtain the ground truth informa-

tion on the damage as was done in (Ref. 18).

Although many CIs are computed and stored in a database,

this report will focus on five. The rationale for selecting this

subset is given as follows: Root Mean Square (RMS) and Kur-

tosis (Kur) are chosen for their simplicity and long history of

use in vibration monitoring. FM0 was selected for being one

of the first CIs, first proposed by Stewart in 1977 (Ref. 5).

NA4 was chosen because it has had considerable success, after

being introduced by Zakrajek et al. in 1998 (Ref. 3). Finally,

NP4, a more recent features, introduced by Polyshchuk et al.

in 2003 uses a time-frequency method. (Ref. 9). Descriptions

of many CIs can be found in (Refs. 1, 2).

Table 1 summarizes formulae for the five CIs considered.

The RMS, Kurtosis, and NP4 are based on raw signals while

NA4, and FM0 are based on time synchronously averaged

data. x(t) is the measured signal, N is the number of data

points, P to P is the peak-to-peak amplitude of x(t), Ak is the

amplitude of the gear harmonics k, r(t) is the residual signal

derived by removing known frequency components, Pn is the

signal power and n represents the number of gear mesh har-

monics removed in r(t) and M is the current time record in

run ensemble.
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Test Description

The gears were designed and manufactured according to

NASA drawing and specifications with 28 teeth, a diamet-

rical pitch of 8, and a pressure angle of 20 degrees. More

details on the specifications can be found in Townsend and

Shimski (Ref. 19). Figure 1 depicts a flowchart of the testing

procedure. For each test set, the two test gears were spun
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Fig. 1: Testing Flowchart

together for 54.5s in a gear box instrumented with four ac-

celerometers whose positions are shown in Figure 2. Some

of these are placed at locations very sensitive to gear cracks,

and some at locations that are expected to have relatively poor

sensitivity to gear crack. Sub-optimal placement was moti-

vated by the fact that one must use pragmatic, sub-optimal

sensor placement in practical applications due to space and

other constraints. The torque and angular speed profile is

given in Figure 3. The repeating cycle is indicated in the

graph with T. This established the baseline for the test. The

context (operating condition) profiles were designed to prop-

agate the cracks effectively, but also to gain understanding of

the effect of speed and torque on gear fault detection condition

indicators. The dynamic portion of the profile is used to deter-

mine the dependence of CIs on changing operating conditions.

Only CI values for fixed operating conditions of τ = 170 ft-lb

and ω = 1500 rpm will be presented.

After the baseline tests were completed, the top gear

was removed from the gearbox, mounted in the single-tooth,

fatigue-tester fixture shown in Figure 4, and subjected to a

cyclic load of 100 to 3100 lbs at 10Hz. The anvil applied a

normal force to a single tooth at the highest point of single

tooth contact (HPSTC) as shown in Figure 4c. Controlling

the crack size was achieved using the measured compliance

of the fatigue rig as feedback. (Ref. 14) It was desired to cre-

ate a crack approximately equal in size.

Fig. 2: Dynamometer test stand (gearbox) with the location of
the accelerometers.

1000 1200 1400 1600 1800 2000 2200

50

100

150

To
rq

ue
τ 

[lb
−f

t]
Period: T = 18.2 min

Baseline: 3×T = 54.5 min

1000 1200 1400 1600 1800 2000 2200

500

1000

1500

Time t [sec]

A
ng

ul
ar

 s
pe

ed
 ω

 [r
pm

]

Fig. 3: The segment of the dynamometer operating conditions,
viz. torque and angular speed. The repeating cycle is indicated
in the graph with T .

The initiated cracks were verified in a non-destructive

manner using florescent magnetic particle inspection. Before

inspection, the gear is placed in a custom fixture designed to

place the tooth in tension of approximately 500 lb. The fix-

ture is shown in Figure 5. The tooth is covered with a layer of

fluorescent iron powder, placed in strong magnetic field, and

observed under ultraviolet (UV) light. The magnetic particles

coalesce at the flux leakage caused by the crack and become

detectable as shown in 6a.

Once the crack was initiated and verified, the gear was

equipped with two crack-propagation sensors, one on each

face as shown in Figure 6b. The gear was then re-assembled in

the gearbox and operated according to the same profile of Fig-

ure 3. Testing was concluded when the crack propagated be-

yond the range of both crack-propagation sensors. The propa-

gation times ranged from 39 minutes to over 3 days and a total

of 10 set of gears were tested as shown in Table 2. Often, the



(a) (b) (c)

Fig. 4: Fatigue-tester-based, single-tooth fixture. (a) CAD model

(b) Photo of the built fixture. (c) The force is applied approximately

perpendicularly at HPSTC

(a) (b)

Fig. 5: Non-destructive method for crack verification (a) Imag-
ing system (b) Custom gear fixture

system needed to shut down in the evening and be restarted

in the morning. Propagation was run until crack propagation

sensors indicated full propagation. At the completion of each

test, the tooth was then completely severed using the fatigue

tester in order to gain a metallurgical understanding of the fa-

tigue cracks. The bottom image of the tooth was imaged as

shown in Figure 7.

CI Database

A MySQL database was developed with the intention of

serving the gear research community by providing the ground

truth for further development of diagnostics and prognos-

tics of gear crack failure mode based on vibration signals.

The tables containing measured data cannot be altered by

the user, but the database schema allows the user to recom-

pute CIs as well as append and compute additional CIs. The

Table 2: Summary of test runs

GearID Total propagation time [min]

13 1809.1
16 255.8
20 506.2

104 4693.3
106 614.5
108 52.6
112 99.8
114 79.9
116 47.5
118 38.7

Crack 

(a) (b)

Fig. 6: (a) Initiated crack (b) Gear tooth with crack propagation
sensor

Fig. 7: The bottom surface of a cracked tooth.

database tables are shown in Figure 8. The crack initiation

data is stored into two main tables: instron test details and

instron test data. The former table contains the information

on the test parameters (date, force magnitude, force frequency,

data acquisition parameters, etc.). The latter table shows the

measurements (force, displacements, computed compliance,

etc.). Similarly the dynamometer data has a separate table

for test parameters and for data. However, the high-frequency

data bursts are stored in linked binary files.

CI Computation and Analysis

The CIs are compared with respect to their: ability to de-

tect a crack early, ability to assess the damage, and sensitiv-

ity to sensor placement. While one can speculate that these

CI attributes may be related, and expect that a CI that is more

sensitive initially will remain more sensitive through the prop-

agation, there is currently no evidence to support this. More-

over, a previous study (Ref. 10) suggested fusion of features

that showed more sensitivity for crack initiation and features

more sensitive to crack propagation.

CI Comparison: Early Crack Detection

Crack detection is examined from two different points of

view: 1) ability to detect cracks early, and 2) ability to rapidly

achieve high confidence of the crack as the crack grows. To

compare CIs’ ability to detect the crack early, the features

computed during the baseline test were labeled as no fault and



Main fatigue-testing-related data Main dynamometer data Features and images
Fig. 8: The main tables in the database.
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Fig. 9: RMS: (a) Computing an ROC point (pFA, pDet). (b) ROC

and AUCi, j

the features computed during the propagation test prior to the

first detected CP sensor strand breakage as fault.

Receiver operating characteristic (ROC) plots were used

for performance comparisons. Two probability distribution

functions (PDFs) of the CIs are produced from the data: one

associated with the known undamaged case and one for the

known damaged case as shown in Figure 9a. The ROC can be

thought of as a measure of overlap of the two PDFs. The ratio

of the detected faults to all faults is plotted against the ratio

of false detections, as the threshold was varied (Refs. 20–22)

Figure 9a illustrates what a point on an ROC curve repre-

sents. The CI used in this example is the RMS. An example

ROC curve with the associated area under the curve (AUC)

are shown in Figure 9b. Figure 10a illustrate dependence on

resulting ROC on the sensor placement and Figure 10b shows

how this ROC varies for different gears using the signal from

a4.

These plots provide an initial glimpse of the ability of dif-
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Fig. 10: RMS: (a) ROCs from four different accelerometers and a

single gear (b) ROCs from several gears (using a4).

ferent CIs to detect small cracks. The ROC is a two dimen-

sional depiction of classifier performance, which makes these

plots somewhat busy for multiple CIs and multiple accelerom-

eters. A more compact comparison is enabled using the area

under the ROC curve, abbreviated as AUCi, j for gear i and ac-

celerometer j. (Ref. 23) AUC is a single scalar obtained by

integrating ROC. Higher AUC indicates better performance,

with AUC = 1 being the maximum, associated with perfect

detection. The summary comparison plot for early detection

is shown in Figure 11a, which shows MAUC,i vs CI, where

MAUC,i = max
j
(AUCi, j). (1)

Each gear is shown with a unique marker. A histogram is also

provided to indicate the number of overlapping markers.

Within our sample, raw RMS exhibits the best average per-

formance, smallest gear-to-gear variation, and does not show
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Fig. 11: Summary performance of different features. (a) Early

detection. (b) Entire propagation

large outliers as other features. FM0, NA4, Kurtosis, and

NP4 all have cases of false positives, which is manifested by

MAUC,i outliers. It is also interesting to note that different CIs

perform differently on different crack propagations. For ex-

ample, the crack on GearID = 114 was missed by NP4, and

Kurtosis, but not by FM0, NA4, and RMS.

It is of interest to see how the performance improves over

time. Figure 11b shows the performance of the CIs when all

crack propagation data is taken into account. While the per-

formance of all indicators improved, RMS was still the only

one without significant outliers. However, NA4 and NP4 show

peaks in MAUC,i distributions at high probability of detection

(POD), indicating better performance for a subset of gears.

Also, as mentioned above, CIs seem complementary. Thus,

the results confirm earlier suggestions that detectors employ-

ing more than one CI are promising.

Data Fusion

To demonstrate the benefit of CI fusion, the complemen-

tary nature of CI information, by way of a panel of feature

fusion experiments, was evaluated. In these experiments, the

provided CIs were fused via three different predictive mod-

els: LiNear Regression (LNR) (Ref. 24), LoGistic Regres-

sion (LGR) (Ref. 25), and Boosted Regression Trees (BRT)

(Ref. 26). LNR and LGR fit singular lower-dimensional mod-

els to the data as follows: LNR finds a two-parameter lin-

ear (slope and intercept) model that minimizes the sum of

squared error between modeled values and observed values,

while LGR finds a similar parametrization for a logit function

in place of the linear function. The logit function, logit(x), is

the inverse of the sigmoid function, defined as

logit(x) = ln

(
x

1− x

)
, (2)

BRT, in contrast, learn a fixed (constant) number of lower-

dimensional models over discrete regions of the feature space,

forming a single piecewise function. In the experiments

performed, the BRT region boundaries and individual re-

gion functions were linear functions, with parameter selec-

tion based upon Adaptive Boosting and the number of regions

fixed at 10. For all algorithms, the regression targets were

based upon the observed wire breakages, with final classifi-

cation results performed by thresholding the predicted output

value for a given set of input CI readings. In all cases, the three

top-performing CIs were used as inputs, with the hypothe-

sis that this arrangement should outperform single-CI crack

detection. Features computed from one accelerometer were

fused during these experiments, although additional benefit

may be achieved by fusing features computed from vibration

signals at different locations. As before, the largest of four

AUCs was selected.

Figure 12a shows the results after fusing three of the best

performing CIs: RMS, NA4, NP4. These results show that

performance trends with the best constituent CIs, but that

CIs with strongly varying performance can reduce the over-

all scores and introduce variance in the final result.

CI Comparison: Sensor Placement

To compare CIs with respect to their sensitivity to ac-

celerometer placement, plots of the standard deviation of

AUC’s for individual cracks defined as

σAUCi =

√√√√ 1

N −1

4

∑
j=1

(AUCi, j −μAUCi)
2 (3)
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Fig. 12: MAUC, i after fusing top performers (raw

RMS+NA4+NP4)

where AUCi is their mean defined by

μAUCi =
1

N

4

∑
j=1

AUCi, j (4)

are produced.

Figure 13a illustrates the process for four select gears

(GearID = 108, 112, 114, and 116). The gears are indicated

on the x-axis and AUCi, j values on the y-axis. The source ac-

celerometers, denoted in the plot as a1 through a4, are consis-

tently labeled with unique markers. In addition, their mean,

μAUC,i, is also plotted and labeled with an ’x marker’. The

values for the mean and standard deviation σAUC,i are also in-

dicated in the plot.

If a CI was perfectly insensitive to sensor placement, the

standard deviation would be, ignoring minute differences due

to sensor calibration and the processing channels, zero, be-

cause CIs originating from differently placed accelerometers

would be indistinguishable. Figure 13b shows the summary

plot of standard deviations of AUCs of features computed

from different data captured by differently placed accelerom-

eters for the same propagations. The CIs exhibit similar de-

pendence on sensor placement, as estimated by σAUC,i, but

raw kurtosis seems slightly better than the others. The depen-

dence varies sample-to-sample, and the raw RMS displays the

least gear-to-gear variation. Note that very low sensitivity to

sensor placement often corresponds to a missed alarm. For

example, in Figure 13b, GearID = 16 has the smallest σAUC
for FM0, but Figure 11b shows that this crack detection was

missed by the CI.

CI Comparison: Damage Assessment

CIs are correlated with estimated crack size in order to

compare them with respect to their ability to assess the dam-
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Fig. 13: (a) AUCi, j vs. GearID for four accelerometers (b)

Sensitivity of CIs to sensor placement

age. The first-order ground truth information on damage was

contained in the crack propagation sensor signals, CP1 and

CP2. Figure 14 is a schematic for the CPSs. There are two

CP sensors, one on each gear face. Figure 15 is an example

Fig. 14: Crack Propagation Sensor circuit schematic

output. The resulting voltage is noisy and requires averaging



and some signal processing, including filtering and peak de-

tection. Breaking of CP wires give rise to the recorded voltage

level as shown in Figure 16a. The spacing between centerlines

is .25mm. The CPS estimates are saved in the same database

table as the CIs, dyno-test-features.
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Fig. 15: CPS signal

The CP1-CP2 plane is a parameter space spanned by the

two voltages CP sensors. It maps directly into the the crack

lengths as measured on the two gear faces. Figure 16b shows

three different crack propagations (gearID = 108, 114, and

116) and illustrates that a crack can propagate fairly symmet-

rically (Gear 108), but also asymmetrically (114 and 116).

Note that the asymmetry for 114 and 116 is in different di-

rections.
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Fig. 16: (a) theoretical CP levels (b) Three crack surface paths
in CP1-CP2 plane.

The following plots show each CI as a function of crack

length. All CIs are computed from the data from the most

sensitive accelerometer. Figures 17a-b plots raw RMS vs.

CP1/CP2 and Figures 17c-d plots FM0 vs. CP1/CP2. In a like

manner, Figures 18a-b plots the results for NA4 and Figures

18c-d for the Kurtosis. The NP4 results are given in Figure

19. All CIs showed relatively weak dependence on the level

of damage, as estimated by surface sensors CP1 and CP2.
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Fig. 17: Dependence of CIs on the damage level, measured by

CP1 and CP2 for four representative propagations. RMS and

FM0 as a function of CP1 / CP2 ◦:108 , �: 114, �: 116

Conclusions

The research project consisted of accelerated crack growth

in spur gears and measuring vibrations using accelerometers

mounted on the gearbox. The cracks were initiated using a fa-

tigue tester. Crack propagation sensors, mounted on each face

of the cracked tooth, captured the ground truth information on

crack propagation. Signals from four accelerometers and the

tachometer were used to compute condition indicators. Five

CIs were selected from a larger set and compared with respect

to their ability to detect small cracks, their sensitivity to sen-

sor placement, and their ability to assess the damage. While

simple raw RMS was found to be the most robust for early

crack detection, more advanced CIs exhibited higher AUCs

for a subset of gears. In addition, evidence of the complemen-

tary detection power of different features encouraged feature

fusion for improved performance. It was found that combin-

ing all features does not always improve the overall perfor-

mance. The compared features showed similar sensitivity to

sensor placement. The initial analysis did not detect a con-

sistent significant sensitivity to damage of any of the selected

CIs.
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