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Jeff Eldridge 

• In a NASA career spanning over twenty years, Dr. Eldridge has 
worked towards developing spectroscopy-based health monitoring 
tools for both space and turbine engine applications. He has 
coauthored over 70 publications and has made over 50 conference 
presentations and invited tutorials/lectures. Dr. Eldridge is a 
senior scientist of the Optical Instrumentation and NDE 
Branch at NASA Glenn Research Center. 
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Background 
• Recent laboratory discovery* of exceptional high temperature 

retention of ultra-bright luminescence by Cr-doped GdAlO3 with 
orthorhombic perovskite crystal structure: Cr-doped gadolinium 
aluminum perovskite (Cr:GAP). 

• Orders of magnitude stronger luminescence emission above 1000 ºC 
than previous state-of-the-art rare-earth-doped thermographic 
phosphors. 

• Demonstrated luminescence-decay-based temperature 
measurements to 1250 ºC. 

• Cr:GAP performance promising for turbine engine environment 
measurements. 

– High-intensity luminescence emission from thin Cr:GAP surface coatings will 
stand out in presence of strong radiative (flame) environment. 

– Broadband excitation and emission allows flexible choice of excitation and 
detection wavelengths. 

 
 

*J.I. Eldridge & M.D. Chambers 



Objectives 

• Transition to engine environment implementation 
– Measurements of engine component surface in high-velocity, 

high-temperature radiative (flame) environment. 

• Demonstrate temperature measurements from Cr:GAP 
coated Honeywell stator vane doublet in afterburner 
flame of UTSI J85-GE-5 turbojet test stand. 

• Challenges: 
– Coating complex component shape. 
– Optical probe design integrating non-intrusive excitation & 

collection with thermal protection. 
– “See” through flame environment. 
– Remote measurement control from a safe distance. 

 

 



4A2 

2E (long-lived reservoir level) 

4T2 (short-lived but 
population stabilized by 
thermal equilibrium with 
2E reservoir level) 

Cr3+ 3d3 energy levels  

Basis for High Temperature Ultra-Bright 
Cr:GAP Luminescence 
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Spin-allowed broadband emission (short decay) 
4T2 → 4A2 

For long τ at high T → increase ∆E, ∆Eq. 

From Zhang, Z., Grattan, K.T.V., and Palmer, A.W., Phys. Rev. B 48, 7772 (1993). 

Spin-forbidden R-line emission (long decay) 
2E → 4A2 

∆E 

Tanabe-Sugano Diagram 

Strong crystal field increases ∆E.  



Orthorhombic 
(distorted octahedra, strong absorption) 

Orthorhombic Rare Earth Perovskites 
RAlO3 Meet Criteria 
 

Al, Cr 
R 

O 

Ideal 
cubic                 

Rhombohedral  
(near-cubic symmetry, weak absorption) 

(No parity-forbidden 4A2→2T1, 2T2 absorption) 

Among all RAlO3 perovskites, GdAlO3 has highest 
∆E among candidates with orthorhombic structure. 

Tightly bonded AlO6 Octahedra Exhibit Strong Crystal Field High ∆E 
 



Temperature Dependence of Luminescence 
Emission from Cr(0.2%):GAP Puck 
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Time-Resolved Luminescence Emission 
from Cr:GAP 

378 ºC 1072 ºC 
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• Nearly single exponential. 
• Uniform decay rate over wavelength range. 
• Adequate signal for decay time determination at wavelengths as short as 570 
nm. 
• Collect luminescence decay measurements with bandpass filter @593 nm, 
FWHM = 40 nm to minimize interference from thermal radiation background. 
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Logarithmic Intensity Scale 



Demonstrating Temperature Sensitivity of 
Luminescence Decay Curves from Cr:GAP Puck 
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Bandpass filter: CL = 593 nm; FWHM = 40 nm 
 



Demonstrating Temperature Measurement Capability 
Calibration of Decay Time vs. Temperature for GAP:Cr Puck 
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Two distinct regions 
200 ºC<T<750 ºC: less temperature sensitive 
T>750 ºC: more temperature sensitive 



NASA GRC High-Heat-
Flux Laser Facility 
•Proof-of-concept with 
easy optical access, no 
radiative background, no 
probe heating issues. 

Williams International 
Combustor Burner Rig 
•Address probe/TP 
survivability & ability to 
“see” through flame. 

AEDC J85-GE-5 
•Probe/translate through 
afterburner flame. 
•Test integrated 
excitation/collection probe. 

Demonstrated to 1360 ºC. 

Demonstrated to >1400 ºC. 

AFRL VAATE Project 
Gas Turbine Engine Sensor and Instrumentation Development 
Stepping Stone Approach 

•Opportunity to test new 
Cr:GAP thermographic 
phosphor. 

Goal: Demonstrate 
thermographic phosphor 
based temperature 
measurements to 1300 ºC 
on TBC-coated HPT stator 
on Honeywell TECH7000 
demonstrator engine. 

Honeywell TECH7000  



Cr:GAP Coatings for Surface Temperature Measurements 

Electron Beam Physical Vapor Deposition Challenges 

• Deposition of Cr:GAP by EB-PVD at Penn State 
proved to be challenging.  
– Top of Cr:GAP ingot explodes under electron beam heating. 
– Ingot fractures due to thermal shock. 

• Successful Resolution: Top section of ingot removed 
& then use extremely gentle electron beam heating.  

Ingot in EB-PVD chamber showing 
explosion debris from electron beam heating 

Ingot removed from EB-PVD chamber 
showing thermal-shock fracture 



Luminescence Decay Curves from 25 µm Thick EB-PVD 
Cr:GAP Coating 
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Superb signal-to-noise from thin 25 µm thick coating confirms 
retention of ultra-bright luminescence at high temperatures. 
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Demonstrating EB-PVD Cr:GAP Temperature 
Measurement Capability 
Decay Time vs. Temperature for 25 µm Thick EB-PVD Cr:GAP Coating 

Decay time (τ2) vs. temperature dependence for thin EB-PVD 
Cr:GAP coating follows same calibration curve as Cr:GAP puck. 
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Cr:GAP-Coated Stator Vane Doublet 
EB-PVD at Penn State 
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Probe Design for Vane Measurements 

Final probe design by Rob Flori, Honeywell. 

Constraints for probe design 
•Do not protrude into gas flow. 
•Limited space: integrated excitation & collection. 
•End of probe exposed to gas flow temperatures. 
•Temperature-sensitive optical components require 
cooling. 

1x1000 µm diam excitation fiber 

82x200 µm diam excitation fibers 

Fiber bundle cross-section 



Optical Probe Setup 
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spot 

Probe 



Cooling Fixture for Mounting in Afterburner Flame at 
UTSI J85 Test Stand 
High-Velocity Exhaust Gas up to 1760 ºC 

Air-purge 
cooling 

Water-
cooling 

Mounted vane doublet 

J85-GE-5 Turbojet Test Stand 



Rack Mount PC 

PHM Rack 
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J85-GE-5 Engine Test at UTSI 

Engine Aft View Overhead View of Vane in Afterburner Flame 

Afterburner Flame at Night 





Initial J85 Test Runs Reveal Unintended 
Probe Cooling Effect!* 

PLA 
104% 

PLA 
110% 

PLA (power lever angle) # = throttle setting 

Probe cooling air cools target area! 
Highly perturbing temperature measurement! 

*Directed probe cooling effect will be considerably 
smaller inside engine where combustion gas cross-flow 
will be much greater. 



Reduce Probe Cooling Air Pressure to 
Minimize Unintended Probe Cooling Effect 

PLA (power lever angle) # = throttle setting 

Reduced pressure greatly reduces but does not 
completely eliminate probe cooling effect. Less 

measurement time before probe overheats. 

PLA 
104% 

PLA 
104% 

Probe cooling air at 
high pressure 

Probe cooling air at 
low pressure 
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Temperature Determination from 
Luminescence Decay Curves 

J85 Engine Tests at Different Afterburner Settings 
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Temperature Determination Summary for  
Cr:GAP-Coated Vane During J85 Engine Test Sequences 
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Summary 

• Successfully demonstrated temperature measurements from 
Cr:GAP coated Honeywell stator vane doublet in afterburner flame 
of UTSI J85-GE-5 turbojet test stand.  

– Successful coating deposition onto complex stator doublet shape by EB-PVD. 
– Excellent emission intensity and temperature sensitivity from 25 µm thick surface coating. 
– Wide temperature range 549 ºC to 1027 ºC measured over range of afterburner conditions. 
– Engine-compatible probe design demonstrated 

– Integrated excitation and collection.  
– Thermal protection of probe.  
– Unintended cooling of measurement surface to be corrected in future. 

• Future Plans 
– Cr:GAP downselected as one of two thermographic phosphors for upcoming AFRL VAATE 

temperature measurements of high-pressure turbine stator in Honeywell TECH7000 
demonstrator engine. 

– Cr:GAP downselected as one of three thermographic phosphors for upcoming NASA VIPR 
temperature measurements of rotating blade surfaces in Pratt & Whitney F117 engine. 

– 2D surface temperature mapping by gated imaging underway at NASA GRC. 
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