
NASA/TM–2013-208641 / ol 16

March 2013

Jeffrey E. Lee

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

ICESat (GLAS) Science Processing Software Document Series

The GLAS Science Algorithm Software (GSAS) Detailed
Design Document Version 6

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI) pro-
gram plays a key part in helping NASA maintain this
important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and its
public interface, the NASA Technical Report Server,
thus providing one of the largest collections of aero-
nautical and space science STI in the world. Results
are published in both non-NASA channels and by
NASA in the NASA STI Report Series, which includes
the following report types:

•	 TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA Programs
and include extensive data or theoretical analysis.
Includes compilations of significant scientific and
technical data and information deemed to be of
continuing reference value. NASA counterpart of
peer-reviewed formal professional papers but has
less stringent limitations on manuscript length and
extent of graphic presentations.

•	 TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

•	 CONTRACTOR REPORT. Scientific and technical
findings by NASA-sponsored contractors and
grantees.

•	 CONFERENCE PUBLICATION. Collected
papers from scientific and technical conferences,
symposia, seminars, or other meetings sponsored or
co-sponsored by NASA.

•	 SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

•	 TECHNICAL TRANSLATION. English-language
translations of foreign scientific and technical
material pertinent to NASA’s mission.

Specialized services also include organizing and
publishing research results, distributing specialized
research announcements and feeds, providing help
desk and personal search support, and enabling data
exchange services. For more information about the
NASA STI program, see the following:

•	 Access the NASA STI program home page at
http://www.sti.nasa.gov

•	 E-mail your question via the Internet to
help@sti.nasa.gov

•	 Fax your question to the NASA STI Help Desk at
443-757-5803

•	 Phone the NASA STI Help Desk at 443-757-5802

•	 Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA STI Program ... in Profile

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

NASA/TM–2013-208641 / ol 16

March 2013

ICESat (GLAS) Science Processing Software Document Series

The GLAS Science Algorithm Software (GSAS) Detailed
Design Document Version 6

Jeffrey E. Lee
Stinger Ghaffarian Technologies, Inc., Wallops Island, VA

Available from:
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161 Price Code: A17

Level of Review: This material has been technically reviewed by technical management

Trade names and trademarks are used in this report for identification only. Their usage does not
constitute an official endorsement, either expressed or implied, by the National Aeronautics and
Space Administration.

Notice for Copyrighted Information

This manuscript has been authored by employees of Stinger Ghaffarian Technologies with the
National Aeronautics and Space Administration. The United States Government has a non-exclusive,
irrevocable, worldwide license to prepare derivative works, publish, or reproduce this manuscript,
and allow others to do so, for United States Government purposes. Any publisher accepting this
manuscript for publication acknowledges that the United States Government retains such a license
in any published form of this manuscript. All other rights are retained by the copyright owner.

Foreword

The GEOSCIENCE LASER ALTIMETER SYSTEM (GLAS) is the primary instrument for
the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the
benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance,
cloud and aerosol heights, as well as land topography and vegetation characteristics. From
2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice
sheet mass balance as well as cloud property information, especially for stratospheric clouds
common over polar areas. It also provided topography and vegetation data around the globe,
in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.

This is the final version of GLAS Science Algorithm Software Detailed Design (GSAS-DD)
document. This document is developed under the structure of the NASA STD-2100-91, a
NASA standard defining a four-volume set of documents to cover an entire software life
cycle. Under this standard a section of any volume may, if necessary, be rolled out to its own
separate document. This document is a roll-out of the detailed design within the Product Spec-
ification Volume.

This document was created by the GLAS Science Algorithm Software (GSAS) Development
Team in support of B. E. Schutz, GLAS Science Team Leader for the GLAS Investigation.
This work was performed under the direction of David W. Hancock, III, who may be con-
tacted at (757) 824-1238, David.W.Hancock@nasa.gov (e-mail), or (757) 824-1036 (FAX).

This document was created through the efforts of the GLAS Science Algorithm Software
(GSAS) Development Team. Current team members include:

SGT, Inc./Kristine Barbieri

SGT, Inc./Suneel Bhardwaj

SGT, Inc./John DiMarzio

614/David W. Hancock, III

SGT, Inc./Peggy Jester

SGT, Inc./Jeffrey Lee

SGT, Inc./Lisa Lee

SSAI/Steve Palm

SGT, Inc./Carol Purdy

SGT, Inc./Lee Anne Roberts

SGT, Inc./Jack Saba
March 2013 Page iii Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Foreword
Version 6.0 Page iv March 2013

Table of Contents

Foreword . v
Table of Contents . vii
List of Figures. .xiii
List of Tables . xv

Section 1 Introduction
1.1 Identification of Document . 1-1
1.2 Scope of Document. 1-1
1.3 Purpose and Objectives of Document. 1-2
1.4 Document Organization . 1-2
1.5 Document Change History . 1-2

Section 2 Related Documentation
2.1 Parent Documents . 2-1
2.2 Applicable Documents . 2-1
2.3 Information Documents . 2-2

Section 3 Design Issues
3.1 Requirements . 3-1
3.2 Single vs. Multiple Executables . 3-1
3.3 Software Reuse . 3-2
3.4 I/O and Unit Conversion. 3-2
3.5 Reprocessing and Pass-Thrus . 3-2
3.6 Data Buffering . 3-3

Section 4 Design Overview
4.1 GSAS Design Overview . 4-1
4.2 PGEs . 4-1
4.3 Files. 4-3
4.4 Science Algorithms. 4-3
4.5 Utilities . 4-3

Section 5 Foundation Libraries
5.1 The Platform Library (platform_lib). 5-1
5.2 The Control Library (cntrl_lib). 5-2
5.3 The Error Library (err_lib) . 5-3
5.4 The Math Library (math_lib) . 5-4
5.5 The Ancillary Library (anc_lib) . 5-5
5.6 The File Library (file_lib). 5-7
5.7 The Time Library (time_lib). 5-7
5.8 The Product Library (prod_lib). 5-8
5.9 The Exec Library (exec_lib) . 5-9
March 2013 Page v Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Table of Contents
Section 6 GSAS Core PGEs
6.1 Function . 6-1
6.2 Requirements . 6-1
6.3 Approach. 6-1
6.4 Design . 6-2

6.4.1 MainInit . 6-3
6.4.2 eCntl_Init . 6-5
6.4.3 GetControl . 6-5
6.4.4 OpenFiles . 6-6
6.4.5 PrintCntl . 6-6
6.4.6 Write_LibVer . 6-6
6.4.7 ReadAnc . 6-7
6.4.8 Write_AncVer. 6-7
6.4.9 ReadData. 6-7
6.4.10 Managers. 6-9
6.4.11 MainWrap . 6-10

Section 7 Common Functionality
7.1 Control File Parsing . 7-1

7.1.1 PASSID Specification. 7-2
7.1.2 Input/Output File Specification . 7-3
7.1.3 Input Data Time Selection . 7-4
7.1.4 Output Data Time Selection . 7-4
7.1.5 Execution scenarios . 7-5

7.2 ANC07 Constants Files . 7-5
7.3 Invalid Values and Error/Status Reporting. 7-6

7.3.1 Invalid Values . 7-6
7.3.2 Exit Status . 7-7
7.3.3 Error and Status Reporting . 7-7

7.4 ANC06 Metadata/Log File . 7-9
7.5 Product Internal Data Storage, Conversion and I/O 7-10

7.5.1 Product Modules . 7-10
7.5.2 Internal Product Data Storage. 7-11
7.5.3 Product Input/Output . 7-11
7.5.4 Product-to-Algorithm Conversion (P2A) . 7-11
7.5.5 Pass-Thru . 7-12
7.5.6 Managers. 7-12
7.5.7 Algorithm to Product Conversion (A2P) . 7-12
Version 6.0 Page vi March 2013

Table of Contents The GLAS Science Algorithm Software Detailed Design Document
7.6 Product Headers . 7-12
7.7 Summary. 7-13

Section 8 GLAS_L0proc
8.1 Overview. 8-1
8.2 Function . 8-1
8.3 Approach. 8-2
8.4 Input and Output Files . 8-2

8.4.1 GLA00 APID Files . 8-4
8.4.2 ANC47 PDS Files . 8-5
8.4.3 ANC33 MET Counter to UTC Conversion File 8-5
8.4.4 Control File . 8-6
8.4.5 ANC29 Index File. 8-6
8.4.6 ANC32 GPS File . 8-6

8.5 Design . 8-8
8.5.1 PGE Core Routines . 8-9
8.5.2 ReadGLOP . 8-10
8.5.3 sort_gla00_index. 8-10
8.5.4 sort_gps. 8-11
8.5.5 utc_time_conversion. 8-11
8.5.6 Index_Grouping . 8-11

Section 9 GLAS_L1A
9.1 Overview. 9-1
9.2 Function . 9-1
9.3 Design Approach . 9-1
9.4 Input and Output Files . 9-2
9.5 GLAS_L1A PGE . 9-3

9.5.1 PGE Core Routines . 9-4
9.6 L1A Manager (L1A_Mgr) . 9-5
9.7 PGE/Manager Implementation Details . 9-6

9.7.1 ANC29/ANC32/GLA00 Input . 9-6
9.7.2 Missing APIDs . 9-7

9.8 L1A_Subsystem . 9-8
9.8.1 Subsystem Design Decisions and Assumptions 9-8
9.8.2 DFDs and their Descriptions. 9-8

Section 10 GLAS_Alt
10.1 Function . 10-1
10.2 Design Approach . 10-1
10.3 Input and Output Files . 10-2
10.4 GLAS_Alt . 10-6

10.4.1 PGE Core Routines . 10-6
10.5 Waveform Manager (WFMgr) . 10-6

10.5.1 WFMgr Subprocesses . 10-9
10.6 Elevation Manager (Elev_Mgr) . 10-10

10.6.1 ElevMgr Subprocesses . 10-12
March 2013 Page vii Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Table of Contents
10.7 PGE/Manager Implementation Details . 10-14
10.7.1 GLA05 Requirement. 10-14

10.8 WF_Subsystem . 10-14
10.8.1 Assess Waveforms (W_Assess) . 10-14

10.9 Elev_Subsystem . 10-22
10.9.1 L1B DFDs and their Descriptions . 10-22
10.9.2 L2 DFDs and their Descriptions . 10-24

Section 11 GLAS_Atm
11.1 Overview. 11-1
11.2 Function . 11-1
11.3 Design Approach . 11-1
11.4 Input and Output Files . 11-2
11.5 Functions. 11-4

11.5.1 PGE Core Routines . 11-5
11.5.2 Atm Manager (Atm_Mgr) . 11-6

11.6 Atm_Subsystem . 11-9
11.6.1 DFDs and their Descriptions. 11-10
11.6.2 Structure Charts . 11-16

Section 12 GLAS_Reader
12.1 Function . 12-1
12.2 Design Approach . 12-1
12.3 Input and Output Files . 12-1
12.4 GLAS_Reader. 12-2

Section 13 met_util
13.1 Overview. 13-1
13.2 Function . 13-1
13.3 Design Approach . 13-1
13.4 Input and Output Files . 13-1
13.5 Functions. 13-3
13.6 Functional Overview. 13-3

Section 14 reforbit_util
14.1 Overview. 14-1
14.2 Function . 14-1
14.3 Design Approach . 14-1
14.4 Input and Output Files . 14-1
14.5 Functions. 14-1
14.6 Functional Overview. 14-2

Section 15 createGran_util
15.1 Overview. 15-1
15.2 Function . 15-1
15.3 Design Approach . 15-1

15.3.1 Definitions . 15-1
Version 6.0 Page viii March 2013

Table of Contents The GLAS Science Algorithm Software Detailed Design Document
15.3.2 Assumptions . 15-3
15.4 Input and Output Files . 15-3
15.5 Functions. 15-5
15.6 Functional Overview. 15-5

Section 16 atm_anc
16.1 Overview. 16-1
16.2 Function . 16-1
16.3 Design Approach . 16-1
16.4 Input and Output Files . 16-1
16.5 Functions. 16-2
16.6 Functional Overview of Calibration Modules . 16-2

16.6.1 Segment Averaging Module (SAM). 16-2
16.6.2 CALibration Module (CALM) . 16-5

Section 17 GLAS_Meta
17.1 Function . 17-1
17.2 Design Approach . 17-1
17.3 Input and Output Files . 17-1
17.4 GLAS_Meta . 17-3

17.4.1 PGE Core Routines . 17-3
17.4.2 Metadata Processing . 17-4
17.4.3 ANC45/ANC46 File Updates . 17-4

Section 18 GLAS_Tick
18.1 Function . 18-1
18.2 Design Approach . 18-1
18.3 Input and Output Files . 18-1
18.4 GLAS_Tick. 18-2

18.4.1 PGE Core Routines . 18-2
18.4.2 Engineering Statistics Processing . 18-3
18.4.3 GPS Update Processing . 18-3

Section 19 GLAS_APID
19.1 Function . 19-1
19.2 Design Approach . 19-1
19.3 Input and Output Files . 19-1
19.4 GLAS_APID. 19-2

19.4.1 PGE Core Routines . 19-3
March 2013 Page ix Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Table of Contents
Section 20 Maker
20.1 Overview. 20-1
20.2 Function . 20-1
20.3 Design Approach . 20-1
20.4 Input and Output Files . 20-1
20.5 Functions. 20-1
20.6 Functional Overview. 20-3

 1

Appendix A Processing Scenarios
A.1 Scenarios . A-1

 1

Appendix B Makefiles and Libraries
B.1 Compilation . B-1

B.1.1 To compile the whole distribution . B-1
B.1.2 To compile only the libraries . B-1
B.1.3 To recompile a library in debug mode . B-1
B.1.4 To recompile a library in optimized mode . B-1
B.1.5 To compile a specific executable . B-1
B.1.6 To compile a specific executable in debug mode B-1
B.1.7 To compile a specific executable in optimized mode. B-1

B.2 Using Libraries . B-2
B.2.1 Development . B-2
B.2.2 Runtime. B-2

B.3 Some Development Hints . B-2
B.4 Makefile Details . B-3
B.5 Types of Makefiles . B-3

B.5.1 The Main Makefile . B-3
B.5.2 The src Makefile . B-3
B.5.3 Library Makefiles . B-3
B.5.4 Subsystem Makefiles . B-4
B.5.5 Exec makefiles . B-4

B.6 A Sample Heavily-Commented Makefile. B-4

Abbreviations & Acronyms. AB-1

Glossary. GL-1
Version 6.0 Page x March 2013

List of Figures

Figure 1-1 I-SIPS Software Top-Level Decomposition . 1-1

Figure 4-1 GSAS Layers . 4-1

Figure 4-2 Simplified GSAS Data Flow Diagram. 4-2

Figure 6-1 Top-Level Structure Chart . 6-3

Figure 6-2 MainInit . 6-4

Figure 6-3 GetControl . 6-5

Figure 6-4 ReadData . 6-8

Figure 7-1 Error Ancillary File Format . 7-8

Figure 8-1 GLAS_L0proc Structure Chart . 8-9

Figure 9-1 GLAS_L1A Structure Chart . 9-4

Figure 9-2 L1A_Mgr Structure Chart . 9-5

Figure 9-3 L1A Manager Flow Chart . 9-6

Figure 9-4 Level 1A Computations . 9-8

Figure 10-1 WFMgr Structure Chart . 10-8

Figure 10-2 ElevMgr Structure Chart . 10-11

Figure 11-1 GLAS_Atm Structure Chart . 11-5

Figure 11-2 Atm_Mgr Structure Chart . 11-6

Figure 11-3 ATM Manager - Part 1. 11-7

Figure 11-4 ATM Manager - Part 2. 11-8

Figure 11-5 Atmosphere Subsystem Processes . 11-10

Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM
Subprocesses11-11

Figure 11-7 ATM L1B Backscatter Subprocesses . 11-13

Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses 11-14

Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses 11-14

Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses 11-15

Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses 11-16

Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses. 11-17

Figure 11-13 ATM Calibration Coefficient / Profile Location / DEM Modules . . 11-17

Figure 11-14 ATM Backscatter Modules . 11-18
March 2013 Page xi Version 6.0

The GLAS Science Algorithm Software Detailed Design Document List of Figures
Figure 11-15 ATM L1B QA Statistics / Write ATM Modules 11-18

Figure 11-16 ATM 20 sec Buffering Module . 11-19

Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules 11-19

Figure 11-18 ATM Optical Properties Module . 11-20

Figure 11-19 L2 QA Statistics / Write ATM Modules . 11-20

Figure 13-1 Process Flow Diagram: Overall Process . 13-3

Figure 13-2 Process Flow Diagram: Shell Script . 13-4

Figure 14-1 Process Flow Diagram . 14-3

Figure 15-1 Process Flow Diagram . 15-6

Figure 16-1 Process Flow Diagram . 16-3
Version 6.0 Page xii March 2013

List of Tables

Table 4-1 Subsystem, Libraries and Products . 4-3

Table 5-1 Library Inter-dependencies . 5-1

Table 5-2 platform_lib Modules . 5-2

Table 5-3 cntrl_lib Modules . 5-2

Table 5-4 err_lib Modules . 5-3

Table 5-5 math_lib Modules . 5-4

Table 5-6 anc_lib Modules. 5-5

Table 5-7 file_lib Modules . 5-7

Table 5-8 time_lib Modules . 5-8

Table 5-9 prod_lib Modules . 5-8

Table 5-10 fexec_lib Modules . 5-9

Table 7-1 Required Single-Instance Keywords . 7-2

Table 7-2 Optional Multiple-Instance Keywords. 7-2

Table 7-3 PASSID Control Line Elements . 7-2

Table 7-4 passid Field Description. 7-3

Table 7-5 File Segment and Version Fields . 7-4

Table 7-6 Invalid Values . 7-6

Table 7-7 PGE Exit Status Codes . 7-7

Table 7-8 Error String Format . 7-8

Table 7-9 Error Sections . 7-8

Table 7-10 Error Severity Codes . 7-9

Table 7-11 Product Module Functionality . 7-10

Table 8-1 GLAS_L0proc Inputs . 8-3

Table 8-2 GLAS_L0proc Outputs . 8-3

Table 8-3 Supported APIDs . 8-4

Table 8-4 ANC33 Field Descriptions. 8-5

Table 8-5 ANC29 Format/Description. 8-7

Table 8-6 ANC32 Format/Description. 8-7

Table 9-1 GLAS_L1A Inputs. 9-2

Table 9-2 GLAS_L1A Outputs . 9-3
March 2013 Page xiii Version 6.0

The GLAS Science Algorithm Software Detailed Design Document List of Tables
Table 10-1 GLAS_Alt Inputs . 10-2

Table 10-2 GLAS_Alt Outputs . 10-5

Table 11-1 GLAS_Atm Inputs . 11-2

Table 11-2 GLAS_Atm Outputs . 11-3

Table 12-1 GLAS_Reader Inputs. 12-1

Table 13-1 met_util Inputs . 13-1

Table 13-2 met_util Outputs . 13-2

Table 14-1 createGran_util Inputs . 14-1

Table 14-2 createGran_util Outputs . 14-2

Table 15-1 createGran_util Inputs . 15-4

Table 15-2 createGran_util Outputs . 15-4

Table 16-1 atm_anc Inputs . 16-1

Table 16-2 atm_anc Outputs . 16-2

Table 17-1 GLAS_Meta Inputs . 17-1

Table 17-2 GLAS_Meta Outputs . 17-2

Table 18-1 GLAS_Tick Inputs. 18-1

Table 18-2 GLAS_Tick Outputs . 18-2

Table 19-1 GLAS_APID Inputs. 19-1

Table 19-2 GLAS_APID Outputs . 19-2

Table 20-1 Maker Input Files. 20-2

Table 20-2 Maker Output Files . 20-2

Table A-1 Reprocessing Scenarios . A-1
Version 6.0 Page xiv March 2013

Section 1

Introduction

1.1 Identification of Document

This document is identified as the GLAS Science Algorithm Software (GSAS) Detailed
Design Document. This is the final release of this document.

1.2 Scope of Document

The GLAS I-SIPS Data Processing System, show in Figure 1-1, provides data processing and
mission support for the Geoscience Laser Altimeter System (GLAS). I-SIPS is composed of
two major software components - the GLAS Science Algorithm Software (GSAS) and the
Scheduling and Data Management System (SDMS). GSAS processes Level-0 satellite data
and creates EOS Level 1A/B and 2 data products. SDMS provides for scheduling of process-
ing and the ingest, staging, archiving and cataloging of associated data files. This document
describes the detailed design of the GSAS component.

Figure 1-1 I-SIPS Software Top-Level Decomposition

GSAS: GLAS Science Algorithm Software : Science Data Processing and Utilities

GLAS_Atm
L1B and 2 Atmosphere

Backscatter Boundary
Layers

Cross
Sections

Optical
Depth

SDMS: Science Data Management System: Ingest, Stage, Schedule, Archive, Distribute

ANCxx
(Ancillary)

GLA00_xx
(APIDs)

GLAxx Files
(Products)

Control Files
QAPxx Files

(QA)
ANC06
(Log)

BRWxx Files
(Browse)

METxx Files
(Metadata)

GLA00_xx
(APIDs)

GLAS_L0proc

ANC29
ANC32

GLAS_L1A

L1A Alt

L1A Eng

L1A Att

L1A Atm

GLA01

GLA02

GLA03

GLA04

QAPxx

GLAS_Alt

L1B Waveform/
Range Dist

Assessemnt, Std
Range CCorr,
POD/PAD, Inst

Corr, Det Geoloc,
Calc WF

Characteristics

L1B and 2 Elevation
POD Interp,
Geoid, Trop,

Tides, Rough &
Slope, Std Spoc

Loc & Elev,
Reflectivity,

Surface Elevation
& Characteristics

Ice
Sheet
Spot &
Elev

Sea Ice
Spot &
Elev

Land
Spot &
Elev

Ocean
Spot &
Elev

GLA05 GLA06 GLA12 GLA13 GLA14 GLA15

GLA07 GLA08 GLA10 GLA11GLA09 QAPxx

GLAS_Tick

ANC50

GLA03 ANC32
MET_Util

ANC01

ANC40

ATM_Anc

ANC36

QABrowse

BRWxx

QAPxx

Create_GLA16

GLA16

GLAxx

QAPG

QAPxxGLAxx

GLAS_Meta

METxx

GLAxx

GLAS_Reader
GLAS_APID

ANCxxGLAxx

Text
March 2013 Page 1-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Introduction
1.3 Purpose and Objectives of Document

This document describes the detailed design of GSAS. It contains descriptions, flow charts,
data flow diagrams, and structure charts for each major component of the GSAS.

The purpose of this document is to present the detailed design of the GSAS. It is intended as a
reference source which would assist the maintenance programmer in making changes which
fix or enhance the documented software.

1.4 Document Organization

This document's outline is assembled in a form similar to those presented in the NASA Soft-
ware Engineering Program [Information Document 2.3a].

1.5 Document Change History

Document Name: GLAS Science Algorithm Software Detailed Design Document

Version Number Date Nature of Change

Version 0 August 1999 Original Version

Version 1 November 2000 Revised for V1 software.

Version 2 November 2001 Revised for V2 software.

Version 2.2 July 2002 Revised for V2.2 software.

Version 3.0 October 2002 Revised for V3.0 software.

Version 4.0 August 2004 Revised for V4.0 software.

Version 5.0 October 2005 Revised for V5.0 software.

Version 6.0 August 2012 Revised for V6.0.1 software.
Final edition.
Version 6.0 Page 1-2 March 2013

Section 2

Related Documentation

2.1 Parent Documents

Parent documents are those external, higher-level documents that contribute information to
the scope and content of this document. The following GLAS documents are parent to this
document.

a) GLAS Science Software Management Plan (GLAS SSMP), NASA/TM-1999-208641/
Version 3/Volume 1, August 1998, NASA/GSFC Wallops Flight Facility.

b) GLAS Science Data Management Plan (GLAS SDMP), NASA/TM-1999-208641/
Version 4/Volume 2, July 1999, NASA/GSFC Wallops Flight Facility.

c) GLAS Science Software Requirements Document (GLAS SSRD), NASA/TM-2001-
208641/Version 2.1/Volume 3, November 2000, NASA/GSFC Wallops Flight Facility.

d) GLAS I-SIPS Software Architectural Design Document, Version 2.0, October 1998,
NASA/GSFC Wallops Flight Facility.

2.2 Applicable Documents

Applicable documents include reference documents that are not parent documents. This cate-
gory includes reference documents that have direct applicability to, or contain policies bind-
ing upon, or information directing or dictating the content of this document. The following
GLAS, EOS Project, NASA, or other Agency documents are cited as applicable to this docu-
ment.

a) Data Production Software and Science Computing Facility (SCF) Standards and
Guidelines, 423-16-01, January 14, 1994, Goddard Space Flight Center.

b) EOS Output Data Products, Processes, and Input Requirements, Version 3.2, Novem-
ber 1995, Science Processing Support Office.

c) NASA Earth Observing System Geoscience Laser Altimeter System GLAS Science
Requirements Document, Version 2.01, October 1997, Center for Space Research,
University of Texas at Austin.

d) The Algorithm Theoretical Basis Document for Level 1A Processing, NASA/TM-
2012-208641 / Volume 5, June 2012, NASA Goddard Space Flight Center, et al.

e) The Algorithm Theoretical Basis Document for the GLAS Atmospheric Data Products,
NASA/TM-2012-208641 / Volume 6, July 2012, NASA Goddard Space Flight Center,
et al.

f) The Algorithm Theoretical Basis Document for the Derivation of Range and Range
Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness,
Slope, and Vegetation Heights, NASA/TM-2012-208641/Volume 7, August 2012,
NASA Goddard Space Flight Center, et al.
March 2013 Page 2-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Related Documentation
g) The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to
GLAS Laser Altimeter Ranges, NASA/TM-2012-208641/Volume 8, NASA Goddard
Space Flight Center, et al.

h) The Algorithm Theoretical Basis Document for Tidal Corrections, NASA/TM-2012-
208641/Volume 9, Scripps Institution for Oceanography, et al.

i) The Algorithm Theoretical Basis Document for Precision Orbit Determination, 2012,
University of Texas Center for Space Research, et al.

j) The Algorithm Theoretical Basis Document for Precision Attitude Determination,
2012, University of Texas Center for Space Research, et al.

k) The Algorithm Theoretical Basis Document for Laser Footprint Location (Geoloca-
tion) and Surface Profiles, 2012, University of Texas Center for Space Research, et al.

l) GLAS Standard Data Products Specification - Level 1, NASA/TM-2013-208641/Vol-
ume 13, NASA Goddard Space Flight Center, et al.

m) GLAS Standard Data Products Specification - Level 2, NASA/TM-2013-208641/
Volume14 , NASA Goddard Space Flight Center, et al.

n) GLAS Standard Data Products Specification - Data Dictionary, NASA/TM-2013-
208641/Volume 15, NASA Goddard Space Flight Center, et al.

o) GSAS User’s Guide, NASA/TM-2013-208641/Volume 17, NASA Goddard Space
Flight Center, et al.

2.3 Information Documents

The following documents are provided as sources of information that provide background or
supplemental information that may clarify or amplify material presented in this document.

a) NASA Software Documentation Standard Software Engineering Program, NASA-
STD-21000-91, July 29, 1991, NASA.

b) Science User’s Guide and Operations Procedure Handbook for the ECS Project, Vol-
ume 4: Software Developer’s Guide to Preparation, Delivery, Integration and Test
with ECS, Final 205-CD-002-002, August 1995, Hughes Information Technology Cor-
poration.

c) GLAS Science Algorithm Software (GSAS) User’s Guide, NASA/TM-2013-208641/
Volume 17, NASA Goddard Space Flight Center.

d) GLAS Standard Data Products Specification - Level 1, NASA/TM-2013-208641/Vol-
ume 13, NASA Goddard Space Flight Center.

e) GLAS Standard Data Products Specification - Level 2, NASA/TM-2013-208641/
Volume14, NASA Goddard Space Flight Center.

f) GLAS Standard Data Products Specification - Data Dictionary, NASA/TM-2013-
208641/Volume 15, NASA Goddard Space Flight Center.
Version 6.0 Page 2-2 March 2013

Related Documentation The GLAS Science Algorithm Software Detailed Design Document
g) Data Production Software, Data Management, and Flight Operations Working Agree-
ment for AIRS, AMSU-A and MHS/AMSU-B, January 1994, NASA Goddard Space
Flight Center,.
March 2013 Page 2-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Related Documentation
Version 6.0 Page 2-4 March 2013

Section 3

Design Issues

3.1 Requirements

GSAS was designed with specific and generic requirements in mind. These requirements may
be found in the GLAS Software Requirements Document. Several of the more critical require-
ments are listed here:

• The software will be designed for maximum portability and code-reuse.

• When possible, science algorithm subroutines should be coded in a manner to allow
for re-use outside of GSAS. Subroutines, for example, should pass data via arguments
and not rely on the presence of global product data structures.

• All Level 1 and Level 2 standard data products will be produced in an integer-binary
format

• Input and output products will be delimited by UTC start and stop times.

• Full processing history will be available via metadata.

• Standardized messaging and error-handling using local ancillary files will be available
to all subprocesses.

• Changeable parameters will be defined in local ancillary files.

• Implement the capability to fully and partially process and reprocess data with several
different scenarios, including:

- One processing string that starts with GLAS telemetry data (GLA00) as input to
create all output L1A products (GLA01-03).

- One processing string that starts with GPS-specific GLAS telemetry data
(GLA00_xx) as input to create all output L1A GPS product (GLA04_GPS).

- One processing string that starts with L1A altimetry data (GLA01) as input to cre-
ate an output waveform product (GLA05).

- One processing string that starts with a waveform product (GLA05) and two atmo-
sphere products (GLA09 and GLA11) as input to create output elevation products
(GLA06, 12,13,14,15).

- One processing string that starts with L1A atmosphere (GLA02) input and pro-
duces output atmosphere products (GLA07,08,09,10,11).

- One processing string that starts with a waveform product (GLA05) as input to
produce an output elevation product (GLA06).

3.2 Single vs. Multiple Executables

In the early designs of GSAS, the team incorporated a single-executable strategy. This
approach changed in V2 to focus on multiple PGEs (Product Generation Executables). A PGE
March 2013 Page 3-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Design Issues
is an executable program which performs a specific function. The ‘core’ PGEs perform spe-
cific portions of the GLAS data processing and generate deliverable GLAS Data Products
(Products). The core PGEs are accompanied by a set of utility PGEs which perform such func-
tions as creating ancillary data files, performing quality assurance and generating browse
products.

3.3 Software Reuse

The team recognized that there would be several task–specific PGEs which interface with data
created by the I-SIPS data processing system. In order to effect the reuse of this software, the
GLAS Team implemented major components and subsystems as shared libraries. These
libraries are generic such that they may be used by several different GSAS components with-
out modification. It is intended that associated utility software will be written to use these
libraries in order to maximize code-reuse and ease coding and maintenance tasks.

3.4 I/O and Unit Conversion

The software reuse approach was especially important in the design of the GLAS Product
input/output routines. The I/O routines were designed in a modular fashion to make them
available for use in software outside of the core PGEs. All input/output statements are imple-
mented in product-specific subroutines. All data transformations (scaling from integer to
floating point and vice versa) are implemented in product-specific routines. This insures con-
sistency in the conversion process methodology and forces a great deal of granularity in the
design. Additionally, care was taken to minimize the number of support routines required by
the I/O conversion processes in order to maximize the potential for software reuse.

3.5 Reprocessing and Pass-Thrus

Reprocessing and partial-processing requirements dictated great care in the design of GSAS.
In addition to executing all science algorithms consecutively, it is required that GSAS be able
to run selected science algorithms with varying input data types. Processing with a selected set
of science algorithms and products is defined as a specific processing “scenario”. The soft-
ware not only must be able to execute selected science algorithms, it is required to rewrite
selected products, partially replacing selected data. An example of this is replacing the orbit
on the primary elevation product (GLA06).

In order to accommodate the reprocessing requirement, the GSAS processing software is
designed to use “pass-thru” data management. The “pass-thru” concept dictates that common
data are passed from lower-numbered products to higher-numbered products on input. In the
design, the products can be input, output or both. Science algorithms are required to use input
data from the highest-numbered product possible and pass computed data to requisite higher-
numbered products.
Version 6.0 Page 3-2 March 2013

Design Issues The GLAS Science Algorithm Software Detailed Design Document
3.6 Data Buffering

Data buffering is a fairly complex process. GSAS is required to process data one second at a
time without buffering, except in two cases: the Atmosphere subsystem and the L1A L_Att
processing.

The Atmosphere subsystem ATBD has required that data be buffered to twenty seconds. This
buffering has been designed into the Atmosphere subsystem, such that other portions of the
software are not impacted by the added complexity. However, during the implementation it
was decided to minimize the buffering complexity by adopting a constraint such that GLA08-
11 will not be processed independently of one another. This constraint somewhat limits the
granularity of re-processing, but was approved by the GLAS Change Control Board as an
acceptable trade-off. The buffering concept is fully documented in the Atmosphere section.

L_Att processing is complicated by the issue of time delays aboard the spacecraft. All data for
one second of APID 1984 (PRAP) are not contained within a single one second packet. In
order to precisely time-align the relevant data, the L1A subsystem uses a 6-record double-
buffered algorithm to match the relevant LRS and IST data to the APID19 shot times. Given
the potential for missing data, some valid PRAP data may be lost if its corresponding APID19
data are missing.
March 2013 Page 3-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Design Issues
Version 6.0 Page 3-4 March 2013

Section 4

Design Overview

4.1 GSAS Design Overview

The GSAS processing system is designed to be both efficient and flexible. The system is
designed for operational flexibility, considering data availability constraints and reprocessing
requirements. In order to meet these requirements, the design of the software consists of up to
four functional layers which work together to perform the data processing function. See Fig-
ure 4-1. From the bottom up, the first layer is a set of generic library routines which form the
foundation of the software. The second layer is comprised of the science algorithm subsystem
libraries, which perform the actual transformation from raw data into GLAS products. The
third layer is the subsystem managers, which control the execution of the science algorithms.
The fourth and final layer is made of four core PGEs, executable “shells” which surround the
subsystem managers and provide standardized I/O, error handling, and initialization.

Success of this design, coding standards, and implementation was proven when this code was
ported from a big-endian HP/UX to little-endian Linux environment without significant
rework.

4.2 PGEs

The GSAS PGEs are:

• GLAS_L0proc, which processes GLAS L0 data;

• GLAS_L1A, which executes the Level 1A (L1A) subsystem;

• GLAS_Alt, which executes the Waveforms (WF) and Elevation (Elev) subsystems;

• GLAS_Atm, which executes the Atmosphere (Atm) subsystems;

• GLAS_Meta, which produces inventory metadata files;

• and Other PGEs which perform utility functions.

The first four PGEs are “core” PGEs. Figure 4-2 is a very simplified data flow diagram which
shows the relationship between GSAS PGEs and GLAS data products. Many ancillary files

Figure 4-1 GSAS Layers

L0
ExecutableL0

Executable

Common Libraries

Atmosphere Library Waveforms Library Elevation LibraryLevel 1A Library

Level 1A
 Manager

Level 1B and 2
Atmosphere Manager

Level 1B Waveforms
Manager

Level 1B and 2 Elevation
Manager

Science Algorithms Science Algorithms Science Algorithms Science Algorithms

L0proc
PGE

L1A PGE Atmosphere PGE Altimetry PGE

Utilitiy
PGEs
March 2013 Page 4-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Design Overview
and utilities are required for GSAS processing. These have been omitted in order to show an
overview of GSAS. Create_GLA16 was a HDF product creator which was designed and

Figure 4-2 Simplified GSAS Data Flow Diagram

GLAS_L1A

GLAS_L0proc

GLAS_Alt GLAS_Atm

GLA00
APIDs

GLA01 GLA02 GLA03

GLA05 GLA06

GLA12

GLA13GLA14

GLA15

ANC29

GLA07 GLA08

GLA09 GLA10

GLA04

GLA16GLAxx

ANC32

GLAS_GPS

ANC39

Create_GLA16
Version 6.0 Page 4-2 March 2013

Design Overview The GLAS Science Algorithm Software Detailed Design Document
tested, but no never approved for production.

4.3 Files

Throughout this document, files are referenced as one of two types: GLA or ANC. GLA files
are, for the most part, fixed-length, integer-binary format Product files containing Level 0-2
GLAS science data. GLA files are both input for and output to GSAS PGEs. ANC files are
requisite multi-format ancillary files. Some are supplied by the science team; others are
received from external data providers. The prime difference between GLA and ANC files are
that GLA files are deliverable data products, whereas ANC files are not. These files are
detailed in the GLAS Data Management Plan and GLAS Data Product Users Guide.

4.4 Science Algorithms

GSAS science algorithms are published in the Algorithm Theoretical Basis Documents
(ATBD) provided by the GLAS Science Team. The resulting code is grouped into four ATBD
subsystems separated by scientific discipline. These subsytems, science data products, and the
science algorithm libraries are listed in Table 4-1.

The subsystems are designed such that data required by each subsystem is available from a
product (data file) written by a preceding subsystem. As a result there is very little data depen-
dence between the subsystems.

Associated with each ATBD subsystem is a corresponding Subsystem Manager. These Man-
agers use control input to determine what processes to execute within the subsystem and what
data to write.

4.5 Utilities

In addition to the core PGEs, there are several utility PGEs which perform various data trans-
formations and computations. These utilities use the same core library routines as the core
PGEs. There are two main types of utilities:

• Utilities executed infrequently – based on static or near-static input. Examples are:

- Reference orbit groundtrack file creation

- Create DEM file

- Ingest and reformat geoid file

Table 4-1 Subsystem, Libraries and Products

Subsystem Library Output Products

L1A Processing l1a_lib GLA01-04

Waveform Processing wf_lib GLA05

Atmosphere Processing atm_lib GLA07-11

Elevation Processing elev_lib GLA06,12-15
March 2013 Page 4-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Design Overview
- Create regional masks data set

- Create global and regional load tide grids

- Assist in verifying product content

- Assist in processing spacecraft test data

• Utilities executed routinely as part of daily production processing. Examples are:

- Calculate granule start times and ascending node times

- Create level 0 index files

- Subset Meteorological data files

- Create Browse products

- Validate ANC32 GPS files

- Verify QA products
Version 6.0 Page 4-4 March 2013

Section 5

Foundation Libraries

The base level of GSAS software is packaged as a collection of core library routines. These
libraries are coded in a generic manner such that all GSAS software can make use of the func-
tionality. This design maximizes code reuse and all inherent advantages.

Library code is implemented in separate directories and grouped by functional area. A single
makefile in each library directory will compile the code into a dynamically-linked shared
library. A “master” makefile will compile all the libraries and create the final binaries in one
step. See the GSAS User Guide for details on file layout and compilation specifics.

A hierarchy of dependencies exist between the libraries. The order in which libraries are com-
piled is important since libraries may depend upon other libraries for support routines. This is
not relevant if the developer uses the supplied cascading makefile, but the developer should be
aware that these dependencies exist. The dependency structure is illustrated in Table 5-1.

5.1 The Platform Library (platform_lib)

platform_lib is the most basic library in the foundation libraries. Nearly all GSAS code uses
routines from the platform library. The purpose is to provide consistent datatypes across all

Table 5-1 Library Inter-dependencies

To build... The following libraries are required...

platform_lib <none>

time_lib platform_lib

cntrl_lib platform_lib

err_lib platform_lib,

math_lib platform_lib

anc_lib platform_lib, cntrl_lib, err_lib, math_lib

prod_lib platform_lib, cntrl_lib, err_lib

file_lib platform_lib, cntrl_lib

geo_lib platform_lib, cntrl_lib, err_lib, math_lib, anc_lib

exec_lib platform_lib, cntrl_lib, err_lib, math_lib, anc_lib
March 2013 Page 5-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Foundation Libraries
GSAS software, to provide a place for storing constants, and to provide compiler-dependent
F90 routines. Modules included in the platform_lib are described in Table 5-2.

5.2 The Control Library (cntrl_lib)

cntrl_lib provides control-related functions to GSAS software. Components include routines
for parsing “keyword=value” formatted files, string functions, user-interface functions, and a
common file control datatype. Modules included in the cntrl_lib are described in Table 5-3.

Table 5-2 platform_lib Modules

Module Description

c_compare_mod Generic functions write differences (if any) between arguments.

const_atm_mod Defines atmosphere-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_elev_mod Defines elevation-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_glob_mod Defines common global constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_l1a_mod Defines L1A-related constants. These constants are initialized as parame-
ters or have values read from an ancillary file.

const_util_mod Arguments for utility programs

const_wf_mod Defines waveform-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

kinds_mod Defines the basic GLAS datatypes, for example 2 byte integers, 4 byte
integers, 4 byte reals, and 8 byte reals.

lnblnk Returns position of the last non-blank character in a string. Provided for
those F90 implementation which do not support this function.

types_mod Defines common complex GLAS datatypes, including structures. (depreci-
ated)

vers_platform_mod Version information for the library.

Table 5-3 cntrl_lib Modules

Module Description

centertext_mod Centers a text string within an 80 character padded string.

compare_kval_mod Compares keyvalues against label. Strings are converted to uppercase
before a comparison is performed. This ensures that keyvalues are not
case-sensitive.

doubleline_mod Prints an 80 character double line to the supplied IO unit.

fStruct_mod Defines a generic GLAS file info structure. Also contains routines to initial-
ize and print a file info structure.
Version 6.0 Page 5-2 March 2013

Foundation Libraries The GLAS Science Algorithm Software Detailed Design Document
5.3 The Error Library (err_lib)

err_lib provides status and error-related functions to GSAS software. err_lib is designed to
read messages from an ancillary file. Errors and status messages (henceforth referred as
errors) are reported to an output ancillary file (if available) and to standard output (stdout).
Errors have negative numeric designations; status messages have positive designations. Errors
are designed to be configurable as to the severity of the error and frequency of printout.

Modules included in the err_lib are described in Table 5-4.

find_keyword_mod Searches for the provided keyword within a set of provided values.

getans Reads a character of input, and validates that input from a list of accept-
able values.

gsas_toupper Replacement subroutine for “toupper” which conflicted with an HDF-EOS
routine of the same name. Converts alpha characters to upper case.

keyval_mod Defines a keyword=value datatype.

multimenu_mod Returns a set of logicals based on user menu selection

parse_keyval_mod Parses keyword and value components from argument string.

read_line_mod Reads a line of input, skipping comments (#).

singleline_mod Prints an 80 character single line

strcompress Compresses multiple spaces to a single space within a string

strtrim Trims white space from around a text string

tolower Converts alpha characters to lower case

writebanner_mod Prints banner at start of processing

vers_cntrl_mod Version information for the library.

writebanner_mod Prints banner at start of processing

Table 5-4 err_lib Modules

Module Description

ANC06_mod Writes an error message to the ANC06 unit in a standard format. In order
to avoid cyclic dependencies, ANC06_mod will not use GLAS Error_mod
upon encountering an error (since GLAS Error WILL use ANC06_mod). A
result code will be returned, but the caller must act upon it, if necessary.

ErrDefs_mod Defines the GSAS error data structure.

ErrorBoot_mod Initializes the error to generic values before the ancillary error file is read.

Table 5-3 cntrl_lib Modules (Continued)

Module Description
March 2013 Page 5-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Foundation Libraries
5.4 The Math Library (math_lib)

math_lib provides standard math routines to GSAS software. Components include bilinear
interpolation and matrix multiplication. Modules included in the cntrl_lib are described in
Table 5-5.

ErrorInit_mod Perform initializations for the Error and Status function by extracting the
error variables from argument error strings. This routine does dynamic
array allocation so that the number of errors is not fixed. A routine is also
provided to print the parsed errors.

GLAS_Error_mod Receives an error number as an argument, looks up the error, writes the
error to ANC06 and stdout, and returns a severity code to the calling pro-
cess.

WriteError_mod Formats an error and writes to ANC06 and stdout.

compare_err Error comparison routine for qsort.

vers_err_mod Version information for the library.

Table 5-5 math_lib Modules

Module Description

c_bilin_interp_mod Calculates the value of properties at a point by doing a bilinear interpola-
tion of the 4 points straddling it.

c_linear_smooth_mod Implements a smoothing function over a linear array

c_matmul_mod Returns the product of two matrices.

c_matrix_smooth_mod Implements a smoothing function over an n x m matrix array

c_minmaxmean_mod Provides routines to compute statistics for the given parameter.

c_quadratic_mod Solves a quadratic equation up to rank of 4.

conversions_mod Provides routines to convert between and swap different datatypes.

onepass_avg_mod One-pass algorithm for accumulating data needed to compute the stan-
dard deviation without the problems that can be caused by roundoff errors
when using the simpler though numerically equivalent equation.

polar_stereographic_m
od

 Polar-stereographic coordinate transform module.

w_add2hst_mod Computes histogram bin index.

vers_math_mod Version information for the library.

w_add2hst_mod Computes histogram bin index.

Table 5-4 err_lib Modules (Continued)

Module Description
Version 6.0 Page 5-4 March 2013

Foundation Libraries The GLAS Science Algorithm Software Detailed Design Document
5.5 The Ancillary Library (anc_lib)

anc_lib provides routines to read and parse GLAS ancillary files. GSAS ancillary files are of
various formats. Some ancillary files contain relatively static data while others contain
dynamic data.

Modules included in the anc_lib are described in Table 5-6.

Table 5-6 anc_lib Modules

Module Description

anc01_met_mod Reads meteorological (met) header data into a global data structure.
Structures exist for two met header files. Also verifies the existence of
associated met data files and provides a routine to write the met header
information to stdout.

anc04_quat_mod Definitions for ANC04 Quarternions Matrix.

anc07_mod Parses an ANC07 file and calls specific routines to read each parsed sec-
tion.

anc07_atm_mod Reads and parses atmosphere-related constants from a constants ancil-
lary file.

anc07_glob_mod Reads and parses global constants from a constants ancillary file.

anc07_elev_mod Reads and parses elevation-related constants from a constants ancillary
file.

anc07_err_mod Reads and parses error constants from a constants ancillary file.

anc07_glob_mod Reads and parses global constants from a constants ancillary file.

anc07_l1a_mod Reads and parses L1A-related constants from a constants ancillary file.

anc07_stat_mod Reads and parses status constants from a constants ancillary file.

anc07_wf_mod Reads and parses waveform-related constants from a constants ancillary
file.

anc08_pod_mod Contains Precision/Predict Orbit Determination (POD) record length and a
flag to determine if POD is of predicted or precision quality.

anc09_pad_mod Contains Precision Attitude Determination (PAD) record length, public
data structure, availability flag, and routines to initialize and read PAD
records.

anc12_dem_mod Contains Digital Elevation Model (DEM) record lengths, unit number, pub-
lic LandMask, and routines to read, calculate and print the DEM values.

an c13_geoid_mod Contains the Geoid record length, public grid and routines to initialize and
read the geoid.

anc16_ltide_mod Contains the record length and unit of the load tide ancillary file.

anc17_otide_mod Contains the record length and unit of the ocean tide ancillary file.

anc18_stdatm_mod Reads and stores the standard atmosphere ancillary file.
March 2013 Page 5-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Foundation Libraries
anc22_track_mod Read and store anc22 type NOSE information

anc23_nose_mod Read and store anc23 type NOSE information

anc25_gpsutc_mod Reads and parses the GPS/UTC time conversion file.

anc27_surftype_mod Reads and stores the surface type file.

anc29_index_mod Reads, writes, and stores the GLAS_L0proc index file.

anc30_aer_mod Reads and stores the global aerosol map ancillary file.

anc31_trop_mod Reads and store the global aerosol trop map ancillary file.

anc32_gps_mod Reads, writes and stores the GLAS_L0proc GPS correlation file.

anc33_utc_mod Reads the UTC time conversion file.

anc35_ozone_mod Reads and stores the ozone file.

anc36_atm_mod Reads the atmosphere calibration file.

anc38_msf_mod Reads the atmosphere multiple scattering factor file.

anc41_ephim_mod Contains definitions for JPL ephemeral file.

anc45_meta_mod Contains definitions and routines for ANC45 product metadata templates.

anc46_meta_mod Contains definitions and routines for ANC46 anc metadata templates.

anc47_pds_mod Contains definitions and routines for PDS/EDS construction record.

anc51_srtm_mod Equivalent to SRTM tracker_reader module, which provides access soft-
ware for SRTM track files.

anc52_corr_mod Reads and stores load range correction tables.

anc53_aerosol_mod Reads and stores the aerosol data.

anc54_dem_mod Reads and stores hi-rest ICESat DEM file.

anc55_mss_mod Reads and stores mean sea surface file.

anc56_pt_mod Reads and stores the Pole Tide file.

anc57_bathymetry_m
od

Reads and stores the bathymetry file.

anc58_gtrk_mod Reads and stores the reference groundtrack files.

anc59_ptg_mod Reads and stores the pointing table.

anc_hdr_mod Reads and writes the limited header portion of selected ancillary files.

c_calcsatCorr_mod Calculates saturation corrections and sets the correction flag.

inst_state_mod Contains routines for instrument state change detection.

Table 5-6 anc_lib Modules (Continued)

Module Description
Version 6.0 Page 5-6 March 2013

Foundation Libraries The GLAS Science Algorithm Software Detailed Design Document
5.6 The File Library (file_lib)

file_lib provides standard routines to open and close GSAS files using the passed file info
structures. Modules included in the file_lib are described in Table 5-7.

5.7 The Time Library (time_lib)

time_lib is the only significant portion of GSAS source code implemented in C. It is an imple-
mentation of a GSFC time library and used by GSAS with little to no modification. time_lib
provides routines for converting to/from various time formats. Modules included in the
time_lib are described in Table 5-8.

anc_hdr_mod Reads and writes the limited header portion of selected ancillary files.

vers_anc_mod Version information for the library.

Table 5-7 file_lib Modules

Module Description

cksum.c Calculates POSIX checksum (C)

CloseFile_mod Closes a file.

OpenFInFile_mod Opens an input file.

OpenFOutFile_mod Opens an output file.

parse_fname_mod Parses the standard GSAS file naming convention.

vers_file_mod Version information for the library.

Table 5-6 anc_lib Modules (Continued)

Module Description
March 2013 Page 5-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Foundation Libraries
5.8 The Product Library (prod_lib)

prod_lib provides routines to read, write, and convert GLAS products. The routines (and con-
cepts) are fully described in the Common Functionality section. Modules included in the
prod_lib are described in Table 5-9 (where xx = a GLAS product number [01-15]).

Table 5-8 time_lib Modules

Module Description

dateinterface Has routines for the following functions:
-add two arrays holding times into a third array
-add a yymmdd and a day
-add a yyyymmdd and a day
-find the difference between two yymmdd's in days and seconds
-find the difference between two yyyymmdd's in days and seconds
-convert between yyyymmdd, hms, mjd, fday, and mjdsec
-convert yymd fday to J2000 days and fday
-convert J2000 days and fday to yymd fday
-convert yymmdd or yyymmdd to yyyymmdd
-convert yyyymmdd to yymmdd
-convert mjd to yymmdd
-convert mjd to yyyymmdd
-convert yymmdd to mjd
-convert yyyymmdd to mjd
-convert hhmmss to fday
-convert fday to hhmmss
-convert fday to hm with decimal seconds
-convert yyyymmdd to ddd
-convert yyyymmdd to yyyyddd
-convert yyyyddd to yymmdd
-convert mjd to mjdsec
-convert mjdsec to mjd
-convert mjdsec to sec
-check if yyyy is a leap year

j2000to19char_mod Converts between J2000 seconds and 19 character ASCII representa-
tions.

vers_time_mod Version information for the library.

Table 5-9 prod_lib Modules

Module Description

GLA00_mod Contains routines for reading GLA00 APIDs.

GLAxx_mod Contains routines for reading and writing GLAxx product data structures.

GLAxx_alg_mod Contains public data structures for GLAxx algorithmdata and routines to
initialize and print the data structure.
Version 6.0 Page 5-8 March 2013

Foundation Libraries The GLAS Science Algorithm Software Detailed Design Document
5.9 The Exec Library (exec_lib)

exec_lib contains high-level routines which are common to each of the GSAS PGEs. Much of
the code which was in the original single executable has been modified and moved into this
library. Modules included in the exec_lib are described in Table 5-10.

GLAxx_prod_mod Contains public data structures for GLAxx product data and routines to ini-
tialize print the data structure.

GLAxx_scal_mod Contains public data structures for GLAxx scale data and routines to ini-
tialize and print the data structure. Also contains routines to convert from
product units to algorithm units and the reverse.

GLAxx_Pass_mod Passes common data from a lower-numbered product/algorithm data
structure to higher-numbered product/algorithm data structures.

GLAxx_print_mod Prints product data structures in integer/floating point format (as opposed
to hexadecimal).

GLAxx_flags_mod Contains routines for packing and unpacking GLAxx flags.

common_flags_mod Contains routines for packing and unpacking common flags.

common_hdr_mod Contains routines to read and write common elements of the product
headers.

get_numhdrs_mod Searches through product headers to find number of headers.

prod_def_mod Contains record sizes for all GLAxx products.

qap_version_mod Write qap version to qap file

vers_prod_mod Version information for the library.

Table 5-10 fexec_lib Modules

Module Description

C_CalcNrg_mod Calculate the energy of the received and transmitted pulses. Here
because it is shared between two subsystems.

CheckOutput_mod Loops through the file type structures to determine if any more output is
requested.

CloseFiles_mod Closed any opened files, based on file control structure.

CntlDefs_mod Initializes common control definitions.

MainInit_mod Performs common initialization functions.

MainWrap_mod Performs common wrap-up functions.

OpenFiles_mod Opens requested files, based on file control structure.

ReadAnc_mod Reads ancillary files, based on file control structure.

Table 5-9 prod_lib Modules (Continued)

Module Description
March 2013 Page 5-9 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Foundation Libraries
ReadData_mod Reads data from opened files in a time-synchronous fashion.

StdCntl_mod Parses common control instructions from a Control files.

Write_AncVer_mod. Writes ancillary file version info to ANC06.

Write_LibVer_mod Writes library version info to ANC06.

C_Retreive_HiRes_D
EM_mod

Retrieves surface elevation from high resolution DEM data source

c_nose_mod Contains routines to assigning data to NOSE rectangles.

check_out_time_mod Utility function for verifying continuity of time on output data products.

check_recndx_mod Utility function for comparing start/stop times of granules.

com_hdr_update Updates the header data structures for product files.

fCntl_mod Defines file control structures.

get_fileindex_mod Utility function for determining file type from filename.

get_secstart_mod Finds start of control file section.

parse_filecntl_mod Parses file information from control file.

passid_mod Holds passid information parsed from the control file.

pastendofperiod_mod Utility routine to determine if current time is past the end of the period.

set_inst_state_mod Sets the Instrument State flag.

vers_exec_mod Version information for the library.

Table 5-10 fexec_lib Modules (Continued)

Module Description
Version 6.0 Page 5-10 March 2013

Section 6

GSAS Core PGEs

6.1 Function

GSAS core PGEs reside at the uppermost level of the GSAS data processing software. These
executables are responsible for controlling the data processing. They perform initializations,
set constants, read ancillary data, handle data input and output, and provide a global error
facility. All GSAS core PGEs are structured the same, since they are basically instantiations of
a reference PGE model. As such, this section will document that reference design rather than
each individual PGE. Changes from this reference design will be documented in the section
for each specific PGE.

6.2 Requirements

Most requirements are PGE-specific and defined in the appropriate PGE section. There are
several high-level requirements which the core PGE approach satisfies.

• A control file will be used to control processing and specify input and output files.

• Files will be opened and closed within the PGE and its associated managers. Process-
ing routines will not open or close files.

• Common values will be used to designated missing or invalid data on GLAS products.

• A common error/status facility will be used.

• All error/status messages will be logged and written to a log file (ANC06).

• Version information will be logged.

• Summary statistics such as number of records read/written and the number occur-
rences of each type of status/error will be computed and logged.

• Reference data subject to change will be stored and retrieved from change-controlled
ancillary files (ANC07).

6.3 Approach

• The system start and stop will be controlled by each respective executable at the
uppermost level.

• Processing will be performed one record at a time, though individual subsystems may
buffer multiple records before processing. Multiple input products will be time-syn-
chronized. (GLAS_L0proc is an exception to this.)

• Control flags will determine which subsystem or subsystem process will be executed.

• Input and output data will be delimited by start and stop times.

• The system will provide for partial processing and reprocessing scenarios.
March 2013 Page 6-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GSAS Core PGEs
• In order to maximize code reuse and ease-of-use, PGEs will be designed to use stan-
dard facilities provided by the GSAS libraries.

6.4 Design

Figure 6-1 shows the top-level structure chart of a generic GSAS core PGE. The basic algo-
rithm for a GSAS PGE is:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read static ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Until all specified data are processed...

- Read Data (ReadData)

- Process Data (Manager)

- Write Data (Manager)

• Close all files and generate summaries (MainWrap)

The main routine for a GSAS PGE is local to the PGE - in other words, the source code is
located within the PGE subdirectory, not within a library. The main PGE routine will perform
other functions besides calling the appropriate subroutines. Code within the main routine will

• Initialize flags indicating start and end of processing

• Write its version number

• Write any associated subsystem version info

• Set a status code indicating success or failure on program termination

Additionally, in the case of a PGE with no Manager, subroutine calls to processing code and
actual data transformations may be located within the main routine.

Although not shown on the structure charts, nearly every GSAS routine calls glas_error, the
standard error facility, to report error and status messages.

Subsequent sections will identify and explain the functionality of each of the structure chart
elements.
Version 6.0 Page 6-2 March 2013

GSAS Core PGEs The GLAS Science Algorithm Software Detailed Design Document

6.4.1 MainInit

MainInit is an element of the exec_lib. The MainInit structure chart is show in Figure 6-2.
MainInit performs the following functions:

• Initializes the ANC06 output channel to stdout in order to display initialization error
messages to the console.

• Initializes the default error subsystem. (error_boot)

• Initializes the standard file control structures. (fCntl_Init)

• Initializes Product scaling values. (GLAxx_scal_init)

• Initializes Algorithm data structures to default values. (GLAxx_alg_init)

• Initializes Product data structures to default values. (GLAxx_prod_init).

Figure 6-1 Top-Level Structure Chart

Core PGEMainInit

eCntrl_Init

GetControl

OpenFiles

Print_Cntl ReadANC

Write_AncVer

ReadData

Manager(s)

MainWrap

Write_LibVer
March 2013 Page 6-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GSAS Core PGEs
6.4.1.1 Error_Boot

The error_boot routine is part of the error_lib. It initializes the glas_error facility with a “boot-
strap” set of error codes in order to facilitate error handling during the initialization and file-
opening phases of execution. These “bootstrap” errors will be overwritten once the ANC07
error file is read later in execution.

6.4.1.2 fCntl_Init

fCntl_Init is within the fCntl_mod entry of the exec_lib. fCntl_mod contains both file-related
parameters and subroutines. These parameters include:

• Maximum number of file types

• Maximum number of files per type

• Numeric indices for each filetype

• ASCII representation for each filetype

• Control file name

• An structure of arrays containing information regarding each file used in processing.

fCntl_Init initializes the file information structures with information regarding direct/format-
ted access, record lengths, multi-granule flags, granule index, and current record number.

This module is very important to a maintenance programmer if he should need to add a new
file type to the GSAS software. Be aware, that the order of the definitions within fCntl is crit-

Figure 6-2 MainInit

MainInit

GLAxx_scal_init

error_boot

fCntl_Init

GLAxx_alg_init

GLAxx_prod_init
Version 6.0 Page 6-4 March 2013

GSAS Core PGEs The GLAS Science Algorithm Software Detailed Design Document
ical. Changes in one internal data structure should be mirrored by like changes within the
other associated data structures. Also be aware that grouping of the file types is important.
New products should be added within the product subsection (GLA01-GLA16). Likewise,
new APIDs should be added within the APID subsection (APID12-APID1984).

6.4.1.3 GLAxx_scal_init, GLAxx_prod_init, GLAxx_alg_init

These routines are elements of the prod_lib. There exist a set of these routines for each GLAS
product. The scal_init routines initializes a product-specific data structure to scale values
which are used when converting between product and algorithm units. The prod_init and
alg_init routines initializes the respective product and algorithm data structures to initial and/
or invalid values.

6.4.2 eCntl_Init

eCntl_Init is a routine within eCntl_mod, which is local to each PGE. eCntl_mod contains the
local execution flags which the Manager uses to control process flow. eCntl_Init initializes
these flags. These flags are later set by GetControl based on values within the control file.

6.4.3 GetControl

GetControl is a routine local to each specific PGE. This routine reads and parses the control
file. It’s structure chart is in Figure 6-3. GetControl performs the following functions:

• Initializes standard control structures (init_StdCntl)

• Opens the control file. (OpenCF)

• Reads the control file until it finds the specified section header.

• Reads the section contents, parsing local and standard (parse_StdCntl) control file
entries.

• Sets control flags based on control file entries.

• Closes the control file at the end of the section.

• Performs sanity-checking.

Figure 6-3 GetControl

GetControl

init_StdCntl

OpenCF Parse_StdCntl

Sanity_Check
March 2013 Page 6-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GSAS Core PGEs
Of particular importance in the routine is the fact that it parses control entries which are spe-
cific to each individual PGE. Execution and option flags are defined in a local eCntl module.
GetControl sets these flags based on parsed control values. If a maintenance programmer
needs to add another control flag to a PGE, he must make changes in both eCntl_mod and
GetControl.

6.4.3.1 Init_StdCntl

Init_StdCntl is a subroutine within the StdCntl_mod of the exec_lib. It initializes the text rep-
resentation of standard (i.e.: common to all PGEs) control file elements.

6.4.3.2 OpenCF

OpenCF is a subroutine within the StdCntl_mod of the exec_lib. It uses a system call to get
the value of the control file argument. Platform-specific defines are used here to set the correct
position of the argument within the argument list. After getting the name of the control file,
OpenCF opens the specified file and scans the file for the start of the specified section. If the
control file cannot be opened, a fatal error is returned to the calling process.

6.4.3.3 Parse_StdCntl

Parse_StdCntl is a subroutine within the StdCntl_mod of the exec_lib. It takes control file
entries common to all PGEs and parses them, filling the appropriate data structure. In the case
of INPUT_FILE and OUTPUT_FILE controls, the routine will attempt to decode the filetype
from the filename and fill the appropriate file control structure.

6.4.3.4 Sanity_Check

Sanity_Check is a subroutine within the local GetControl module. It will examine the parsed
execution flags and file control structures in order to determine if the control file specifica-
tions are valid for the specific PGE. Each PGE has a set of pre-determined rules which dictate
what combination of flags and files are appropriate for the defined execution scenarios. Errors
will be generated if Sanity_Check finds a problem with the control file configuration.

6.4.4 OpenFiles

OpenFiles is an element of the exec_lib. It opens the first granule of each filetype specified in
the control file. The files are opened as direct or formatted based on information in the file
control structure. Normally, OpenFiles assigns a unit to each file it opens and reassigns that
same unit to each subsequent granule of that particular filetype. However, in the case of multi-
file granules (indicated by a flag in the file control structure), OpenFiles will assign unique
units to each file of the first granule and open all files of the first granule. Those files which
are not opened are checked for existence and readability.

6.4.5 PrintCntl

PrintCntl is a subroutine of the StdCntl module within the exec_lib. It writes the control file
contents to the ANC06 log file.

6.4.6 Write_LibVer

Write_LibVer is an element of the exec_lib. It writes foundation library version information to
the ANC06 log file.
Version 6.0 Page 6-6 March 2013

GSAS Core PGEs The GLAS Science Algorithm Software Detailed Design Document
6.4.7 ReadAnc

ReadAnc is an element of the exec_lib. It calls subroutines within the anc_lib to read all
requested static ancillary files. The contents of these files are kept in core memory, and, by
definition, only read once per execution.

Some special cases exist within ReadAnc:

• If available, the first two ANC01 header files are read via ReadAnc, but subsequent
ANC01 header files are read in a time-synchronized fashion within ReadData. Subsys-
tem-specific MET routines read the actual MET science data.

• Precision Orbit Determination files (ANC08) are not read, but the number of POD
files available are counted and this count is stored in a global variable within
anc08_pod_mod for later use. A POD data structure is initialized based on the number
of files available.

• Precision Attitude files (ANC09) are via a special routine which converts the provided
GPS time to UTC time. A flag is set which can be used to determine if valid PAD data
exist.

• ANC29 and ANC32 files are read into memory and sorted to account for potential
PDS boundary problems. The ANC29.32 design is documented in more detail in the
GLAS_L0proc and GLAS_L1A sections.

6.4.8 Write_AncVer

Write_AncVer is an element of the exec_lib. It writes any version information regarding ancil-
lary files which were read to the ANC06 log file.

6.4.9 ReadData

ReadData is an element of the exec_lib. It calls subroutines to read one second of requested
dynamic ancillary and product data in a time-synchronized fashion. It also seemlessly handles
end-of-granule conditions and sets file-specific data availability flags in the appropriate file
control structure. Figure 6-4 shows the structure chart for ReadData.

Data are read in a logical order which allows lower-numbered products to pass values forward
to data structures of higher-level products. See Section 6.5 for more information regarding the
“pass-thru” concept and product/algorithm data conversion.
March 2013 Page 6-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GSAS Core PGEs
The time-synchronization methodology used by ReadData is rather complex. The following
algorithm will attempt to describe the procedure:

• Save time and index of last data read.

• Initialize global time and index to invalid

• Loop through each input file type we are to synchronize

- Set data time and index to invalid

- Get the current granule index of the current filetype

- Set the readnew flag to false.

- Loop within the current granule of the current filetype unless the file is not avail-
able or we reach EOF

Figure 6-4 ReadData

ReadData

ReadRecord InvalidRecord read_met_hdr

ReadGLA00

ReadGLAxx

GLAxx_P2A

Pass_GLAxx

ReadANC09

next_granule

GLAxx_prod_init

GLAxx_alg_init

read_gla00_index read_apid19 read_apid25

read_apid35

read_apid55
Version 6.0 Page 6-8 March 2013

GSAS Core PGEs The GLAS Science Algorithm Software Detailed Design Document
- Read a data record (ReadRecord)

- Cycle if EOF

- Cycle if data time < specified start time

- Set sync time to data time of record we just read

- Exit Interior Loop

- We exit exterior loop when we have a sync time and data time >= sync time +-
limit. If we exceeded the limit, decrement the counter and fill the record with inva-
lids. Write error message regarding data gap.

• Check all input files from which we sync for EOF. If all EOF, then set end-of-process-
ing flag and return to calling routine.

• If requested, synchronize ANC09 with data time.

• If requested, synchronize ANC01 with data time. Since we keep 2 ANC01 header files
in memory, move the 2nd to the 1st and read a new one into the 1st until data are syn-
chronized.

In addition, since some GSAS records contain data whose duration exceeds one second, there
is a algorithm used to determine when a record of a particular data type has exceeded it’s
“validity”. This allows for the integration of one second data with multi-second data records.
Once the defined period of validity has passed, ReadData replaces the current data with new
data, or, if no data can be synchronized, invalid data to account for gaps.

Note that custom read subroutines are required for APIDs 19, 25, 35 and 55. These are
required since these APIDs have data misalignments while prevent them from being read in
the standard way.

6.4.9.1 ReadRecord

ReadRecord is an internal subroutine to ReadData. It calls file-specific routines to read one
second of the requested data type. ReadRecord will seemlessly move across multiple gran-
ules, if necessary. If unsuccessful in reading the requested record, it will set the specific data
structure to invalid values and return a flag indicating failure.

6.4.9.2 next_granule

next_granule is an internal subroutine to ReadData. It closes the current granule and open the
next, if available. File control structures are set to indicate success or failure.

6.4.9.3 InvalidRec

InvalidRec is an internal subroutine to ReadData. It calls file-specific routines to set the data
structures of the target file to invalid values.

6.4.10 Managers

Managers are routines local to each specific PGE. Managers control and execute process-spe-
cific tasks. The use of a Manager routine in a PGE is entirely optional. The purpose of a man-
ager is to provide a software layer between the fairly generic main routine and the task-
specific subroutines or subsystem libraries. A good rule of thumb is to use a Manager for com-
March 2013 Page 6-9 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GSAS Core PGEs
plex processing jobs, but to simply insert code into the main routine for relatively simple
tasks.

6.4.11 MainWrap

MainWrap is an element of the exec_lib. This routine is called just before the end of execution
to close any open files and write summary data to ANC06. This summary data includes:

• The number of each type of status message encountered.

• The number of each type of error message encountered.

• The number of records read for each input file used.

• The number of records written for each output file created.
Version 6.0 Page 6-10 March 2013

Section 7

Common Functionality

GSAS code was designed for maximize software reuse. The foundation libraries provide a
code base which the developer can use to ensure consistency and maximize code reuse among
GSAS PGEs. The libraries provide standardized routines for such things as parsing control
files, reading constants files, and reporting error/status messages. By following GSAS con-
ventions, PGEs can basically take advantages of these services “for free.” The previous sec-
tion introduced the components of the foundation libraries. This section describes the
functionality provided by these libraries.

7.1 Control File Parsing

GSAS PGEs are designed to use Control files as the interface with the user (or controlling
process). Control files provide dynamic control information to PGEs.

PGEs are designed to take the name of the control file as a command-line argument during
each invocation of the PGE. Most PGEs should terminate with a fatal error if the command-
line argument is missing, the specified file does not exist, or the file is unreadable. The excep-
tion to this rule is when the PGE provides a rudimentary user-interface when invoked without
a control filename. GLAS_Reader and GLAS_APID, utilities, are currently the only instances
of this exception.

GSAS control files are designed to be part of a larger control file used by one or more PGEs
(or even PGEs outside of GSAS!). The larger control file includes sections which identify the
PGE that will perform the task requiring the inputs contained in the section. Each section is
bounded by an "=" sign in column 1, followed by the PGE name that requires the control
inputs. Exact section names will be shown in the PGE-specific control file section of this doc-
ument.

All GSAS control files are created in standard GSAS “keyword=value” format. This format is
text-based and consists of a line containing a keyword/value pair delimited by an equal sign
(=). The ordering of the keywords is not relevant but should follow a convention for consis-
tency. Multiple instances of certain keywords are allowed. The keyword is not case sensitive.
Spaces are allowed, but not required. Comment lines must be prepended by a “#” character.
The keyword is limited to 255 characters; the value is limited to 255 characters.

PGE sections within a control file contain both common and process-specific information.
The process-specific portions of control files will be provided within the documentation for
each specific PGE. This section will document the common elements of the control files.
March 2013 Page 7-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Common Functionality
Within a control file section, some information is required, other is optional. Required single-
instance keywords (Table 7-1) include:

Optional multiple-instance keywords (Table 7-2) include:

7.1.1 PASSID Specification

A PASSID section is required in the control file when creating GLA products. There should
be one instance of the following keyword/values for all tracks which fall within the minimum/
maximum time of the data being processed. This information is required for GLAS_L1A,
GLAS_Alt, and GLAS_Atm. This information is NOT required for GLAS_L0proc or other
utilities.

PASSID=revolution_num<sp>pas-
sid<sp>start_time<sp>stop_time<sp>equator_crossing_lon<sp>no
se_path_number.

Descriptions of the PASSID elements are provided in Table 7-3.

Table 7-1 Required Single-Instance Keywords

Keyword Value

TEMPLATE_NAME= Name of the control file template.

EXEC_KEY= Unique (per day) execution key

DATE_GENERATED= Date the control file was generated.

OPERATOR= Operator who generated the control file.

PGE_VERSION= Version number of the target PGE.

Table 7-2 Optional Multiple-Instance Keywords

Keyword Value

PASSID= Pass-related information

TRACK= Track [number start_time stop_time]

INPUT_FILE= Input file [filename start_time stop_time]

OUTPUT_FILE= Output file [filename start_time stop_time]

WRITE_CONST= Signals that the specified constants should be written to ANC06.

Table 7-3 PASSID Control Line Elements

Element Description

revolution_num integer, containing the auto-incrementing rev number.

passid 11-byte character, further described below.

start_time double-precision float, containing J2000 UTC time in seconds.
Version 6.0 Page 7-2 March 2013

Common Functionality The GLAS Science Algorithm Software Detailed Design Document
The eleven-byte passid field will be treated as follows: prkkccctttt. Descriptions of each ele-
ment are provided in Table 7-4.

7.1.2 Input/Output File Specification

Input and Output files are required to be designated using the GSAS-standard naming conven-
tion defined in Appendix A. The type of each file specified is determined by parsing specific
components of the filename which are required by all of the naming methods defined in the
specification. These common components of all filenames are:

HHHxx_mmm...ff.eee

(where: HHH is the type identification, xx is the type id number, mmm is the release number,
ff is the file sub-type, and eee is the file extension.)

GSAS software uses the type identification, the type id number and the file sub-type to deter-
mine what type of file is specified in the control file. The filetype-parsing routines are not
case-sensitive when determining the type of file specified. However, the filenames are case-
sensitive during file opening and creation.

All files are required to be delimited by start and stop times. These times are floating point
values specified on the control line as J2000 time in seconds. On both input and output,
records are skipped until the time in the current record is greater than or equal to the specified
start-time and less than or equal to the specified stop-time. Static ancillary files are required to
have start-times and stop-times present for consistency, but these are currently ignored.

The general formats for an input and output file specifications are:

INPUT_FILE=file_name<sp>start_time<sp>stop_time
OUTPUT_FILE=file_name<sp>start_time<sp>stop_time

stop_time double-precision float, containing J2000 UTC time in seconds.

equator_crossing_lon float, containing the equator crossing longitude.

nose_path_number integer, containing the NOSE path number.

Table 7-4 passid Field Description

Field Description

p repeat ground track phase (integer, length=1)

r reference orbit number (integer, length=1)

kk instance (integer, length=2)

ccc cycle (integer, length=3)

tttt track (integer, length=4)

Table 7-3 PASSID Control Line Elements (Continued)

Element Description
March 2013 Page 7-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Common Functionality
Additionally, GLA product file entries should contain segment and version information. This
information is specified in the format:

INPUT_FILE=file_name<sp>start_time<sp>stop_time<sp>gran_rel_
num<sp>gran_ver_num<sp>gran_segment

OUTPUT_FILE=file_name<sp>start_time<sp>stop_time<sp>gran_rel
_num<sp>gran_ver_num<sp>gran_segment

Segment and version information fields are described in Table 7-5.

Files with INPUT_FILE and OUTPUT_FILE keywords must be listed in chronological order
based on start and stop times. The start time of one file may overlap the stop time of another.
In this case, data within the overlapping range will be written to the first file and not the sec-
ond.

7.1.3 Input Data Time Selection

As referenced in the Control File section, all files are required to be delimited by start and stop
times. PGEs which support time selection will skip that data which are outside the limits
defined by start and stop times. This data will be read, but not processed. Additionally, given
the case of multiple input files of the same type, the PGE will seemlessly skip from one file to
the next when all data from the current file has been read (or skipped via time selection).

Certain input ancillary files do not support input time selection but require, none the less, start
and stop times in their control file entry. This was a design decision intended to promote con-
sistency within the control file content. The start and stop times for these ancillary files should
encompass the entire time range of the input data.

7.1.4 Output Data Time Selection

As with input files, all output files are required to be delimited by start and stop times on their
control file entry. PGEs which support time selection will not write that data which are outside
the limits defined by start and stop times. Additionally, given the case of multiple output files
of the same type, the PGE will seemlessly skip from one file to the next when the current data
time falls outside the range of the current output file. It is important to note that input data
time selection and output data time selection are completely independent of one another.
There is, however, a practical relationship between the two, since output data for a particular
time cannot be written if no input data for that time are read (or specified).

Table 7-5 File Segment and Version Fields

Field Description

gran_rel_num granule release number (CCB controlled, mmm in filenaming convention.)
Character max length of 20.

gran_ver_num granule version number (Auto-incrementing, nn in filenaming convention).
Character max length of 20.

gran_segment orbit segment of the granule (if more that 1 segment, use 0).Character
max length of 1.
Version 6.0 Page 7-4 March 2013

Common Functionality The GLAS Science Algorithm Software Detailed Design Document
7.1.5 Execution scenarios

Most core PGEs permit multiple execution scenarios. Certain sets of computations have been
grouped together by the software designers. Execution of these sets can be specified via spe-
cific execution flags with the PGE control file. The detailed documentation for each PGE
specifies what execution flags are available and the processes they control. Additionally, there
are dependencies between input file type, output file type, and the execution flags. These
dependencies define execution scenarios, which will be described in the respective PGE
detailed documentation.

7.2 ANC07 Constants Files

ANC07 files are used to provide GSAS with static, change-controlled parameters provided by
the Science Team and used during processing of GLAS data. These parameters were carefully
selected such that these parameters could be modified without forcing a recompilation of the
processing software. It is critical that these files are tightly change-controlled since unap-
proved modification could result in erroneous or inconsistent data being generated during the
creation of the GLAS Products.

There are several types of ANC07 files. These types include a global constants file, an error
file, and constants files specific to each of the science algorithm categories.

Constants files are specified as input files within a particular PGE’s control file. The global
constants file and the error constants file are required for all executables.

GSAS ANC07 files are delimited by section identifiers which differ (by design) from control
files section identifiers. Each section is bounded by the section name and an "=". The section
delimiters are defined as follows:

BEG_OF_STATUS=
...Status section contents...
END_OF_STATUS=

BEG_OF_ERROR=
...Error section contents...
END_OF_ERROR

BEG_OF_GLOBALS=
...Global constants section contents...
END_OF_GLOBALS

BEG_OF_ATM=
...Atmosphere constants section contents...
END_OF_ATM

BEG_OF_ELEV=
...Elevation constants section contents...
END_OF_ELEV
March 2013 Page 7-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Common Functionality
BEG_OF_L1A=
...L1A constants section contents...
END_OF_L1A

BEG_OF_UTIL=

...Utilities constants section contents...

END_OF_UTIL

All GSAS ANC07 files are created in standard GSAS “keyword=value” format. This format
is text-based and consists of a line containing a keyword/value pair delimited by an equal sign
(=). The ordering of the keywords is not relevant but should follow a convention for consis-
tency. Multiple instances of keywords are not allowed. The keyword is not case sensitive.
Spaces are allowed, but not required. Comment lines must be prepended by a “#” character.
The keyword is limited to 255 characters; the value is limited to 255 characters.

7.3 Invalid Values and Error/Status Reporting

This section documents the use of standardized methods of dealing with invalid data and
error/status conditions.

7.3.1 Invalid Values

Not all data received from GLAS will be suitable for science processing. In addition, given
the nature of the raw telemetry packets, some data may be missing. The concept of an “invalid
value” is used to signify that data is invalid or missing and should not be used for processing.
Invalid values are datatype-specific values which are defined in the GLAS global constants
module. These variables are assigned to Product variables in order to indicate invalid or miss-
ing data. These values are defined in Table 7-6. Great care should be taken to avoid using an
invalid value during a calculation. Additionally, great care must be taken by both the program-
mer and data user to determine if the variable in question is defined as potentially invalid. One
can only consider data to be invalid if the product documentation defines that variable as
potentially invalid and the variable has the appropriate invalid value respective to its datatype.

Table 7-6 Invalid Values

Datatype Invalid Value

1 byte integer 127

2 byte integer 32767

4 byte integer 2147483647

4 byte real 3.40282E+38
x7F7FFFFF

8 byte real 1.797693094862316E+308
x7FEFFFFFFFFFFFFF
Version 6.0 Page 7-6 March 2013

Common Functionality The GLAS Science Algorithm Software Detailed Design Document
7.3.2 Exit Status

All GSAS PGEs are required to return an exit status indicating success or failure of the pro-
cess. See Table 7-7. This status is returned through an operating system call and can be que-
ried by other operating system processes. The supported exit status codes are gFATAL=3 and
gNO_ERROR=0.

Note that the Exit status was designed to return numbers consistent with the GSAS error/sta-
tus reporting facility’s error severity values. However, the exit status codes are but a subset of
the GSAS error severity codes.

7.3.3 Error and Status Reporting

GSAS uses a common error/status reporting facility. This ensures that error/status reporting is
handled in a consistent manner throughout the software. This facility is based on the ANC07
error file and is configurable by the user.

An important related point is that GSAS is designed such that only the main PGE routine can
terminate processing. Subroutines are not allowed to terminate processing, but should indicate
a fatal error by passing the appropriate error severity code back to their calling processes. The
calling process can then exit with the correct exit status result code.

The ANC07 error file is in standard GSAS “keyword=value” format. This format is text-based
and consists of a line containing a keyword/value pair delimited by an equal sign (=). The key-
word is not case sensitive. Spaces are allowed, but not required. Comment lines must be pre-
pended by a “#” character. As with other ANC07 files, the sections for error and status must
be delimited by section identifiers. Identifiers for each section are listed below.

BEG_OF_STATUS=
...Status section contents...
END_OF_STATUS=

BEG_OF_ERROR=
...Error section contents...
END_OF_ERROR

Table 7-7 PGE Exit Status Codes

Value Description

0 Process completed with no errors.

3 Process failed.
March 2013 Page 7-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Common Functionality
The format of the error/status content is defined in Figure 7-1. The keyword can have the

value of “ERROR” or “STATUS” and identifies if the line contains an error or status entry.
The value is a text string with the specific format defined in Table 7-8.

There is a specific error number for each error/status value. Within the ANC07 file, these error
numbers are numerically split into multiple sub-sections. Errors have negative numeric desig-
nations; status messages have positive designations.

Each major portion of the GSAS software supported by the specific error file begins at a dif-
ferent subsection number. Within a subsection, error numbers must be consecutive The use of
sub-sectioning is optional for a simple error file. The GSAS ANC07 error file has 5 subsec-
tions. Table 7-9 lists each of the subsections and their starting error/status number.

GLAS error messages are designed to inform a user when the software has encountered a
problem. GLAS status messages are designed to assist the user in observing the flow of the
processing. Status messages usually alert the user when the software begins execution of a
subroutine. A great deal of flexibility was designed into this software in order to allow the
user to customize the error/status display.

KEYWORD=nnnnnnxttxsxffffff

Figure 7-1 Error Ancillary File Format

Table 7-8 Error String Format

Character Positions Description

n 1-6 Error code (must be sequential within a section)

x 7,58,60 Space character (delimiter)

t 8-57 Message

s 59 Error severity (see Table 7-10)

f 61-66 Frequency of reporting (message is reported on 1st occurrence, then
every f’th time)

Table 7-9 Error Sections

Starting Numbers Description

-10001/10001 General error/status.

-20001/20001 L1A error/status.

-30001/30001 Waveform error/status

-40001/40001 Atmosphere error/status

-50001/50001 Elevation error/status.
Version 6.0 Page 7-8 March 2013

Common Functionality The GLAS Science Algorithm Software Detailed Design Document
The user may modify error and status entries in order to configure the severity of the error and
frequency of printout. The user is cautioned to seek GLAS change-control board approval
before modifying the severity of an error. GSAS software will terminate processing upon
receipt of a fatal severity code. Thus, modifying the severity may enable the software to exe-
cute in a non-tested mode.

The severity number controls how the GLAS software reacts when an error occurs. The 4 lev-
els of severity are described in Table 7-10. GLAS software will terminate on a Fatal error. The
frequency number controls how often an error message is printed out. The first instance of a
specific error is always printed. Subsequent instances are printed out at the frequency speci-
fied. All instances are counted and the number of occurrences printed in an output summary.

7.4 ANC06 Metadata/Log File

GSAS PGEs create ANC06 output files which contain processing information, error mes-
sages, and status messages. These files are in a modified version of the GSAS keyword=value
format. The format of an ANC06 entry is:

[time] [keyword]=[value]

The first field [time] is the time in UTC seconds. The time is that of the data being processed
when the entry was written (if no data have been processed, the time may be 0 or an invalid
value). The time is a GSAS-standard time representation (UTC seconds). The second field
[keyword] is a keyword describing the type of information presented. The third field [value] is
a formatted text message describing the event. Comments are allowed in order to group mes-
sages logically. Comment lines are pre-pended by the pound (#) sign.

The value field contains the actual message and its format varies dependent on the type of
message displayed. Error/Status values, for example, have several subfields. The first field is
the numeric error/status code. The second field is the error severity (see Section 7 for details).
The third field is the name of the routine which reported the error. The fourth field is the stan-
dard error text with optional detailed text. The format of the subfields within the value field is
shown below:

error_num, severity, calling_routine, std_message opt_text

Table 7-10 Error Severity Codes

Severity Description

0 No error

1 Information/status

2 Warning

3 Fatal
March 2013 Page 7-9 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Common Functionality
7.5 Product Internal Data Storage, Conversion and I/O

The GSAS I/O and unit conversion process is sufficiently complex and important to describe
in detail.The design of this process is what allows GSAS to meet the reprocessing require-
ments.

First, some definitions: (1) algorithm data (in units for algorithm use) are that data which are
in a form most favorable for display and calculation; (2) product data (in units for I/O) are
data which are in a form most favorable for machine independence and storage efficiency. It is
important to understand the process by which algorithm data gets transformed into product
data (and product data gets transformed back into algorithm data).

7.5.1 Product Modules

There are several different types of modules involved in the product conversion process.
These modules were briefly described in the prod_lib section but will be detailed here. Table
7-11 (where xx = a GLA product number [01-15]) defines each component. All modules are
designed with software reuse as a primary goal.

Table 7-11 Product Module Functionality

Module Functionality

kinds_mod defines basic data types (4-byte integer, 8-byte real, etc.)

types_mod defines any global data structures

GLAxx_prod_mod defines product-specific (where xx=product number)
record format and associated global product data struc-
ture. Each module also includes one subroutine to initialize
the product data and another to print the data in a human-
readable form.

GLAxx_mod contains routines to read (ReadGLAxx) and write
(WriteGLAxx) the product data structure in binary format.

GLAxx_alg_mod defines product-specific global algorithm data structure.
Each module also includes one subroutine to initialize the
algorithm data and another to print the data in a human-
readable form

GLAxx_scal_mod defines product-specific global scaling data structure. Also
includes subroutines to initialize the scaling data, convert
from product to algorithm format (GLAxx_P2A), convert
from algorithm to product format (GLAxx_A2P), and print
the scaling data in a human-readable form.

common_flag_mod contains routines for packing/unpacking common flags.

GLAxx_flag_mod contains routines for packing/unpacking product-specific
flags.
Version 6.0 Page 7-10 March 2013

Common Functionality The GLAS Science Algorithm Software Detailed Design Document
7.5.2 Internal Product Data Storage

Data for each product are stored internally in two different formats. For each product, there is
one global data structure containing product data. These data are in the exact same format as
the integer-binary data written to and read from GLAS product files. There is also a global
data structure for each product containing algorithm-format (mostly double precision) data for
use in scientific calculations. The product modules and the GSAS Managers use these public
data structures. However, data are passed from the Managers to the science algorithms via the
argument list.

7.5.3 Product Input/Output

GLAxx product files are defined as integer-binary fixed-length files. These product files will
contain text header records (as described later) followed by binary data records.

The GLAxx_prod_mod defines a specific data structure which exactly matches the format of
each data record of the appropriate product file. This data structure is used in an unformatted
direct-IO statement to read/write a data record from/to disk.

When multiple products are read simultaneously, a data record from a lower-numbered prod-
uct is read before the data from a higher-numbered product. This is important to the concept of
“Pass-thru” (explained in Section 7.5.5).

7.5.4 Product-to-Algorithm Conversion (P2A)

When a data record is read from disk into memory, the data are stored in the product data
structure. In order to be useful in scientific calculations, the data must be converted from
product format into algorithm format. The process is called “Product-to-Algorithm Conver-
sion”.

When a record of data is read, the values are stored in a product data structure. The appropri-
ate algorithm data structure is initialized to either zeros or invalid values, as specified by the
product documentation.

Each product variable is checked for an invalid value. If the data is determined to be invalid,
no conversion is performed. As a result of initializing the algorithm structure appropriately, if
the product variable is invalid, the algorithm value, by default, contains an invalid value.

If the values are determined valid, the data will be converted from product to algorithm format
by one or more of the following processes.

• converting to unsigned (if necessary)

• scaling by a scale factor:
Algorithm_Value = Product_Value* Scale_Factor

• unpacking bits into individual flags.

For the most part, scaling is performed by multiplying the integer product value by a floating
point scale factor and storing the result in a double-precision algorithm variable within the
global algorithm data structure. The exceptions to this rule are flags, which are unpacked with
specific subroutines and a few variables which are used as integers by the science algorithms.
March 2013 Page 7-11 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Common Functionality
7.5.5 Pass-Thru

After a product is read and converted to algorithm format, common data must be passed from
lower-numbered product/algorithm data structures to higher-numbered product/algorithm data
structures. This pass-thru process enables re-processing to be treated the same as normal pro-
cessing. It is important that both product and algorithm data is passed. The subsystem manag-
ers (discussed below) are designed to take full advantage of the pass-thru process.

7.5.6 Managers

The subsystem managers ‘use’ the global algorithm data structures. If an intermediate conver-
sion is necessary, the managers create local variables. The managers pass the appropriate vari-
ables to the science algorithms via the argument list. (L1A is an exception to this since the
L1A routines basically use the entire data structures.) Specific algorithms are executed based
on the state of control flags received from the PGE in order to allow for re-processing.

A key concept is that the manager uses the variable in the highest-numbered product for
which it is responsible. For example, if the same variable is on GLA05 and GLA06, the eleva-
tions manager always uses the variable from the GLA06 algorithm structure, no matter if
GLA06 is read for input or not. The pass-thru process ensures that the value is always there.

After a science algorithm returns execution to the manager, the manager performs its own
pass-thru function. It copies any local variables back to the algorithm data structure and then
passes any modified algorithm variables to the higher-numbered product/algorithm data struc-
tures. This is essentially a repeat of the pass-thru process described in 7.5.5, except the candi-
date variables are limited to those modified by each respective science algorithm.

7.5.7 Algorithm to Product Conversion (A2P)

After the manager has finished executing science algorithms, each algorithm structure must be
converted back to product data. This is essentially a reverse of the P2A process.

First, the product structure is initialized. Then, each algorithm variable is checked for an
invalid value. If the variable is determined valid, the data will be converted from algorithm to
product format by one or more of the following processes.

• unscaling by a scale factor:
Product_Value = nint(Algorithm_Value/Scale_Factor)

• unpacking bits into individual flags.

For the most part, scaling is performed by taking the nearest integer of the double precision
algorithm value divided by a floating point scale factor. The result is stored back into an inte-
ger product variable within the global product data structure. The exceptions to this rule are
flags, which are packed with specific subroutines and a few variables which are used as inte-
gers by the science algorithms.

7.6 Product Headers

GSAS Products begin with ASCII header records containing information regarding the pro-
cessing which created the Product and the data contained within. These header records are
exactly the same size as a Product data record and contain ASCII information in a slightly
Version 6.0 Page 7-12 March 2013

Common Functionality The GLAS Science Algorithm Software Detailed Design Document
modified KEYWORD=VALUE format. In order to conserve space on the product, the header
entries are not delimited by the record length, but by a semi-colon (;) and linefeed (ASCII 10).

By design, the first two header entries are the record length and number of header records.
This allows product readers to verify the record length and jump directly to the first data
record, if necessary. Most of the remaining information within the headers is directly applica-
ble to the generation of metadata files for EOS ingest.

Although the majority of entries in the Product headers are common to all products, GSAS
Products may contain special and specific header entries. This is handled by product-specific
header modules (GLAxx_hdr_mod). The common elements of the Product Headers and asso-
ciated subroutines are contained within a common header module (common_hdr_mod). Most
of the header software is contained within the GSAS product library. The exception is the
com_hdr_update routine, which is contained within the exec_lib since it needs to interface
more directly with the PGEs.

When a product file is opened for output, GSAS initializes the product’s header information
and determines how many records will be needed to contain the header data. Many of the
header entry values are already known at this time and can be filled in immediately. A fixed
number of bytes is reserved for those entries whose values must be filled at a later time. GSAS
writes the initial header records to the product and sets the file pointer to the first data record.
At the end of a granule, any of those unfilled header records are set to a value and the header
records are re-written at the top of the Product. Care is taken to make sure that the header
records have not grown large enough to overwrite any Product data.

7.7 Summary

Again, it is important for developers to realize the capability built into the GSAS libraries.
Use of the PGE model presented in the next section can lead to significant reductions in devel-
opment time and much greater consistency throughout the GLAS software.

GLAS_Reader was written partially as an example for the capability gained through using the
libraries. With only about 1300 lines of heavily commented code (and most other lines sub-
routine calls), GLAS_Reader uses the product library routines to read and print nearly any
GLAS file currently in use. The services it uses include:

• Full control file parsing.

• Time-selective processing.

• Multi-granule processing.

• Full error reporting.

• Full I/O support.

• Full ANC06 logging.

Additionally, a fairly significant portion of the 1300 lines includes a rudimentary user inter-
face which allows a user to interact with GLAS_Reader without requiring a control file. This
shows that the use of the libraries does not necessarily restrict the developer to follow the con-
March 2013 Page 7-13 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Common Functionality
ventional GSAS model. The model provides developer with the flexibility to handle special
requirements within the basic development GSAS model.
Version 6.0 Page 7-14 March 2013

Section 8

GLAS_L0proc

8.1 Overview

GLAS Level 0 APID files will normally be distributed as a PDS (Production Data Set) in
approximately 6 hour segments or as an EDS (Expedited Data Set) which will be distributed
as a Pass Data Dump. There will be several files, each containing a specific APID record for
the segment. These segments will be sets of real-time and playback data received from the
polar ground stations. The software that will pre-process GLAS L0 data is the GLAS Level-0
Processor (GLAS_L0proc).

8.2 Function

GLAS_L0proc is a utility PGE that will time synchronize GLA00 APIDs in a manner such
that records within different GLAS products may be easily correlated. To do this
GLAS_L0proc creates a unique number (rec_ndx) for each packet of data collected by the
GLAS instrument. This index will be assigned to the matching records within each Level 0
APID and will account for the 0.25 second waveform Altimeter Digitizer packets

GLAS_L0proc will read each input APID and ancillary file listed in the control file and pro-
duce a single index file (ANC29) and a single GPS time correction file (ANC32). The
ANC29 file will contain an index to each record in the set of files in the PDS/EDS. The pro-
gram will group the data in one-second intervals. The ANC32 file will be used during L1A
processing to assist in precise laser shot time-tagging.

GLAS_L0proc will also perform limited error checking on the APIDs it reads. It will signal an
error if more than the maximum allowed APID records fall within a second and write a warn-
ing message to ANC06. Several fields within the APID primary header will be checked
against reference values. These errors will be flagged and recorded. Duplicate APID records
are checked, flagged and recorded, as well.

The core GLAS PGEs are used as a model for GLAS_L0proc. A major difference in the
GLAS_L0proc implementation is that it reads the APIDs one file at a time, rather than syn-
chronously reading all the APIDs record by record. Despite this difference, a great deal of the
PGE model was used to create GLAS_L0proc, which will ease software maintenance chores.

Developer experience is that working with L0 spacecraft data can entail a great deal of debug-
ging with regards to both software and the actual data. With this in mind, a significant amount
of debug code is embedded within GLAS_L0proc. This code can be turned on with compiler
flags but will generate an extensive amount of output. This output is very useful for debugging
purposes but can drastically slow execution time. The recommended method of running with
debugging turned on is to redirect stdout to a file which can be examined after the run.

GLAS_L0proc records statistics such as the number of missing records, number of received
records, number of bad records, etc. The software checks for too many occurrences of an
APID per second. Duplicate data is flagged as an error (warning not fatal) and the message
March 2013 Page 8-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L0proc
written to ANC06. Quality issues are tracked and reports made of any problems/potential
problems.

8.3 Approach

• GLAS_L0proc uses many of the standard routines from the model GSAS PGE with
only minor changes.

• GLAS_L0proc does not perform partial/selective processing or reprocessing. There
are no execution flags defined within GLAS_L0proc. Start and stop time are required
on control file INPUT_FILE and OUTPUT_FILE specifications for consistency, but
are not used.

• GLAS_L0proc uses the operating system-based qsort for sorting tasks. Glue code
written in C is used in conjunction with qsort.

• Several constants are needed by GLAS_L0proc processing. Constants include such
things at mission elapsed time (MET) offsets, APID identification code, APID record
lengths, and sort order keys. These constants are included within the GLA00 product
module in order to facilitate code reuse and ease configuration management.

• The manager functionality is within the main GLAS_L0proc routine.

• ReadData is not used since data is read file-by-file, rather than record-by-record.

8.4 Input and Output Files

Table 8-1 lists the required inputs to GLAS_L0proc. Table 8-2 lists the outputs created by
GLAS_L0proc. Files which are specific to GLAS_L0proc are documented in this section. See
the appropriate section of this document or the GLAS Science Data Management Plan for
details regarding the those files not specific to GLAS_L0proc
Version 6.0 Page 8-2 March 2013

GLAS_L0proc The GLAS Science Algorithm Software Detailed Design Document
.

Table 8-1 GLAS_L0proc Inputs

File Spec Type Source Short Description

gla00*_??.dat Level-0 APID EDOS GLAS Level-0 APID files (one
file per each APID type).

anc47*_??.dat Level-0 EDOS GLAS Level-0 APID PDS files
(one file per each APID type)

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_01.dat Static Ancillary Science Team GLAS global constants file.

anc33*.dat Dynamic Ancillary ISIPS Operations Counter-to-UTC conversion file.

Control File Control ISIPS Operations Control file.

Table 8-2 GLAS_L0proc Outputs

File Spec Type Destination
Short

Description

anc29*.dat Dynamic Ancillary GLAS_L1A Index file corre-
lating APID
times.

anc32*.dat Dynamic Ancillary GLAS_L1A GPS time correc-
tion file used for
precision timing
of GLAS data.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard meta-
data/processing
log file.
March 2013 Page 8-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L0proc
8.4.1 GLA00 APID Files

The GLA00 APIDs are Level-0 multi-rate spacecraft data files provided to the GLAS data
processing facility by EDOS. There is a separate file for each specific APID type received
from the spacecraft. These files are fully documented by the GLAS Instrument Team and
within the GLAS L1A ATBD. These APIDs are listed in Table 8-3.

Table 8-3 Supported APIDs

APID Description

12 Altimeter Digitizer Large Sci Pkt

13 Altimeter Digitizer Small Sci Pkt

14 Altimeter Digitizer Eng Pkt

15 Photon Counter Sci Pkt

16 Photon Counter Eng Pkt

17 Cloud Digitizer Sci Pkt

18 Cloud Digitizer Eng Pkt

19 Ancillary Science Pkt

20 CT HW telemetry #1 Data Pkt

21 CT HW Telemetry #2 Data Pkt

22 CT HW Telemetry #3 Data Pkt

23 CT HW telemetry #4 Data Pkt

24 Small Software #1 Tlm

25 Large Software Telemetry #1 Packet

26 LPA Data Pkt

27 Memory Dwell Packets 1

28 Memory Dwell Packets 2

31 DSP Code Memory Dump

32 DSP Data Memory Dump

33 C & T Dwell Packet

34 Event Message Packet

35 Memory Dump Packet

36 Table Dump Packet

38 Boresite Calibration Packet

48 GLAS Data Types Packet

49 Command History Packet
Version 6.0 Page 8-4 March 2013

GLAS_L0proc The GLAS Science Algorithm Software Detailed Design Document
8.4.2 ANC47 PDS Files

The ANC47 PDS files are Level-0 construction record data files provided to the GLAS data
processing facility by EDOS. There is a separate file for each specific APID type received
from the spacecraft. These files indicate the quality of the corresponding GLA00 data.

8.4.3 ANC33 MET Counter to UTC Conversion File

The ANC33 file is used to convert mission-elapsed time (MET), which is provided in the
APIDs, to GLAS-standard UTC time. Since the MET can be re-set by a roll-over or a space-
craft upset it is important that this file be maintained and provided to the GLAS processing
facility in a timely manner. The file is delivered to ISIPS from the ISF as described in the ISF/
ISIPS Interface Control Document.

ANC33 file is a ANSI text file. Each line contains data for a single entry in the file (data
should not be hard wrapped). Comment lines are allowed and prepended by a # character.
Each line contains the following information:

d_shdr_count <sp> d_shdr_count_prap <sp> d_utc <sp>
d_glas_osc_rate <sp> d_sc_osc_rate <sp> d_tdelay_digtzr <sp>
d_rdelay_digtzr <sp> d_plTbias <sp> d_plRbias <sp>d_siru_e
<sp> d_siru_e2 <sp> i_trkr_subject1 <sp> i_trkr_subject2
<sp> i_trkr_subject2 <sp> instrument_state
<sp>implement_time

Each field is defined in Table 8-4.

50 CT HW telemetry #5 Data Pkt

55 Large Software Telemetry #2 Packet

126 LPA Test Packet

1984 GLAS PRAP Packet

Table 8-4 ANC33 Field Descriptions

Field Description

d_shdr_count double precision: the counter value in the secondary header on MOST
APIDS

d_shdr_count_prap doube precision: the counter value in the secondary header of PRAP

d_utc double precison: the J2000 UTC time in seconds to which the counter val-
ues are converted

d_glas_osc_rate double precision: the GLAS oscillator rate

d_sc_osc_rate double precision: the Spacecraft oscillator rate

d_tdelay_digtzr double precision: time delay for digitizer in seconds

Table 8-3 Supported APIDs (Continued)

APID Description
March 2013 Page 8-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L0proc
Note that the Implement_time is the UTC time at which this conversion was valid.
GLAS_L0proc uses the designated start time of the first APID specified in the control file to
find the correct position within the ANC33 file based on the Implement_time field.

8.4.4 Control File

The control file format and common elements are documented in Section 5 of this document.
Elements specific to GLAS_L0proc are described here.

The control file section delimiter for GLAS_L0proc is:

=GLAS_L0P

Since GLAS_L0proc has no requirement for execution scenarios, there are no unique key-
words for the GLAS_L0proc control file. GLAS_L0proc will perform all functions based on
the presence of input and output files within the control file.

8.4.5 ANC29 Index File

The ANC29 index file provides GLAS_L1A with a method of time-correlating the GLAS
APID files. It contains an index record for every record in the input APID files. ANC29 is a
binary, fixed-length record file. Its format and fields are described in Table 8-5.

8.4.6 ANC32 GPS File

The ANC32 GPS file provides GLAS_L1A with a method of computing precise timing calcu-
lations based on the last update of the onboard GPS. It contains records which identify each
time the GPS clock is updated within the APID packets. ANC33 is a binary, fixed-length
record file. Its format is described in Table 8-6.

d_rdelay_digtzr double precision: internal range delay for digitizer in m

d_plTbias double precision: post launch time bias in seconds

d_plRbias double precision: post launch range bias in m

d_siru_e double precision: initial slope for SIRU VTCW correction

d_siru_e2 double precision: secondary slope for SIRU VTCW correction

i_trkr_subject(1) integer: the subject indicator for LRS tracker 0

i_trkr_subject(2) integer: the subject indicator for LRS tracker 1

i_trkr_subject(3) integer: the subject indicator for LRS tracker 2

instrument_state integer bitfield: Initial valid instrument state for the period (see L1A Stan-
dard Data Product for bit interpretation)

d_implement_time double precision: the J2000 UTC time in seconds where the data are first
valid

Table 8-4 ANC33 Field Descriptions (Continued)

Field Description
Version 6.0 Page 8-6 March 2013

GLAS_L0proc The GLAS Science Algorithm Software Detailed Design Document
Table 8-5 ANC29 Format/Description

Variable Type Bytes Description

utctime double precision 8 J2000 UTC time in seconds. Computed from the
MET counter in each APID’s secondary header.

rec_ndx long integer 4 Mission-unique index number assigned to the set of
APIDs defined by a one second duration and group-
ing rules. This number will be assigned to corre-
sponding data records in every GLAS data product.
The value is nominally (utctime - launchtime) * 5, in
seconds.

shot_ctr long integer 4 The appropriate shot counter from each APID.

rec_num long integer 4 The physical record number of the corresponding
data within the APID file.

apid long integer 4 The APID number (assigned by the spacecraft
team) of the APID.

DQFlag long integer 4 Data quality flag.

sort_order short integer 2 Sort order (for internal use).

spare short integer 24 Spare bytes to align data structure to 8-byte bound-
ary.

Table 8-6 ANC32 Format/Description

Variable Type Bytes Description

rec_ndx long integer 4 Mission-unique index number assigned to
the set of APIDs defined by a one second
duration and grouping rules. This number
will be assigned to corresponding data
records in every GLAS data product. The
value is nominally (utctime - launchtime) *
5, in seconds.

i_ScPosPktShot short integer 2 Shot counter within APID 19 position
packet, starting at byte location1182.

i_useflag short integer 2 Flag indicating if the data are valid (0=valid,
other=not valid).

utctime double precision 8 UTC time in J2000 seconds where GPS
update occurred. This value corresponds
exactly to a UTC time in the ANC29 file.

FTLatch double precision 8 Frequency board latch counter within
APID19, starting at byte location 1195.

ScPosPktGMET double precision 8 MET counts within APID 19 position packet,
starting at byte location 1184.
March 2013 Page 8-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L0proc
8.5 Design

Figure 8-1 shows the top-level structure chart of GLAS_L0proc. The basic processing algo-
rithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read static ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Until all APID files are read...

- Read APIDs and fill index and gps arrays (readglop)

• Sort the index array (sort_gla00_index)

• Sort the GPS array (sort_gps)

• Convert the MET time into UTC time (utc_time_conversion)

• Group the APID records and assign rec_ndx (IndexGrouping)

• Check the index array for duplicates

• Write the index arrays to file

• Assign rec_ndx to GPS array entries

• Validate data within GPS array and set useflag appropriately

• Write GPS array to file

• Close all files and generate summaries (MainWrap)

d_VTCW double precision 8 BCTCW latch value within APID19 starting
at byte location 1142.

d_VTCWp double precision 8 VTCW value at time of 0.1Hz pulse within
APID19 starting at byte location 1182.

GPSTime double precision 8 GPS receiver time in counts within APID19
starting at byte location 1172.

GPSppsGMET double precision 8 MET for GPS 0.1hz counter within APID19
starting at byte location 1201.

Table 8-6 ANC32 Format/Description (Continued)

Variable Type Bytes Description
Version 6.0 Page 8-8 March 2013

GLAS_L0proc The GLAS Science Algorithm Software Detailed Design Document
8.5.1 PGE Core Routines

Except where noted, the following PGE core routines are used exactly as defined in the Core
PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• MainWrap

Exceptions to normal core routine conventions include:

• eCntl_Init does not define or set execution flags.

• GetControl does not parse any execution flags.

• Start and stop times are required on the INPUT/OUTPUT_FILE assignments, but are
not used by GLAS_L0proc to delimit processing. However, the start time of the first
APID specified is used as a reference time when finding the correct coefficient for
MET-to-UTC conversion. It is critical that this time is specified correctly.

Figure 8-1 GLAS_L0proc Structure Chart

GLAS_L0proc

PGE Core
Routines

MainInit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl

Write_LibVer
ReadANC

Write_AncVer

ReadGLOP

sort_gla00_index sort_gps

IndexGrouping

MainWrap

utc_time_conversion
March 2013 Page 8-9 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L0proc
8.5.2 ReadGLOP

ReadGLOP is a subroutine within the local glop_mod module. The glop_mod itself contains
several important constants. Since GLAS_L0proc creates its index and GPS arrays in mem-
ory, a maximum length for each array is defined in this module. The arrays themselves are
defined and allocated in this module, as well.

ReadGLOP is called by the main GLAS_L0proc routine once for each APID which is to be
processed. ReadGLOP uses the APID number to read each record of the APID into the appro-
priate data structure.

ReadGLOP uses standard Fortran direct-to-structure reads to read most APIDs. However, sev-
eral APIDs are not aligned on 4-byte boundaries. For these, ReadGLOP calls specialized read
subroutines which exist within the GLA00_mod module of the product library.

If the APID read is an Ancillary Science Packet (APID19), GPS time is compared with the
previous GPS time. If a change has occurred, a GPS array element is filled with the appropri-
ate data.

The primary header of each APID record is converted and checked for error conditions. Error
checking includes the following:

• Primary header version = 0

• Primary header APID number = expected APID

• Primary header APID size = expected_APID_size – (header_size – 1)
(actual value of the offset is 7)

• Primary header secondary header flag /= 0

• Primary header sequence count delta = 1

Duplicate records are checked by comparing the sequence counter and utctime against previ-
ous values.

Fields within the index structure are filled and a “sort rank” is assigned based on the APID
type. This “sort rank” is temporarily assigned to the spare 4 bytes at the end of the data struc-
ture. The shot counter is converted from a signed to unsigned value before assignment.

Since the MET-to-UTC conversion has not yet been performed, the MET counter is assigned
to the utctime. However, an APID-specific offset is added to the MET counter for alignment
purposes in order to account for processing delays aboard the spacecraft. These values were
provided by the instrument developers and are defined in the GLA00_mod module within the
product library.

8.5.3 sort_gla00_index

Sort_gla00_index is a C routine local to GLAS_L0proc. It provides a comparison function for
the system qsort routine and calls qsort with the index array. qsort returns an index array
sorted by utctime (primary) and sort rank (secondary). Sorting the index provides a list of
interspersed APID records in time/rank order. Sorting is necessary so that the index_grouping
module can correctly assign a rec_ndx to the correct group of corresponding APID records.
Version 6.0 Page 8-10 March 2013

GLAS_L0proc The GLAS Science Algorithm Software Detailed Design Document
An important programmer note is that a C header file (gla00_index.h) is required for
sort_gla00_index. If a programmer changes the Index file data structure, they must change the
gla00_index.h file in a corresponding manner.

8.5.4 sort_gps

Sort_gps is a C routine local to GLAS_L0proc which is nearly identical to sort_gla00_index.
It sorts the GPS array by utctime using a comparison routine with the system qsort call. (This
is actually done more for safety than necessity.)

The same caveat applies here as does with sort_gla00_index. A C header file (gps_index.h) is
required for sort_gps. If a programmer changes the GPS file data structure, they must change
the gps_index.h file in a corresponding manner.

8.5.5 utc_time_conversion

UTC_time_conversion is a routine local to GLAS_L0proc. It reads reference values from
ANC33 and uses those values to convert MET counter values within the index array to UTC
time.

The routine is passed the start time (taken from the control file entry) of the lowest-numbered
APID which has been read. It uses this as it’s initial time and searches through the ANC33 file
for the first implement time greater than or equal to the initial time.

Once it has found the correct implement time, it loops through the index array and uses the
associated refMET_Counts, refUTC_seconds, and Interval to convert the MET counter to
UTC time within the index. While looping, it checks to see if the previously computed UTC
time is greater than the next implement time. If so, it reads the associated ANC33 values and
uses those for the next UTC conversions.

Additionally, while looping through the index file, the routine checks the GPS array for
matches between the APID19 index MET counter and GPS MET counter. If a match is found,
the GPS MET counter is converted to UTC time.

The UTC time conversion calculation is performed as follows:

UTC time = refUTC_seconds + (MET counter - refMET_Counts) * Interval

8.5.6 Index_Grouping

Index_grouping is a routine local to GLAS_L0proc. It scans through the index array and
assigns rec_ndx values based on a data alignment algorithm.

Sort_gla00_index has already sorted the index array based on MET counts and sort rank.
Based on information from the instrument team, certain APIDs are guaranteed to have the
same MET counter value for a particular second of data. The sort rank takes this into account
and sorts these APIDs at a higher level than others. Additionally, the sort order also accounts
for importance, guaranteeing that if an APID record exists for a certain second, it will be in a
fixed position relative to other APIDs within the one second interval.

The routine loops through the index array. When it detects one of the higher-ranked APIDs, it
computes a rec_ndx from the UTC time. This rec_ndx is assigned to the current APID record
March 2013 Page 8-11 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L0proc
and subsequent APID records until another higher-ranked APID is detected. During the period
of assigning the rec_ndx, several error checks are performed. These are:

• The number of specific APID types assigned the same rec_ndx is checked against a
reference maximum-APID-per-second reference (which is defined in GLA00_mod.) If
the maximum of a specific APID is exceeded, the rec_ndx value is recomputed and
assigned to the current and subsequent APIDs.

• The shot counter values of specific APIDs (AD_LgSci, AD_SmSci, AD_Eng, PC_Sci,
PC_Eng, CD_Sci, CD_Eng, AN_Sci, LPA) are checked for consistency. If the shot
counters within the same rec_ndx are inconsistent, the rec_ndx value is recomputed
and assigned to the current and subsequent APIDs
Version 6.0 Page 8-12 March 2013

Section 9

GLAS_L1A

9.1 Overview

GLAS_L1A is a core GSAS PGE. It uses the L1A subsystem to create GLAS Level 1A data
from the Level 0 GLAS instrument data products. GLAS_L1A will use the ANC29 and
ANC32 files created by GLAS_L0proc to time-synchronously read the appropriate GLA00
APID files.

9.2 Function

The L1A process includes applying calibration equations determined during GLAS system
testing to convert the measured counts into engineering units. The conversions of the counts to
engineering units will be one or more of several types: straight polynomial conversion based
on the measurement counts; multi-variable conversions with dependence on additional mea-
surements such as temperature; special conversions based on a complex dependence of sev-
eral measurements, interpretation of data, table look-up, and geophysical based conversions.
Some data will not require conversion and will be retained in counts. The Stellar Reference
System (SRS) attitude and position data and the GPS data will be from standard existing sys-
tems similar to those used on other spacecraft. The conversions and calibration equations for
the L1A subsystem are defined the L1A ATBD.

The altimeter data, including the waveforms, are packaged into the GLA01 data product. The
atmospheric data from the photon counters and the cloud digitizer, as well as supporting data,
are packaged into the GLA02 data product. Both GLA01 and GLA02 include location data
obtained from the predicted orbit file. The GLAS instrument engineering and housekeeping
data are stored in the GLA03 data product. The SRS and GPS data along with the laser point-
ing monitor data will be packaged into the GLA04 data product.

9.3 Design Approach

The following design criteria are specific to GLAS_L1A.

• GLAS_L1A fully uses the standard routines from the model GSAS PGE.

• GLAS_L1A can perform partial processing, but not reprocessing. GLAS_L1A does
perform time-based selective processing. There are, however, dependencies between
L1A_Atm and L1A_Alt. Partial-processing will not yield the same results for certain
parameters as full-processing.

• The ANC29 file (created by GLAS_L0proc) is used to read GLA00 data from the
appropriate APID file in the correct order.

• Due to issues due to aligning multi-rate data across PDS boundaries, the ANC29 and
ANC32 files are read into core and re-sorted. This is a break from the concept of nor-
mal record-by-record processing.
March 2013 Page 9-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L1A
• L1AMgr is specific to the L1A subsystem. The L1A manager is used to control all
L1A-specific science algorithm processes and interfaces directly with the L1A subsys-
tem.

9.4 Input and Output Files

Table 9-1 lists the required inputs to GLAS_L1A. Table 9-2 lists the outputs created by
GLAS_L1A. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files.

Table 9-1 GLAS_L1A Inputs

File Spec Type Source Short Description

gla00*_??.dat Level-0 APID EDOS Level-0 APID files (one file per
each APID type).

anc07*_00.dat Static Ancillary Science Team Error file.

anc07*_01.dat Static Ancillary Science Team Global constants file.

anc07*_05.dat Static Ancillary Science Team L1A constants file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc29*.dat Dynamic Ancillary GLAS_L0proc APID index file.

anc32*.dat Dynamic Ancillary GLAS_L0proc GPS time correlation file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc20*.dat Dynamic Ancillary UTexas Predicted orbit file.

anc45*_01.dat Static Ancillary Science Team GLA01 metadata input file.

anc45*_02.dat Static Ancillary Science Team GLA02 metadata input file.

anc45*_03.dat Static Ancillary Science Team GLA03 metadata input file.

anc45*_04.dat Static Ancillary Science Team GLA04 metadata input file.

Control File Control ISIPS Operations Control file.
Version 6.0 Page 9-2 March 2013

GLAS_L1A The GLAS Science Algorithm Software Detailed Design Document
9.5 GLAS_L1A PGE

Figure 9-1 shows the top-level structure chart of GLAS_L1A. The basic processing algorithm
is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

Table 9-2 GLAS_L1A Outputs

File Spec Type Destination Short Description

gla01*.dat L1A Product GLAS_L1A GLAS L1A Altimetry product file.
Contains the waveforms and the
altimeter and timing data
required to produce higher level
range and elevation products.

gla02*.dat L1A Product GLAS_Atm GLAS L1A Atmosphere product
file. Contains the normalized
backscatter, photon counter,
cloud digitizer, timing, and
location data required to pro-
duce the higher level atmo-
sphere data products.

gla03*.dat L1A Product Archive L1A Engineering product file.
Contains the GLAS instrument’s
engineering and housekeeping
data.

gla04*_01.dat L1A Products UTEXAS L1A LPA product file.

gla04*_02.dat L1A Products UTEXAS L1A LRS product file.

gla04*_03.dat L1A Products UTEXAS L1A GYRO product file.

gla04*_04.dat L1A Products UTEXAS L1A IST product file.

gla04*_05.dat L1A Products UTEXAS L1A BST product file.

gla04*_06.dat L1A Products UTEXAS L1A SCPA product file.

qap01*.dat L1A Quality QA L1A Altimetry quality file.

qap02*.dat L1A Quality QA L1A Atmosphere quality file.

qap03*.dat L1A Quality QA L1A Engineering quality file.

qap04*.dat L1A Quality QA L1A SRS/GPS/laser pointing
quality files.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.
March 2013 Page 9-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L1A
• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Until all data are processed...

- Execute the L1A_Manager

• Close all files and generate summaries (MainWrap)

9.5.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• ReadData

• MainWrap

Figure 9-1 GLAS_L1A Structure Chart

��������
��	
��
�

��������

��������
����
������
�������
��
���������
�
��������

�
���������

����� �

�
������!��

�
�������
�
����"���

�����#

!$�!%������
&��	
!�
�'

�����
��
Version 6.0 Page 9-4 March 2013

GLAS_L1A The GLAS Science Algorithm Software Detailed Design Document
9.6 L1A Manager (L1A_Mgr)

The L1A Manager controls execution of the L1A subsystem, passes variables from the
GLA00 APIDs to the L1A products, and handles granule start/stop. The manager controls
execution of the science algorithms based on flags received from the control file via
GLAS_L1A. Figure 9-2 shows the L1A Manager Structure Chart. Figure 9-3 shows a flow

chart of the L1A Manager.

L1A_Mgr is passed arrays of output file control structures and execution flags. It accesses
product and algorithm data directly from the requisite public data structures. Execution flags
are defined in eCntl_mod; file control structures defined in the fCntl_mod component of the
exec_lib, and product/algorithm data within the GLA00, GLA01, GLA02, GLA03, and
GLA04 components of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each defined
output file by comparing the nominal time of data (set by ReadData_mod) with the appropri-
ate stop time within the specific file data structure. If an end-of-granule condition is detected,
final QA routines are called and the product and QA files are closed. If another granule of the
same type has been specified in the control file, the manager opens the appropriate product
and QA files and loops to verify the stop time of the new granule is greater than the nominal
time of data.

After checking the granule times, processing begins. The manager calls calc_shot_time,
which computes precise 40 per second timing information. It then calls C_CalcSpLoc which
computes 40 spot locations based on the 40 per second timing information and the location of
satellite position interpolated from the predicted orbit file (ANC20).

Next, the manager executes several science algorithms based on its execution flags and data
availability. L_Eng, L_Alt, L_Atm, and L_Att are called. Each returns a flag indicating if the

Figure 9-2 L1A_Mgr Structure Chart

L1A_Mgr

L_ALT

PGE Core Routines

glaxx_hdr_init
glaxx_hdr_update
com_hdr_update
Write_glaxx_hdr

GLAS_Error

L_ALT_QA

L_ATM

L_ATM_QA

L_ENG

L_ENG_QA

L_ATT

L_ATT_QA

calc_shot_time

est_shot_time

C_InterpPOD
March 2013 Page 9-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L1A
appropriate data product should be written. Values which are passed directly from one product
to another are set appropriately.

QA routines are called to process QA information and the WriteL1A routine is called with the
appropriate flags to write data to the product files. Before writing a record, WriteL1A verifies
that the appropriate output file exists and that the nominal time of data is greater than the start
time specified in file control structure. If the nominal time is less than the start time, the data
record is not written. An appropriate error message is written to ANC06 if a record is skipped.

9.7 PGE/Manager Implementation Details

This section discusses specific aspects of the PGE/Manager implementation which should be
addressed in more detail.

9.7.1 ANC29/ANC32/GLA00 Input

ANC29 data are handled differently than most core PGE I/O. Due to potential PDS boundary
problems (for example, the waveform data for a particular second may be on a different PDS
than the corresponding ancillary science data), all input ANC29 granules are read into mem-

Figure 9-3 L1A Manager Flow Chart

L_Eng

calc_shot_time

c_calc_sploc

perform_L_alt
AND ALT

data_avail?

L_ALT

perform_L_Atm AND
ATM data_avail?

L_Atm

perform_L_eng

Wrapup

c_intrpPOD

Set d_thresh_xing, GLA02
rec_ndx, time, location

L1A_Mgr

7/21/00

Set GLA01 rec_ndx,shot
time, location

call GLAS_Error

N

N

Y

Y

Y

N

Version 6.0 Page 9-6 March 2013

GLAS_L1A The GLAS Science Algorithm Software Detailed Design Document
ory by the ReadAnc core PGE routine. This array is dynamically allocated based on the num-
ber of records indicated in each ANC29 file header. The internal file number from which the
ANC29 data are read is stored into a spare byte in the array so that when GLA00 data are read,
the corresponding GLA00 file is used. After the ANC29 granules are read into memory, the
data are sorted to guarantee the correct time order. ANC32 data are loaded into memory simi-
larly.

ReadData actually “reads” the ANC29 and ANC32 data on a second-by-second basis from
memory. As the specialized ANC29/32 I/O was a fairly late design decision, this implementa-
tion minimized changes to the ReadData logic. ReadData uses the ANC29 data to read the
correct records from the various GLA00 APID files. It reads 1-second groups of APID records
using the physical record number, APID type, and internal file number to determine the cor-
rect position within the GLA00 files.

ReadData determines the content of a 1-second group by examining ANC29 rec_ndx values.
“rec_ndx” is described fully in the GLAS_L0proc section, but suffice to say, it is an integer
corresponding to 0.1 second utctimes. For the most part, rec_ndx values for APIDs of a partic-
ular second are the same exact value. However, in the case of APIDs which straddle PGEs, the
values may not be exactly the same. To handle this case, ReadData will consider that rec_ndx
values which correspond within 0.9 seconds are part of the same second. This value is a con-
stant defined in GLA00_mod.f90 as “rec_ndx_slop”.

9.7.2 Missing APIDs

Different GLAS APID packets originate from different subsystems of the GLAS instrument.
Depending upon the instrument state, APIDs may or may not be present in the data stream. In
addition, data drop-outs present the possibility of missing data.

The L1A Manager sets an array of flags (APID_Av_Flg) to indicate present or missing data. A
signal flag is set for each 1-second APID record. The complication arises when checking the
1/4 second APID waveform records AD_LgSci, AD_SmSci). In order to figure out which of
the four records are missing, the manager examines shot counters. By definition, the shot
counter in the Ancillary Science (AN_Sci) APID will match the first shot counter in the first
corresponding waveform record. The manager uses this knowledge to set positional flags that
indicate which of the 1/4 waveform APIDs are missing.

If at least one of the waveform records or the AN_Sci record is available, L1A_Mgr calls
L_Alt and a GLA01 record is written. If the Photon Counter Science (PC_Sci), Cloud Digi-
tizer Science (CD_Sci), or AN_Sci records are available, L1A_Mgr calls L_Atm and a
GLA02 record is written.

The GLA01 product file is a little different than the other GLAS products in that it contains
different record types. It has the following record types: main, large waveform, and small
waveform. The main record type occurs once per second. The large waveform type occurs
five per second. The small waveform type occurs twice per second. A record identifier
(i_gla01_rectype) within each record identifies what type that record is. If at least one of the
waveform records or the AN_Sci record is available, the Main record type exists in GLA01
for a particular second. If at least one of the waveform records is available, the waveform type
(small or large) records exist in GLA01 for that second.
March 2013 Page 9-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L1A
9.8 L1A_Subsystem

Figure 9-4 illustrates the processes that comprise the L1A subsystem.

9.8.1 Subsystem Design Decisions and Assumptions

The following design decisions were made:

• We will perform the precision shot time calculation in its own module since this infor-
mation is required for geolocation.

• Any Altimetry data required for L_Atm will be computed in L1A_Mgr.

The following assumptions were made:

• L1A will not be executed if L_Eng is not executed.

9.8.2 DFDs and their Descriptions

9.8.2.1 Level 1A Altimeter Processing

The purpose of the Level 1A Altimeter Processing (process 2.1) is to generate the data to be
stored on the Level 1A Altimeter Data product (GLA01). This process performs engineering
unit conversion on the raw Level 0 altimetry data (Alt_In) to obtain the Level 1A altimetry
data in engineering units. Any engineering/ housekeeping data that are required to be on the
GLA01 data product are collected here and placed in the output structure. Quality assessment
computations are performed, collected and placed in an output QA structure.

Figure 9-4 Level 1A Computations

2.2
L1A Atmosphere

Processing

2.1
L1A Altimetry

Processing

2.3
L1A Engineering

Processing

2.4
L1A Att

Processing

2.5
Calculate Shot

Time

2.6
Get Predicted

Orbit

Alt_In

Eng_In Atm_In

rawTime_In

POD_In

Att_In

Time_Out

Time_Out Time_Out

Time_Out

Eng_Out Eng_Out

POD_Out POD_Out POD_Out POD_Out

Atm_Out

Eng_Out

Alt_Out Att_Out
Version 6.0 Page 9-8 March 2013

GLAS_L1A The GLAS Science Algorithm Software Detailed Design Document
9.8.2.2 L1A Atmosphere Processing

The purpose of the L1A Atmosphere Processing (process 2.2) is to generate the data to be
stored on the Level 1A Atmosphere Data product (GLA02). This process performs engineer-
ing unit conversion on the raw Level 0 atmosphere data (Atm_In) to obtain the Level 1A
atmosphere data in engineering units. Any engineering/ housekeeping data that are required to
be on the GLA02 data product are collected here and placed in the output structure. Quality
assessment computations are performed, collected and placed in an output QA structure.

9.8.2.3 Engineering Data Processing

The purpose of the Engineering Data Processing (process 2.3) is to generate the data for the
Level 1A Engineering Data product (GLA03). This process performs engineering unit conver-
sion on the raw Level 0 engineering/housekeeping data (Eng_In) to obtain the Level 1A engi-
neering data in engineering units. Any Level 0 data that are not stored on either GLA01,
GLA02, or GLA04 are collected here and placed in the output structure. Quality assessment
computations are performed, collected and placed in an output QA structure.

Additionally, specific parameters of the Eng_Out structure are passed to the Altimetry and
Atmosphere processors.

9.8.2.4 Collect Instrument and S/C Position and Attitude

The purpose of process 2.4 is to collect the GPS data, instrument and S/C position and attitude
data and to generate the L1A Position and Attitude data product (GLA04). The APIDs used to
generate GLA04 include APID19, APID26, and APID1984. The GLA04 product is required
for input to the precision orbit and attitude determination algorithms. This process checks the
Level 0 packets for errors, configures the data for output and collects QA data.

Due to internal spacecraft/instrument timing issues all data corresponding to one second of
GLA04 data may not be within one second of APID1984. To align the LRS and IST data to
corresponding APID19 shot times, a 6 second double-buffering algorithm is used to match the
LRS and IST data with corresponding APID19 shots. To complicate matters, the LRS and IST
data occur at a rate of 10/second, whereas the APID19 shots occur at a rate of 40/second. The
algorithm finds the APID19 shots closest to the LRS/IST data and merges the APID19 and
APID1984 data into a single one second GLA04 record.

9.8.2.5 Calculate Shot Time

The Calculate Shot Time process (process 2.5) will generate the precise time of each laser
shot. The actual methodology of the time calculation depends upon the presence of the Ancil-
lary Science (AN_Sci) APID. If AN_Sci is not present, 40-per-second time is generated lin-
early using a 0.025 increment. If AN_Sci is available, the time will be calculated from the
laser fire time, GPS time, and the GPS latch time. Offsets and calibration factors will be
applied as necessary. The process is fully described in the L1A ATBD.

9.8.2.6 Get Predicted Location

The Get Predicted Location process (process 2.6) obtains the latitude and longitude for each
shot from the predicted orbit file using common routines. The shot times are input, the pre-
dicted orbit file is interpolated to get the spacecraft position vector for each shot time, and
March 2013 Page 9-9 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_L1A
then the latitude and longitude are computed from the position vector. The common routines
c_intrpPOD and c_calc_sploc will be used for the calculations. The common routines will be
called directly by the L1A Manager; it is not necessary to generate code for the Level 1A
Computations subsystem.
Version 6.0 Page 9-10 March 2013

Section 10

GLAS_Alt

GLAS_Alt is a core GSAS PGE. It uses the Waveform and Elevation subsystems to create
GLAS Level 1B and 2 data from the Level 1 GLAS altimetry data products (and optional L2
atmosphere products). GLAS_Alt will read the GLA01 file created by GLAS_L1A to create
the GLA05, GLA06, and GLA12-15 products. GLAS_Alt can also read the GLA05 file which
it created in a separate processing scenario to create GLA06 and GLA12-15. Additionally,
GLAS_Alt can read the GLA05 and GLA06 files created in a separate processing scenario to
generate GLA12-15.

10.1 Function

GLAS_Alt encompasses both the Waveform and Elevation subsystems.

The Level 1B Waveforms subsystem computes the geolocation and produces waveform-based
information required to create the elevation products (GLA05).

The Levels 1B and 2 Elevation Computation subsystem generates all elevation Standard Data
Products, associated Processing Quality Assessment data, and related computations. The
Level 1B subsystem creates parameters for a Level 1B time-ordered global product (GLA06)
with a geodetically corrected surface elevation using the same standard algorithm used for ice
sheet regions. The Level 2 subsystem determines region specific (ice sheet, sea ice, land, and
ocean regions) elevation parameters for Level 2 time-ordered regional products (GLA12,
GLA13, GLA14, and GLA15). The presence of optional L2 Atmosphere products GLA09 and
GLA11 cause atmosphere-specific parameters on GLA06 and 12-15 to be filled with data.
Flags indicate the presence/absence of atmosphere data.

10.2 Design Approach

The following design criteria are specific to GLAS_Alt

• GLAS_Alt fully uses the standard routines from the model GSAS PGE.

• GLAS_Alt can perform partial processing. However, since the Elevations subsystem
needs data from GLA05, it is not possible to create GLA12-15 with only GLA06 as an
input.

• The GLAS_Alt Elevations process needs atmosphere values from GLA09 and
GLA11. This requires that the GLAS_Atm jobs for the corresponding time period be
run before GLAS_Alt elevation jobs. (The GLAS_Alt Waveforms process can be run
before GLAS_Atm.)

• All products are output at one record per 1 sec. However, GLA12-15 are only written
when the footprint location falls within the respective regional mask.

• Two ANC01 meteorological data sets corresponding to the 6-hour time periods sur-
rounding the time of the output product data are required.
March 2013 Page 10-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
10.3 Input and Output Files

Table 10-1 lists the required inputs to GLAS_Alt. Table 10-2 lists the outputs created by
GLAS_Alt. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding these files. Those files which are only required by spe-
cific subsystems are noted within the table.

Table 10-1 GLAS_Alt Inputs

File Spec Type Source Short Description

anc01*.dat Dynamic Ancillary met_util Meteorological subset files. Data
sets at times before and after the
time of the profile are interpolated to
the time of the profile.

anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth Rota-
tion Data File.

anc07*_0000.d
at

Static Ancillary Science Team Error file.

anc07*_0001.d
at

Static Ancillary Science Team Global constants file.

anc07*_0003.d
at

Static Ancillary Science Team Waveform constants file.
*Waveform only

anc07*_0004.d
at

Static Ancillary Science Team Elevations constant file.
*Elevation only

anc08*.dat Dynamic Ancillary UTexas Precision Orbit file.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc12*_0000.d
at

Static Ancillary Science Team Coarse DEM file
*Elevation only.

anc12*_0001.d
at

Static Ancillary Science Team Fine DEM file
*Elevation only.

anc13*.dat Static Ancillary Science Team Geoid file
*Elevation only.

anc16*.dat Static Ancillary Science Team Load tide coefficients file
*Elevation only.

anc17*.dat Static Ancillary Science Team Ocean tide coefficients file
*Elevation only.

anc20*.dat Static Ancillary Science Team Predicted Orbit

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc27*_0000.d
at

Static Ancillary Science Team Coarse regional mask file.
Version 6.0 Page 10-2 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
anc27*_0001.d
at

Static Ancillary Science Team Fine regional mask file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc41*.dat Static Ancillary Science Team JPL Planetary Ephemeris

anc45*_0001.d
at

Static Ancillary Science Team GLA01 metadata input file.
*Waveform only

anc45*_0005.d
at

Static Ancillary Science Team GLA05 metadata input file.

anc45*_0006.d
at

Static Ancillary Science Team GLA06 metadata input file.

anc45*_0012.d
at

Static Ancillary Science Team GLA12 metadata input file.

anc45*_0013.d
at

Static Ancillary Science Team GLA13 metadata input file.

anc45*_0014.d
at

Static Ancillary Science Team GLA14 metadata input file.

anc45*_0015.d
at

Static Ancillary Science Team GLA15 metadata input file.

anc51*.dat Dynamic Ancillary SRTM_DEM SRTM DEM data files.
*Elevation only.

anc52*_0001.d
at

Static Ancillary Science Team Range Saturation Correction table.

anc52*_0002.d
at

Static Ancillary Science Team Energy Saturation Correction table.

anc54*_0001.d
at

Static Ancillary Science Team GLAS-Derived 1km DEM over
Greenland index file.
*Elevation only.

anc54*_0002.d
at

Static Ancillary Science Team GLAS-Derived 1km DEM over
Greenland data file.
*Elevation only.

anc54*_0003.d
at

Static Ancillary Science Team GLAS-Derived 500m DEM over Ant-
arctica index file.
*Elevation only.

anc54*_0004.d
at

Static Ancillary Science Team GLAS-Derived 500m DEM over Ant-
arctica data file.
*Elevation only.

anc54*_0005.d
at

Static Ancillary Science Team Canadian DEM index file.
*Elevation only.

Table 10-1 GLAS_Alt Inputs (Continued)

File Spec Type Source Short Description
March 2013 Page 10-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
anc54*_0006.d
at

Static Ancillary Science Team Canadian DEM data file.
*Elevation only.

anc55*.dat Static Ancillary Science Team Mean Sea Surface file.
*Elevation only.

anc56*.dat Static Ancillary Science Team Pole tide file.
*Elevation only.

anc57*.dat Static Ancillary Science Team Global bathymetry file.
*Elevation only.

anc58*.dat Static Ancillary Science Team Ground Track file.
*Elevation only.

anc59*.dat Static Ancillary Science Team Pointing Mode Table.

Control File Control ISIPS Operations Control file.

gla01*_.dat Level-1A Product GLAS_L1A L1A Altimetry product file.
*Waveform only.

gla05*_.dat Level-1B Product GLAS_Alt L1B Waveform product file.
*Elevation only.

gla06*_.dat Level-1B Product GLAS_Alt L1A Elevation product file.
*Elevation only.

gla09*_.dat Level-2 Product GLAS_Atm L2 Atmosphere product file.
*Elevation only.

gla11*_.dat Level-2 Product GLAS_Atm L2 Atmosphere product file.
*Elevation only.

GLAS_Alt may be run with either anc04, anc08, and anc09, or with anc20. anc20 is a predicted-
orbit product whereas anc04/08/09 are precision POD/PAD products. The anc04/08/09 combina-
tion will produce better geolocations.

Table 10-1 GLAS_Alt Inputs (Continued)

File Spec Type Source Short Description
Version 6.0 Page 10-4 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
Table 10-2 GLAS_Alt Outputs

File Spec Type Destination Short Description

gla05*.dat L1B Alt Product Archive/GLAS_Alt The level 1B waveform parameteriza-
tion product file. Contains the output
from the waveform characterization pro-
cedure and other parameters required
to calculate surface slope and relief
characteristics.

gla06*.dat L2 Alt Product Archive/GLAS_Alt L1B elevation data product file. Con-
tains the surface elevation, surface
roughness assuming no slope, surface
slope assuming no roughness and geo-
detic and atmospheric corrections for
the range.

gla12*.dat L2 Alt Product Archive L2 ice sheet altimetry product file. Con-
tains the ice sheet elevation and eleva-
tion distribution calculated from
algorithms fine-tuned for ice sheet
returns.

gla13*.dat L2 Alt Product Archive L2 sea ice altimetry product file. Con-
tains the sea ice freeboard and sea ice
roughness calculated from algorithms
fine-tuned for sea ice returns.

gla14*.dat L2 Alt Product Archive L2 land altimetry product file. Contains
the land elevation and land elevation
distribution calculated from algorithms
fine-tuned for land returns.

gla15*.dat L2 Alt Product Archive L2 ocean altimetry product file. Contains
ocean elevation and small-scale rough-
ness calculated from algorithms fine-
tuned for ocean returns.

qap05*.dat L1B Alt Quality QA L1B waveform parameterization quality
file.

qap06*.dat L2 Alt Quality QA L2 elevation data quality file.

qap12*.dat L2 Alt Quality QA L2 ice sheet altimetry quality file.

qap13*.dat L2 Alt Quality QA L2 sea ice altimetry quality file.

qap14*.dat L2 Alt Quality QA L2 land altimetry quality file.

qap15*.dat L2 Alt Quality QA L2 ocean altimetry quality file.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing log file.
March 2013 Page 10-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
10.4 GLAS_Alt

The basic GLAS_Alt processing algorithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Write version info (Write_LibVer, Write_AncVer)

• Read ancillary files (ReadAnc)

• Write execution flags information (Write_eCntl)

• Until all data are processed...

- Input data to process (ReadData)

- Execute the WF_Manager, based on Control

- Execute the Elev_Manager, based on Control

• Close all files and generate summaries (MainWrap)

10.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• ReadData

• MainWrap

10.5 Waveform Manager (WFMgr)

The Waveform Manager controls execution of the waveform subsystem, passes variables
from the input GLA01 product to the output GLA05 product, and handles granule start/stop.
The manager controls execution of the waveform science algorithms based on flags received
from GLAS_Alt. The manager is only executed if at least one of its execution flags is set.
Version 6.0 Page 10-6 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
WFMgr is passed arrays of output file control structures and execution flags. It accesses prod-
uct and algorithm data directly from the requisite public data structures. Execution flags are
defined in eCntl_mod; file control structures defined in the fCntl_mod component of the
exec_lib, and product/algorithm data within the GLA01 and GLA05 components of the
product_lib.

The first thing the manager does is check for an end-of-granule condition within each defined
output file by comparing the nominal time of data (set by ReadData_mod) with the appropri-
ate stop time within the specific file data structure. If an end-of-granule condition is detected,
wrap-up and final QA routines are called and the product and QA files are closed. If another
granule of the same type has been specified in the control file, the manager opens the appro-
priate product and QA files and loops to verify the stop time of the new granule is greater than
the nominal time of data.

Next, the manager executes several science algorithms based on its execution flags and data
availability. These algorithms are discussed in the WF_Subsystem section. Each returns a flag
indicating if the GLA05 data product should be written. Values which are passed directly from
one product to another are set appropriately.

QA routines are called to process QA information and the WriteWF routine is called with the
appropriate flags to write data to the product file. Before writing a record, WriteWF verifies
that the appropriate output file exists and that the nominal time of data is greater than the start
time specified in file control structure. If the nominal time is less than the start time, the data
record is not written. An appropriate error message is written to ANC06 if a record is skipped.

Figure 10-1 "WFMgr Structure Chart" provides an overview of the WFMgr and the subrou-
tines it calls.
March 2013 Page 10-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
Figure 10-1 WFMgr Structure Chart

W F M gr

W F_gra n u l e_ i n i t

QAP05_granu l e_ i n i t

W F_gra n u l e_check

W F_qap_c h eck

Check_ W F_APIDs

C_SetCa li bVars

Set_F il tnu m

F li p_ W F

Set_Co m pPar m

SetB i as

SetPADPar m s

GLAS_Error

W _Assess

get_anc0 8 _de g rades

get_anc0 9 _de g rades

c_Bea m _Sun_Ang

W _ Funct i ona l Ft

W r i te W F
Version 6.0 Page 10-8 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
10.5.1 WFMgr Subprocesses

WF_Granule_Init Initialize all WF granules

QAP05_granule_init Initializes QA arrays for GLA05

WF_granule-check Checks ALT and ATM waveform granules for EOF

WF_qap_check Checks WF QAP for wrapup

Check_WF_APIDs Checks WF APIDs and sets availability flags appropriately

C_SetCalibVars Initialize laser energy calibration coefficients

Set_Filtnum Sets filter number based on waveform type

Flip_WF Flips the waveforms

Set_CompParm Sets digitizer from instrument state

SetBias Stets bias and times due to delays and ANC09 correction

SetPADParms Sets parameters derived from PAD

GLAS_Error GSAS standard error reporting utility

W_Assess Major WF subroutine that performs a general assessment of the various
aspects of the waveforms

get_anc08_degrades Retrieves POD degradation data from anc08 file header

get_anc09_degrades Retrieves PAD degradation data from anc09 file header

c_Beam_Set_Ang Calculate laser coelevation, azimuth, and sun angle

W_FunctionalFt Major WF subroutine that calculates two (land plus “other”) functional
least squares fits to a Gaussian for each waveform

Write_WF Writes a GLA05 WF record
March 2013 Page 10-9 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
10.6 Elevation Manager (Elev_Mgr)

The Elevation Manager controls execution of the Elevation subsystems, passes variables from
the input GLA05/06 product to the output GLA06 and GLA12-15 products, and handles gran-
ule start/stop. The manager controls execution of the elevation science algorithms based on
flags received from GLAS_Alt. The manager is only executed if at least one of its execution
flags is set. Elev_Mgr is passed arrays of output file control structures and execution flags. It
accesses product and algorithm data directly from the requisite public data structures. Execu-
tion flags are defined in eCntl_mod; file control structures defined in the fCntl_mod compo-
nent of the exec_lib, and product/algorithm data within the GLA05/06 and GLA12-15
components of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each defined
output file by comparing the nominal time of data (set by ReadData_mod) with the appropri-
ate stop time within the specific file data structure. If an end-of-granule condition is detected,
wrap-up and final QA routines are called and the product and QA files are closed. If another
granule of the same type has been specified in the control file, the manager opens the appro-
priate product and QA files and loops to verify the stop time of the new granule is greater than
the nominal time of data.

After checking the granule times, processing begins. The manager calls common library geo-
location and DEM routines to compute position and elevation and tide routines to get tide
data.

Next, the manager calls routines to check the surface type of the data and executes several sci-
ence algorithms based on its execution flags and data availability. These algorithms are dis-
cussed in the DFD section. Each returns a flag indicating if the appropriate data product
should be written. Values which are passed directly from one product to another are set appro-
priately.

QA routines are called to process QA information and the WriteElev routine is called with the
appropriate flags to write data to the product files. Before writing a record, WriteElev verifies
that the appropriate output file exists and that the nominal time of data is greater than the start
time specified in file control structure. If the nominal time is less than the start time, the data
record is not written. An appropriate error message is written to ANC06 if a record is skipped.

Figure 10-2 "ElevMgr Structure Chart"provides an overview of the ElevMgr and the subrou-
tines it calls.
Version 6.0 Page 10-10 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
Figure 10-2 ElevMgr Structure Chart

 e l ev_gra n u l e_ i n i t

E l ev_granu l e_ c heck

E l ev_qa_check

avg_tp_d a ta

convert _ ranges

set_std_ r ng_p a ra m s

set_a l t_r n g_p a ra m s

StdF i tCo m ps

A l tF i tCo m ps

So l arAng l e

SetAt m Para m s

At m Ref l Corr

PreGeoLoc

getF i rs t LastVa li d

Co m pute_ G eo i d

Co m pute _ Tr o p

GetSu rfTy p e

Ca l cSu m Corrs

GeoLocStd

GeoLocA l t

C_Az i m uth_F o otPrnt1s

Co m put e T i deCo r r

Ca l cSatCor

SetE l evF l ags

Pass_GLA06

Fetch_DE M _Va l s

E l ev_AT_QAP

W r i teE l ev

E l ev M gr
March 2013 Page 10-11 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
10.6.1 ElevMgr Subprocesses

Elev_Granule_Init Initialize all elevations (6,12-15) granules

Elev_granule_check Checks ALT and ATM waveform granules for EOF

Elev_qa_check Checks Elevation QAP for wrapup

avg_tp_data Checks WF APIDs and sets availability flags appropriately

convert_ranges Convert GLA05 range from time units to distance

Set_std_rng_params Set standard-fit range parameters on GLA06,12,13,15 from con-
verted GLA05 ranges

Set_alt_rng_params Set alternate-fit range parameters on GLA14 from converted
GLA05 ranges

StdFitComps Convert GLA05 standard fit parameters from time units to distance
units and set corresponding GLA06,12,13,15 parameters

AltFitComps Convert GLA05 standard fit parameters from time units to distance
units and set corresponding GLA14 parameters

SolarAngle Set GLA06 sun angle value from attitude and ephemeris

SetAtmParams Propagate selected atmospheric parameters from GLA09 and
GLA11

AtmReflCorr Compute reflectivity correction

PreGeoLoc Perform re-geolocation if called for or if POD has been re-interpo-
lated

getFirstLastValid Get first and last valid waveform indices

ComputeGeoid Compute geoid elevations

ComputeTrop Compute range corrections due to tropospheric conditions

GetSurfType Compute surface-type flags based on location

CalcSumCorrs Calculate the sum of all range corrections

GeoLocStd Perform geolocation for standard waveform fit

GeoLocAlt Perform geolocation for alternate waveform fit

c_Azimuth_FootPrnt1s Compute the azimuth of a 1-second trace of the satellite footprint
along the orbit track

ComputeTideCorr Compute elevation corrections due to tidal forces

CalcSatCorr Compute saturation corrections and set saturation correction flag

SetElevFlags Sets an assortment of elevation-related flags based on data values

Pass_GLA06 Sets pass-through variables in GLA12-15 from GLA06 values

Fetch_DEM_Vals Retrieve high resolution DEM elevation values
Version 6.0 Page 10-12 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
Elev_AT_QAP Update QAP along-track parameters for GLA06,12-15

WriteElev Writes elevation record for GLA06,12-15
March 2013 Page 10-13 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
10.7 PGE/Manager Implementation Details

This section discusses specific aspects of the PGE/Manager implementation which should be
addressed in more detail.

10.7.1 GLA05 Requirement

The original concept of GLAS_Alt was to enable the Elev_Mgr to create GLA12-15 directly
from GLA06. However, due to data dependencies, GLA05 input is required (as well as
GLA06) when creating GLA12-15.

10.8 WF_Subsystem

The Level 1B Waveforms subsystem computes the geolocation, and produces waveform-
based information required to produce the elevation products (GLA05)

The Level 1B Waveforms subsystem is divided into two main processes (W_Assess, and
W_FunctionalFt) which generate waveform-based information required to produce the eleva-
tion products (GLA05). A control flag (w_ctrl) is passed to processes W_Assess and
W_FunctionalFt indicating whether processing will be land algorithm only, other-than-land
algorithm only, or both, and whether the subprocess W_DetGeo will be called. In addition to
producing waveform-based information, processes W_Assess and W_FunctionalFt generate
QA data for inclusion in the summary information product.

10.8.1 Assess Waveforms (W_Assess)

W_Assess performs a general assessment of the waveforms including: a check for saturation;
calculating various shape characteristics; preliminary uncorrected latitude, longitude, and ele-
vation; reflectance; and calculating the reference range, minimum range offset (signal begin),
preliminary uncorrected range offset (signal end), and the threshold retracker range offset.

Input arguments:

 w_ctrl Control flags

 l_PADflag Indicates if the PAD file is being used (same as g_havePAD)

 i_numWFinFrame Number of WF in a frame (normally 40)

 i_numGinWF Number of gates in WF (either 200, or 544)

 r_wf_trans Transmitted pulse in volts

 r_wf_rec Received WF in volts

 i_wf_rec Received WF in raw counts

 i_cr Compression values

 i_ndxCr Gate index where second compression starts

d_bgNoiseOb Mean background noise level as measured by instrument

 d_sDevNsOb Standard deviation of background noise level calculated by the on-board
algorithm
Version 6.0 Page 10-14 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
Output arguments:

d_FilterOb Filter width where instrument found signal (ns)

d_TimeGate1Tr Digitizer time of gate 1 of transmitted pulse (ns)

d_TimeGateLRec Digitizer time of last gate of received WF (ns)

d_UTC1stPTime UTC of 1st transmitted pulse (sec)

 d_dShotTime Time increment from d_UTC1stPTime for shots 2-40 (microsec)

d_PADpntgVect Precision attitude pointing vector

d_areaTele Telescope Area (~0.709 m^2)

d_optTrans Optics Transmission

d_nrgRec Energy of received WFs

d_gain_recv Received gain

d_gainTr Transmitted gain

d_nrgTr Energy of transmitted pulses

 anc_param_d Dependent Ancillary parameters (land or other-than-land processing)

anc_param_indep Independent Ancillary parameters

d_dTHiRes Time in ns of one digitizer gate

i_implement33_Ndx Shot where d_rDelay_digtzr, d_plRbias, and d_dTHiRes change

 i_gval_rcv Received gain in raw counts

d_RecNrgAll_EU Echo pulse energy

d_rDelay_digtzr Prelaunch internal range delay in ns

d_plRbias Post launch range bias in ns

d_latPreUncor Preliminary uncorrected latitude

d_longPreUncor Preliminary uncorrected longitude

d_elevPreUncor Preliminary uncorrected elevation

 i_elvFlg Source of elevation indicator flag

 l_RcorrFlgInt FALSE=d_rDelay_digtzr not applied

 l_RcorrFlgPL FALSE=d_plRbias not applied

 l_Wfqual An array of 31 flags for each waveform. These flags include: no signal,
no leading edge, no trailing edge, no transmitted pulse, land, ocean,
icesheet, seaice, no fit, noise and standard deviation of noise are calcu-
lated, maximum iterations during fit, region selected for waveform fit, and
invalid waveform.
March 2013 Page 10-15 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
d_latPreUncor Preliminary uncorrected latitude

d_longPreUncor Preliminary uncorrected longitude

d_elevPreUncor Preliminary uncorrected elevation

 i_elvFlg Source of elevation indicator flag

 l_RcorrFlgInt FALSE=d_rDelay_digtzr not applied

 l_RcorrFlgPL FALSE=d_plRbias not applied

 l_Wfqual An array of 31 flags for each waveform. These flags include: no signal, no lead-
ing edge, no trailing edge, no transmitted pulse, land, ocean, icesheet, seaice,
no fit, noise and standard deviation of noise are calculated, maximum iterations
during fit, region selected for waveform fit, and invalid waveform.

d_dDigComp Offset of last gate of received WF from last digitized gate last received gate
time is not same as last digitized gate time if there is compression

d_relTime Relative time of each gate in ns from gate 1 (earliest time) of received WF tak-
ing account of the compression information. For example, if the original gates
were one nanosecond apart, and there was a compression ratio of 2, then the
time of gate 1 (r_wf_rec[1]) would be the average of the times of the first two
digitizer gates ((0+1)/2 or 0.5), and the time of gate 2 would be the average of
the times of the third and fourth digitizer gates ((2+3)/2 or 2.5).

d_wf_sm Smoothed WF

d_maxSmAmp Maximum amplitude of smooth WF

 d_pcntSat Percent saturation of WF - set to invalid

d_bg_Noise Either the observed noise (d_bgNoiseOb), or the calculated background noise.
The calculation is performed if anc07%i_nsCal is set, or if the observed noise is
zero or invalid and the waveform is not invalid.

d_sDevNoise Either the observed noise standard deviation (d_sDevNsOb), or the standard
deviation of the calculated noise. The calculation is performed if
anc07%i_nsCal is set, or if the observed noise is zero or invalid and the wave-
form is not invalid.

d_refRng Reference range in ns - time from Tr pk to last gate

d_maxRngO Offset to be added to d_refRng to give the time of the last threshold crossing
(closest to the ground, signal end)

d_minRngOff Offset to be added to d_refRng to give the time of the first threshold crossing
(closest to the spacecraft, signal begin)

 d_preRngOff Same as d_maxRngOff

d_thRtkRngOff Offset to be added to d_refRng to give the retracker threshold range

 i_ndxBegin Index of beginning of signal

 i_ndxEnd Index of end of signal

d_areaRecWF Area of signal return of r_wf_rec from sig begin to sig end
Version 6.0 Page 10-16 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
d_maxRecAmp Maximum amplitude of recieved WF

d_skew Skewness of r_wf_rec from sig begin to sig end

d_kurt Kurtosis of r_wf_rec from sig begin to sig end

d_centroid Centroid of r_wf_rec from sig begin to sig end

d_maxTrAmp Maximum amplitude of transmitted pulse

d_areaTr Area of gaussian fitted to transmitted pulse

d_locTr Centroid of transmitted pulse (ns)

d_tx_sm Smoothed transmitted pulse

d_minTxAmp Min amp for transmitted pulse

d_trTime Relative time of each gate in ns of transmitted pulse

 i_ndxTrB Index of beginning of transmitted pulse

 i_ndxTrE Index of end of transmitted pulse

d_sDevNsTx Std dev of noise for transmitted pulse

 d_nsTx Noise for transmitted pulse

d_skewTr Skewness of transmitted pulse gaussian

d_PODposVect Precision orbit position vector

d_reflctUncorr Reflectivity, not corrected for atmosphere, calculated using the received energy
from the maximum peak

d_reflctAllUnc Reflectivity, not corrected for atmosphere, calculated using the received energy
from all peaks

 d_centroidInstr Instrument centroid of last peak

 l_PODflag Returned by C_IntrpPOD, indicates the status of the orbit information

 l_offNadirFlag Returned by C_CalcSpLoc, indicates if the spacecraft is pointed off nadir.

 i_usePAD From C_CalcSpLoc, array indicating if PAD used for each shot

 l_land True indicates the possible presence of land

 l_ocean True indicates the possible presence of ocean

 l_icesheet True indicates the possible presence of icesheet

 l_seaice True indicates the possible presence of seaice

 l_badFrame(1) True if all WFs in this record have no signal

 l_badFrame(2) False if all WFs in this record are valid

 i_errSeverity Error flag from C_IntrpPOD, C_GetRegions, C_CalcTNrg, or C_CalcSpLoc
March 2013 Page 10-17 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
10.8.1.1 W_Assess Subprocesses

W_Assess calls the following subprocesses:

10.8.1.2 Calculate the WF Functional Fit (W_FunctionalFt)

W_FunctionalFt calculates two functional fits for each waveform, one for land and one for all
other surface types. Various fit related parameters are returned including the initial number of
potential peaks found, the number of gaussian peaks (as many as six for the alternate or land
fit, and up to two for the standard fit), the standard deviation of fit, and flags indicating satura-
tion, whether the maximum number of iterations was exceeded, or if there was a fit.

Input arguments:

W_CalcRelTime Calculates the d_relTime array

W_CharTrPulse Characterize the transmitted pulse

W_CalcNoise Calculates the noise

W_CalcRefRng Calculates the reference range

W_SmoothPreRC Smooth the WF's with a gaussian filter

W_DetGeo Determine the geolocation of each shot

C_GetRegions Determines the region types of each shot

W_CalcCtMxArAs Calculates centroid, maximum amplitude, area, skew & kurtosis for the WF
between signal_begin (i_ndxBegin) & signal_end (i_ndxEnd)

W_CalcInstrCt Calculates the instrument centroid of the maximum amplitude peak

W_Ck4Sat Check for waveform saturation

W_CalcThRetrkr Calculates offset of retracker threshold

C_CalcTNrg Calculates the transmitted energy

W_CalcReflct Calculates reflectance

w_ctrl Control flags

i_numWFinFrame Number of WF in a frame (normally 40)

i_numGinWF Number of gates in WF (either 200, or 544)

r_wf_rec Received WF in volts

d_wf_sm Smoothed WF

r_wf_trans Transmitted pulse in volts

d_tx_sm Smoothed transmitted pulse

d_minTxAmp Min amp for transmitted pulse

d_sDevNsTx Std dev of noise for transmitted pulse
Version 6.0 Page 10-18 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
d_nsTx Noise for transmitted pulse

d_relTime WF taking account of the compression information. For example, if the origi-
nal gates were one nanosecond apart, and there was a compression ratio of
2, then the time of gate 1 (r_wf_rec[1]) would be the average of the times of
the first two digitizer gates ((0+1)/2 or 0.5), and the time of gate 2 would be
the average of the times of the third and fourth digitizer gates ((2+3)/2 or 2.5).

i_ndxBegin Index of beginning of signal

i_ndxEnd Index of end of signal

d_bg_Noise Either the observed noise (d_bgNoiseOb), or the calculated background
noise. The calculation is performed if anc07%i_nsCal is set, or if the observed
noise is zero or invalid and the waveform is not invalid.

d_sDevNoise Either the observed noise standard deviation (d_sDevNsOb), or the standard
deviation of the calculated noise. The calculation is performed if
anc07%i_nsCal is set, or if the observed noise is zero or invalid and the
waveform is not invalid.

l_land True indicates the possible presence of land

l_ocean True indicates the possible presence of ocean

l_icesheet True indicates the possible presence of icesheet

l_seaice True indicates the possible presence of seaice

d_UTCtime UTC time – used only for debug not for calculations

d_latPreUncor Preliminary uncorrected latitude

d_longPreUncor Preliminary uncorrected longitude

d_elevPreUncor Preliminary uncorrected elevation

d_centroid Centroid of r_wf_rec from sig begin to sig end

d_dDigComp Offset of last gate of received WF from last digitized gate last received gate
time is not same as last digitized gate time if there is compression

anc_param_dep Dependent Ancillary parameters

anc_param_indep Independent Ancillary parameters

l_Wfqual An array of 31 flags for each waveform. These flags include: no signal, no
leading edge, no trailing edge, no transmitted pulse, land, ocean, icesheet,
seaice, no fit, noise and standard deviation of noise are calculated, maximum
iterations during fit, region selected for waveform fit, and invalid waveform.
March 2013 Page 10-19 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
Output arguments:

l_Wfqual An array of 31 flags for each waveform. These flags include: no signal, no
leading edge, no trailing edge, no transmitted pulse, land, ocean, icesheet,
seaice, no fit, noise and standard deviation of noise are calculated, maximum
iterations during fit, region selected for waveform fit, and invalid waveform.

d_estTxParms Estimated parameters for fit of transmitted pulse

d_parmTr Noise, amplitude, centroid, and sigma of transmitted pulse gaussian

d_sDevFitTr Standard deviation of fit of d_parmTr to transmitted pulse

d_solnTrSgms Sigmas of fit of d_parmTr to transmitted pulse

d_parm noise, 6x(amplitude,loc,sigma). Within this subsystem, locs are relative to
gate 1, just before returning to WFMgr, they are converted to offsets that are
to be added to the reference range.

i_nPeaks Actual number of peaks in d_parm

d_estParms Estimated parameters before the fit

i_nPeakInit Number of peaks initially found before the fitting process

i_rank Rank of peaks

d_solnSigmas Solution sigmas for each parameter in d_parm

d_wfFitSDev std deviation of fit

l_fit_nogo True if fit process was not completed

l_fit_maxiter True if fit process was stopped after maxiter iterations

i_errSeverity Error flag from W_InvertM in W_LsqFit
Version 6.0 Page 10-20 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
10.8.1.3 W_FunctionalFt Subprocesses

W_FunctionalFt calls the following subprocesses:

W_ParamWithFit calls the following subroutines:

W_EstParams calls the following subroutines:

W_Estimates calls the following subroutines:

W_PerformFit calls the following subroutines:

W_ParamWithFit Calculates the maximum amplitude for each WF, and over-
sees the fitting process for first the alternate set of parame-
ters, and then the standard set of parameters.

W_Ck4HiSat Determines the saturation type, if any, for each WF

W_EstParams Estimates the WF model parameters for W_ParamWithFit

W_PerformFit Fit the gaussian functions to the recieved waveforms

W_RankAllPeaks

W_Calc2ndDer Calculates the second derivatives of the WF's

W_Estimates Determines the initial number of peaks in the WF. Combine
peaks until there are no more than i_maxfit and make
parameter estimates

W_EstNew Determine the number of peaks in the WF. Combine close
peaks, then choose the largest I_maxfit peaks and make
parameter estimates.

W_combinePeak Combines one peak with the following peak

W_combinePeaks Combines multiple peaks

W_RankPeaks Assign a rank to each peak

W_LsqFit Perform least squares fit for one WF

W_RmPeaks Remove peaks

W_combinePeaks Combines multiple peaks

W_modPnW Modify estimated amplitude for maxAmp, and modify the
weights so that a better fit to the leading edge will be pre-
ferred

W_NormWF Normalize waveform
March 2013 Page 10-21 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
W_LsqFit calls the following subroutines:

10.9 Elev_Subsystem

The Levels 1B and 2 Elevation Computation subsystem generates all elevation Standard Data
Products, associated Processing Quality Assessment data, and related computations. The
Level 1B subsystem creates parameters for a Level 1B time-ordered global product (GLA06)
with a geodetically corrected standard elevation. The Level 2 subsystem determines region
specific (ice sheet, sea ice, land, and ocean regions) elevation parameters for Level 2 time-
ordered regional products (GLA12, GLA13, GLA14, and GLAS15).

10.9.1 L1B DFDs and their Descriptions

Below is a breakdown of each of the elevation processes into subprocesses. Each subprocess
corresponds to a Fortran 90 subroutine that is called by the elevation manager.

10.9.1.1 Calculate Coelev, Azimuth & Sun Angle (C_Beam_Sun_Ang)

Calculate the laser beam coelevation and azimuth and sun angle given the geodetic lat, lon,
height above ellipsoid and time.

10.9.1.2 Interpolate POD (C_IntrpPOD)

Utilizes the POD file (ANC08), and time to interpolate the precision vectors for use in geolo-
cation.

10.9.1.3 Tide Correction Routines (E_CalcLoadTD, E_CalcOceanTD,
E_CalcEarthTD)

The tide correction routines consists of three processes which calculate the elevation correc-
tions due to the effects of the load tide, ocean tide, and earth tide. Each process is triggered by
a control flag. Following is a brief description of each of the process:

W_UnNormWF Un-normalize waveform

W_CalcSDev Calculate goodness of fit

W_CkParms Check the waveform parameters for unreasonable values

W_CalcFnP Calculate the value of the function and the partial derivatives
with respect to the function parameters

W_CalcArP Calculate the area and the partial derivatives of the area
with respect to the function parameters

W_InvertM Invert iDim x iDim matrix A

W_CkConv Check the waveform parameters for convergence

W_CalcSDev Calculate goodness of fit
Version 6.0 Page 10-22 March 2013

GLAS_Alt The GLAS Science Algorithm Software Detailed Design Document
10.9.1.3.1 Compute Load Tide Correction (E_calcLoadTd)

Utilizes the load tide coefficients file to compute the coefficients for the given spot location.
Then calculates the load tide correction using the given time.

10.9.1.3.2 Compute Ocean Tide Correction (E_calcOceanTd)

Utilizes the ocean tide coefficients file to compute the coefficients for the given spot location.
Then calculates the ocean tide correction using the given time (time).

10.9.1.3.3 Compute Earth Tide Correction (E_calcEarthTd)

Utilizes the earth tide coefficients file to compute the coefficients for the given spot location.
Then calculates the earth tide correction using the given time.

10.9.1.4 Calculate Std surface Elevation and spot loc (C_CalcSploc)

Utilizes the results from the previous three processes along with the spacecraft position in
ITRF (Inertial Terrestrial Reference Frame), the laser attitude in ITRF, reference range, and
ice sheet range offset to calculate surface independent elevation and spot location.

10.9.1.5 Interpolate Geoids (C_GetGeoid)

Utilizes the spot location to interpolate for the geoid height at that location. This is a common
routine used by several processes.

10.9.1.6 Calculate Troposphere Corrections (E_CalcTrop)

Utilizes the met data files, spot location, and elevation (with respect to the geoid), to interpo-
late spatially for parameters used in the calculation of the tropospheric corrections. These cor-
rections are then temporally interpolated to get the tropospheric corrections for the given time.

10.9.1.7 Calculate Angle (C_CalcAngle)

Calculates the angle between the POD and range vectors.

10.9.1.8 10.9.1.8 Identify Regions (C_GetRegions)

Utilizes the region masks file and spot location to determine the valid regions for the spot
location

10.9.1.9 10.9.1.9 Interpolate DEM (E_CalcDEM)

Utilizes the spot location, the Global DEM file, and the DEM mask file to determine the DEM
elevation for the specified spot.

10.9.1.10 10.9.1.10 Calculate Slope & Roughness (E_CalcSlope)

Utilizes the sigma of the gaussian waveform, transmitted pulse width, and receiver impulse
width to calculate the slope and roughness.

10.9.1.11 Create L1B Quality Statistics (update_GLA06QA)

Combines QA data from the previous six processes to create QA statistics for the Level 1B
Elevation Computation subsystem
March 2013 Page 10-23 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Alt
10.9.1.12 10.9.1.12 Create L1B Quality Statistics

Combines QA data from the previous six processes to create QA statistics for the Level 1B
Elevation Computation subsystem

10.9.2 L2 DFDs and their Descriptions

Below is a breakdown of each of the elevation processes into subprocesses. Each subprocess
corresponds to a Fortran 90 subroutine that is called by the elevation manager

10.9.2.1 Calc Reg Params (E_OceanParm, E_LandParm)

Calculates the region specific parameters that have not already been determined earlier by the
other routines.

10.9.2.2 Create L2 Elevations QA (update_GLA12QA, update_GLA13QA,
update_GLA14QA, update_GLA15QA)

Combines QA data from the processes 5.2.2, 5.2.3, and 5.2.4 to create QA statistics for the
Level 2 Elevation Computation subsystem.

10.9.2.3 Create Elevation QA Statistics (wrapUpQAP06, wrapUpQAP12_15)

Wraps up and writes to file the QA Statistics for the Level 1B and 2 Elevation Computation
subsystems. WrapUpQAP06 will handle the Level 1B subsystem, while wrapUPQAP12_15
will handle the Level 2 subsystem.
Version 6.0 Page 10-24 March 2013

Section 11

GLAS_Atm

11.1 Overview

GLAS_Atm is a core GSAS PGE. It uses the Atmosphere subsystem to create GLAS Level
1B and 2 data from the Level 1 GLAS atmosphere data products. GLAS_Atm will read the
GLA02 file created by GLAS_L1A and the ANC36 file created by Atm_Anc to create the
GLA07-11 products.

11.2 Function

The function of the Levels 1B and 2 Atmosphere Computations subsystem is to create atmo-
sphere parameters for the standard data products GLA07-11 and to generate associated meta-
data and quality assessment (QA) data.

11.3 Design Approach

The following design criteria are specific to GLAS_Atm

• GLAS_Atm fully uses the standard routines from the model GSAS PGE.

• GLAS_Atm can perform partial processing. However, due to the 20 second buffering,
the Level 2 data is always processed together even under reprocessing scenarios. Data
products GLA08-11 are always created together.

• The Level 1B product (GLA07) is output at one record per 1 sec.

• The processing of Level 2 data is buffered for 20 seconds irrespective of time gaps
between data records.

• The Level 2 products (GLA08-11) are output at one record per 4 seconds.

• Cloud products are reported at once per 4 seconds, 1 second, and 5 Hz from 21 to 0
km, and at 40 Hz below 10 km.

• Aerosol products are reported at once per 4 seconds from 21 to 0 km and at once per
20 sec from 41 to 21 km.

• Twenty second averaging requires that at least ten seconds of valid profiles are avail-
able. Likewise, four second averaging requires that at least two seconds of valid pro-
files are available.

• Met data sets at times before and after the time of the profile are interpolated to the
time of the profile. If either of the met data sets are missing, then the available met
data set is used without interpolation. If no met data sets are available, then standard
atmosphere data are used instead
March 2013 Page 11-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
11.4 Input and Output Files

Table 11-1 lists the required inputs to GLAS_Atm. Table 11-2 lists the outputs created by
GLAS_Atm. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

Table 11-1 GLAS_Atm Inputs

File Spec Type Source Short Description

anc01*.dat Dynamic Ancillary met_util Meteorological subset files.
Data sets at times before and
after the time of the profile are
interpolated to the time of the
profile. If either of the ANC01
data sets are missing, then the
available ANC01 data set is
used without interpolation. If no
ANC01 data sets are available,
then standard atmosphere data
are used instead.

anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth
Rotation Data File.

anc07*_0000.dat Static Ancillary Science Team Error file.

anc07*_0001.dat Static Ancillary Science Team Global constants file.

anc07*_0002.dat Static Ancillary Science Team Atm constants file.

anc07*_0005.dat Static Ancillary Science Team L1A constants file.

anc08*.dat Dynamic Ancillary UTexas Precision Orbit file.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc12*_0000.dat Static Ancillary Science Team DEM file.

anc12*_0001.dat Static Ancillary Science Team DEM mask file.

anc13*.dat Static Ancillary Science Team Geoid file.

anc18*.dat Static Ancillary Science Team Standard atmosphere file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc30*.dat Static Ancillary Science Team Global aerosol categorization
map file.

anc31*.dat Static Ancillary Science Team Aerosol tropospheric classifica-
tion map file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc35*.dat Static Ancillary Science Team Ozone file.

anc36*.dat Dynamic Ancillary atm_anc Atmosphere Calibration file.
Version 6.0 Page 11-2 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
anc38*.dat Static Ancillary Science Team Multiple-scattering table file.

anc45*_0002.dat Static Ancillary Science Team GLA02 metadata input file.

anc45*_0007.dat Static Ancillary Science Team GLA07 metadata input file.

anc45*_0008.dat Static Ancillary Science Team GLA08 metadata input file.

anc45*_0009.dat Static Ancillary Science Team GLA09 metadata input file.

anc45*_0010.dat Static Ancillary Science Team GLA10 metadata input file.

anc45*_0011.dat Static Ancillary Science Team GLA11 metadata input file.

Control File Control ISIPS Operations Control file.

gla02*_.dat Level-1A Product GLAS_L1A L1A Atmosphere product file.

gla05*_.dat Level-1B Product GLAS_Alt (wf) L1B Waveform product file.

Table 11-2 GLAS_Atm Outputs

File Spec Type Destination Short Description

gla07*.dat L1B Atm Product Archive L1B Global Backscatter product
file. Contains full 532 nm and
1064 nm calibrated attenuated
backscatter profiles at 5 times
per second, and from 10 to -1
km, at 40 times per second.
Also included will be calibration
coefficient values and molecular
backscatter profiles at once per
second.

gla08*.dat L2 Atm Product Archive L2 Planetary Boundary Layer
and Elevated Aerosol Layer
Height product file. Contains
elevated aerosol layer height
data consisting of top and bot-
tom heights for up to 5 aerosol
layers below 20 km at once per
4 seconds, and top and bottom
heights for up to 3 aerosol lay-
ers above 20 km at once per 20
seconds.

Table 11-1 GLAS_Atm Inputs (Continued)

File Spec Type Source Short Description
March 2013 Page 11-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
11.5 Functions

shows the top-level structure chart of GLAS_Atm. The basic processing algorithm is summa-
rized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

gla09*.dat L2 Atm Product Archive L2 Cloud Layer Height product
file. Contains top and bottom
heights for up to 10 layers below
20 km at once per 4 seconds,
once per second, 5 times per
second, and 40 times per sec-
ond (below 4 km only). Ground
heights will also be provided at
each resolution.

gla10*.dat L2 Atm Product Archive L2 Aerosol Vertical Structure
product file. Contains cloud and
aerosol backscatter and extinc-
tion cross section profiles.

gla11*.dat L2 AtmProduct Archive L2 Thin Cloud/Aerosol product
file. Contains optical depths for
clouds for up to 10 layers, the
planetary boundary layer, and
aerosols for up to 8 layers.

qap07*.dat L2 Atm Quality QA L1B Global Backscatter quality
file.

qap08*.dat L2 Atm Quality QA L2 Planetary Boundary Layer
and Elevated Aerosol Layer
Height quality file.

qap09*.dat L2 Atm Quality QA L2 Cloud Layer Height quality
file.

qap10*.dat L2 Atm Quality QA L2 Aerosol Vertical Structure
quality file.

qap11*.dat L2 Atm Quality QA L2 Thin Cloud/Aerosol quality
file.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

Table 11-2 GLAS_Atm Outputs (Continued)

File Spec Type Destination Short Description
Version 6.0 Page 11-4 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
• Print the control file (Print_Cntl)

• Write version info (Write_LibVer, Write_AncVer)

• Read ancillary files (ReadAnc)

• Write execution flags information (Write_eCntl)

• Until all data are processed...

- Input data to process (ReadData)

- Execute the Atm_Manager

Close all files and generate summaries (MainWrap).

11.5.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• Write_eCntl

Figure 11-1 GLAS_Atm Structure Chart

GLAS_Atm
PGE Core
Routines

MainInit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl

Write_LibVer
ReadANC

Write_AncVer
Write_eCtrl
ReadData

Atm_Mgr
checkoutput
(PGE core)

MainWrap
March 2013 Page 11-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
• ReadData

• MainWrap

11.5.2 Atm Manager (Atm_Mgr)

The Atm Manager controls execution of the Atmosphere subsystem, passes variables from the
input GLA02 product to the output GLA07-11 products, and handles granule start/stop. The
manager controls execution of the science algorithms based on flags received from
GLAS_Atm. Figure 11-2 shows the Atm_Mgr structure chart.

Figure 11-2 Atm_Mgr Structure Chart
Version 6.0 Page 11-6 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
Figure 11-3 shows a flow chart of the Atm Manager..

Figure 11-3 ATM Manager - Part 1

Call E_GetGeoid
to get geoid

Call C_CalcSpLoc
to get satellite ht

Call C_interp_pod
to get POD

Call A_met_interp
to get MET profs

Call A_mbscs
to get molec profs

Call A_rebin_lid
 to vert align profs

Call A_bscs
to get back profs

if (bs_to_end)

AtmMgr

If (start_of_processing) initialize headers
Loop through granule times: if current time >= stop time

for GLA07: set end_of_1s_granule flag to 1
Increment to next granule for GLA07

for GLA08-11: set end_of_4s_granule flag to 1

if (bs_only)

True

True

Call A_qa_G7 (end_of_1s_granule flag, end_of_processing flag)
to get QA stats for GLA07

if (end_of_1s_granule) average and write QA , then sum
if (end_of_processing) average and write QA

else sum

if (bs_only)
True

if (end_of_processing)
True

if (end_of_1s_granule == 1)
Set end_of_1s_granule flag to 0

Increment to next QA granule for GLA07

Call WriteATM (i_write_ctrl) to write GLA07 product

if (.not. no_pod)

if (bs_to_end)

if (bs_to_end)

OR

OR

if (bs_only)

ANDOR

if (end_of_processing)

True

True

Set (i_write_ctrl) = 1 (write GLA07)

Call A_cal_cofs
to get calib cofsif (bs_only)

True
if (bs_to_end)

OR

Call E_CalcDEM
to get DEM

Call C_CalcSpLoc
to get lat/lon/elev
March 2013 Page 11-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
Figure 11-4 ATM Manager - Part 2

Call A_aer_lays
to get aer lays

Call A_aer_opt_prop
to get optical properties

Call A_cld_lays
to get cld hts

Call A_pbl_lay
to get PBL lay

Call A_buff_data (end_of_4s_granule flag, end_of_processing flag)
to buffer 20 secs of data and pass-throughs for 4 sec products

Set i_complete_buf to 0

Return

if (cld_to_end)if (bs_to_end)

Fill 20 sec tmp buffer

Output 20 sec output arguments
Clear 20 sec tmp buffers

Reset time t(1)
Set i_complete_buf to 1

Call A_qa_G8-11 (end_of_4s_granule flag, end_of_processing flag, i_qa_ctrl))
to get QA stats for GLA08-11

if (end_of_4s_granule or end_of_processing) add to sums, then average and write QA
else add to sums

Call WriteATM (i_write_ctrl) to write GLA08-11 products

if (end_of_4s_granule == 1)

if (time since t(1) <= 20 s)

True

False

Set end_of_4s_granule flag to 0
Increment to next granule for GLA08-11

Increment to next QA granule for GLA08-11

if (i_complete_buf == 1)
False

if (end_of_processing)

if (end_of_4s_granule == 1)

True

True

Go to to start of buffering
if (end_of_processing)

True

Set (i_write_ctrl) = 2 (write GLA08-11)

False

OR
Version 6.0 Page 11-8 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
Atm_Mgr is passed arrays of output file control structures and execution flags. It accesses
product and algorithm data directly from the requisite public data structures. Execution flags
are defined in eCntl_mod; file control structures defined in the fCntl_mod component of the
exec_lib, and product/algorithm data within the GLA02 and GLA07-11 components of the
product_lib.

The first thing the manager does is check for an end-of-granule condition within each defined
output file by comparing the nominal time of data (set by ReadData_mod) with the appropri-
ate stop time within the specific file data structure. If an end-of-granule condition is detected,
wrap-up and final QA routines are called and the product and QA files are closed. If another
granule of the same type has been specified in the control file, the manager opens the appro-
priate product and QA files and loops to verify the stop time of the new granule is greater than
the nominal time of data.

After checking the granule times, processing begins. The manager calls A_cal_coefs to get
calibration coefficients from ANC36. It then calls common library geolocation and DEM rou-
tines to compute position and elevation and A_interp_met to get meteorological data.

Next, the manager buffers the data and executes several science algorithms based on its exe-
cution flags and data availability. These algorithms are discussed in the DFD section. Each
returns a flag indicating if the appropriate data product should be written. Values which are
passed directly from one product to another are set appropriately.

QA routines are called to process QA information and the WriteAtm routine is called with the
appropriate flags to write data to the product files. Before writing a record, WriteAtm verifies
that the appropriate output file exists and that the nominal time of data is greater than the start
time specified in file control structure. If the nominal time is less than the start time, the data
record is not written. An appropriate error message is written to ANC06 if a record is skipped.

11.6 Atm_Subsystem

The function of the ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM
process is to geolocate the lidar data, calculate the range of the satellite to the geoid height,
compute the DEM elevation for the profile location, and compute the 532 nm and 1064 nm
calibration coefficients.

The function of the ATM L1B Calculate Backscatter Cross Section Profiles process is to cre-
ate parameters for the Level 1b Global Backscatter Data Product GLA07 including meteoro-
logical profiles and 532 nm and 1064 nm attenuated backscatter cross section profiles.

The function of the ATM L1B Create QA Statistics and Write ATM process is to create Level
1B granule QA statistics, write the QAP07 QA product files, and write the GLA07 data prod-
uct files.

The function of the ATM L2 Buffer 20 Seconds process is to buffer 20 seconds of Level 1b
data for input into the level 2 processes. The processing of Level 2 data is buffered for 20 sec-
onds irrespective of time gaps between data records.

The function of the ATM L2 Calculate Layer Heights process is to create parameters for the
Level 2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights Product
March 2013 Page 11-9 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
GLA08 and the Level 2 Global Cloud Heights for Multi-layer Clouds Product GLA09. This
process determines, at several resolutions, the top and bottom elevations of multiple cloud and
aerosol layers, ground detection heights, and the planetary boundary layer (PBL) height.

The function of the ATM L2 Calculate Optical Properties process is to create parameters for
the Level 2 Global Aerosol Vertical Structure Data Product GLA10 and the Level 2 Global
Thin Cloud and Aerosol Optical Depths Data Product GLA11. This process creates cloud and
aerosol backscatter cross section profiles and extinction cross section profiles. Optical depths
for multiple cloud and aerosol layers and the planetary boundary layer are also created.

The function of the ATM L2 Create QA Statistics and Write ATM process is to create Level 2
granule QA statistics, write the QAP08-11 QA product files, and write the GLA08-11 data
product files

11.6.1 DFDs and their Descriptions

Below is a breakdown of each of the atmosphere processes into subprocesses. Each subpro-
cess corresponds to a Fortran 90 subroutine (name in parentheses) that is called by the atmo-
sphere manager. Below are general comments:

• Subprocesses do not call each other, but are called in turn by the atmosphere manager
(AtmMgr) which is itself a subroutine. Therefore data are passed as arguments

Figure 11-5 Atmosphere Subsystem Processes
Version 6.0 Page 11-10 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
between subprocesses. Likewise, data products are written by a separate subprocess
and not by the subprocesses creating the output data.

• Only subprocesses directly called by the atmosphere manager are shown in the dia-
grams.

• Each subprocess that shows a dotted control line in the diagram is under control which
means that it is only selectively called by the atmosphere manager based upon the pro-
cessing scenario selected in an input control file.

• Each subprocess calls a common error routine (GLAS_Error) when an error condition
occurs. Depending on the severity of the error, the processing may continue or stop,
but in any case, all error messages are written to a common ancillary log file (ANC06).

11.6.1.1 ATM L1B Calculate Calibration Coefficients, Profile Locations, and
DEM Subprocesses

The ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM process is
divided into five subprocesses. Following is a description of each subprocess:

11.6.1.1.1 ATM L1B Calculate Calibration Coefficients (A_cal_cofs)

Reads a file containing the entire granule's worth of 532 nm and 1064 nm backscatter calibra-
tion coefficients output in x minute segments. Depending on options used in the ancillary
atmosphere constants file, 532 nm and 1064 nm calibration coefficients are calculated for

Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM
Subprocesses
March 2013 Page 11-11 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
each second of the granule. Options include averaging the segment coefficients or using lab-
measured coefficients instead, since the calculated coefficients, especially the one at 1064 nm,
may be unreliable due to low signal at high altitude.

11.6.1.1.2 ATM L1B Interpolate POD (C_IntrpPOD)

Creates the precision orbit determination (POD) position vector based on time. This is a com-
mon routine used by several processes.

11.6.1.1.3 ATM L1B Calculate Profile Locations (C_CalcSpLoc)

Utilizes the POD position vector to generate the profile location at 1 second. This is a com-
mon routine used by several processes. It also computes the satellite range to ellipsoid. When
the precision attitude determination (PAD) and range are input, it calculates the attitude angle
and topographic elevation.

11.6.1.1.4 ATM L1B Get Geoid (C_GetGeoid)

Utilizes the profile location to generate the geoid height at that location. This is a common
routine used by several processes. The geoid height is used to compute the satellite range to
geoid.

11.6.1.1.5 ATM L1B Calculate DEM (E_CalcDEM)

Utilizes the profile location to generate the Digital Elevation Model (DEM) height at that
location. This is a common routine used by several processes.

11.6.1.2 ATM L1B Backscatter Subprocesses

The ATM L1B Calculate Backscatter Cross Section Profiles process is divided into four sub-
processes. Following is a description of each subprocess

11.6.1.2.1 ATM L1B Interpolate Met Data (A_interp_met)

Interpolates and combines meteorological (met) data and standard atmosphere data to gener-
ate met profiles at 1 second. Standard atmosphere data are used to augment the met data at
higher altitudes and are used for the entire output profile if met data are unavailable.

11.6.1.2.2 ATM L1B Calculate Molecular Backscatter Cross Sections
(A_mbscs)

Utilizes met profiles at 1 second to create 532 nm and 1064 nm molecular transmission pro-
files and backscatter cross section profiles at 1 second.

11.6.1.2.3 ATM L1B Vertically Align Profiles (A_rebin_lid)

Combines and vertically aligns 532 nm and 1064 nm lidar signals to create lidar profiles at 5
Hz and 40 Hz. For 532 nm, the 5 Hz profiles range from 41 to -1 km below the surface. For
1064 nm, the 5 Hz profiles range from 20 to -1 km below the surface. In both wavelengths, the
40 Hz profiles range from 10 to -1 km below the surface.
Version 6.0 Page 11-12 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
11.6.1.2.4 ATM L1B Calculate Backscatter Cross Section Profiles (A_
bscs)

Calibrates the 532 nm and 1064 nm lidar profiles by the backscatter calibration coefficients to
create the attenuated backscatter cross section profiles at 5 Hz and 40 Hz. If the 532 nm back-
scatter signal is saturated, it is an option to replace it with the corresponding 1064 nm back-
scatter value.

11.6.1.3 ATM L1B QA Statistics and WriteATM Subprocesses

The ATM L1B Create QA Statistics and Write ATM process is divided into two subprocesses.
Following is a description of each subprocess

11.6.1.3.1 ATM L1B Create QA Statistics (A_qa_G7)

Creates Level 1B QA statistics for the granule and outputs them to the QAP07 QA product
file.

11.6.1.3.2 ATM L1B Write Atmosphere (WriteAtm)

Writes Level 1B data to the GLA07 data product file.

Figure 11-7 ATM L1B Backscatter Subprocesses
March 2013 Page 11-13 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
11.6.1.4 ATM L1B L2 Buffer 20 Seconds Subprocess

The ATM L2 Buffer 20 Seconds process is a single process. Following is a description

11.6.1.4.1 ATM L2 Buffer 20 seconds (A_buff_data)

Buffers Level 1B data for 20 seconds for input into the Level 2 processing. This is necessary
because lidar signals need to be collected for 20 seconds for high altitude aerosol detection.
Twenty seconds of data are buffered irrespective of time gaps between data records.

11.6.1.5 ATM L2 Calculate Layer Heights Subprocesses

The ATM L2 Calculate Layer Heights process is divided into three subprocesses. Following is
a description of each subprocess:

11.6.1.5.1 ATM L2 Calculate Cloud Layers (A_cld_lays)

Detects cloud layer heights and ground heights at once per 4 seconds, 1 second, 5 Hz, and 40
Hz. Up to 10 cloud layers may be detected below 20 km, except at the 40 Hz resolution where

Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses

Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses
Version 6.0 Page 11-14 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
up to 1 layer may be detected under 4 km. Layers may only be detected at the higher resolu-
tions if they were detected at the lower resolutions. A cloud/aerosol discrimination routine
discriminates some of the layers detected at once per 4 seconds as elevated aerosol layers.

11.6.1.5.2 ATM L2 Calculate PBL Layer (A_pbl_lay)

Detects planetary boundary layer (PBL) heights and ground heights at once per 4 seconds and
5 Hz.

11.6.1.5.3 ATM L2 Calculate Elevated Aerosol Layers (A_aer_lays)

Detects elevated aerosol layer heights. Up to 3 aerosol layers may be detected above 20 km at
once per 20 seconds, while up to 5 aerosol layers may be detected below 20 km at once per 4
seconds. It is an option whether to use this algorithm to detect aerosol layers below 20 km or
to keep the aerosol layers detected by the cloud detection algorithm.

11.6.1.6 ATM L2 Calculate Optical Properties

The ATM L2 Calculate Optical Properties process is a single process. Following is a descrip-
tion:.

11.6.1.6.1 ATM L2 Calculate Aerosol Optical Properties (A_aer_opt_prop)

Creates cloud and aerosol backscatter and extinction cross section profiles, and cloud, PBL,
and aerosol optical depths. Cloud data are created at 1 second while PBL and elevated aero-

Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses
March 2013 Page 11-15 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
sol data are created at once per 4 seconds. Optical depths for up to 10 cloud layers are calcu-
lated, while up to 8 elevated aerosol optical depths are created.

11.6.1.7 ATM L2 QA Statistics and WriteATM Subprocesses

The ATM L2 Create QA Statistics and Write ATM process is divided into two subprocesses.
Following is a description of each subprocess

11.6.1.7.1 ATM L1B Write Atmosphere (WriteAtm)

Writes Level 2 data to the GLA08-11 data product files. Data products GLA08-11 are always
created together. Aerosol layer heights are written to GLA08, cloud layer heights are written
to GLA09, cloud and aerosol backscatter and extinction profiles are written to GLA10, and
cloud and aerosol optical depths are written to GLA11.

11.6.2 Structure Charts

The following structure charts illustrate the organization of the atmosphere computations soft-
ware modules. Modules are called top to bottom and from left to right. Input variables point
downwards to the modules that are receiving them while output variables point upwards from
the module which created them. Control is not an argument, but indicates which modules are
only selectively called by the atmosphere manager for partial reprocessing.

Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses

ATM L2 Calc Cloud &
Aerosol Optical Props

4.6.1

prof_loc_buf

cld_hts

532_M_bscs_buf
532_bscs_buf

aer_bs

aer_od

met_prof_buf

time_buf

pbl_od

aer_hts

pbl_hts

cld_bs

cld_od

cld_ext

aer_ext

cld_hts

aer_hts

cld_msf

aer_msf

cld_sval

aer_sval

pbl_hts

control
Version 6.0 Page 11-16 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses

Figure 11-13 ATM Calibration Coefficient / Profile Location / DEM Modules
March 2013 Page 11-17 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
Figure 11-14 ATM Backscatter Modules

Figure 11-15 ATM L1B QA Statistics / Write ATM Modules
Version 6.0 Page 11-18 March 2013

GLAS_Atm The GLAS Science Algorithm Software Detailed Design Document
Figure 11-16 ATM 20 sec Buffering Module

Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules
March 2013 Page 11-19 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Atm
Figure 11-18 ATM Optical Properties Module

Figure 11-19 L2 QA Statistics / Write ATM Modules
Version 6.0 Page 11-20 March 2013

Section 12

GLAS_Reader

GLAS_Reader is a utility GSAS PGE.

12.1 Function

GLAS_Reader is a utility GSAS PGE. It reads various GLAS files and creates human-read-
able text output files.

12.2 Design Approach

The following design criteria are specific to GLAS_Reader

• GLAS_Reader fully uses the standard routines from the model GSAS PGE.

• Output files are named by adding extensions to the input file name.

• GLAS_Reader provides a rudimentary user interface when executed without a control
file command-line argument.

12.3 Input and Output Files

Table 12-1 lists the potential input files to GLAS_Reader. All or some of these files may be
specified. Note, however, than GLA00 APID files may not be specified without also specify-
ing a corresponding ANC29 file. See the appropriate section of this document or the GLAS
Data Products Specifications Volumes for details regarding the non-specific files.

Table 12-1 GLAS_Reader Inputs

File Spec Type Source Short Description

anc01*_??.dat Dynamic Ancillary met_util Subsetted meteorological files.
There is a separate ANC01 file
per data type. All of the ANC01
files must be specified.

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_01.dat Static Ancillary Science Team GLAS global constants file.

anc07*_02.dat Static Ancillary Science Team GLAS waveform constants file.

anc07*_03.dat Static Ancillary Science Team GLAS elevation constants file.

anc07*_04.dat Static Ancillary Science Team GLAS atmosphere constants
file.

anc07*_05.dat Static Ancillary Science Team GLAS L1A constants file.

anc08*.dat Dynamic Ancillary UTexas Precision orbit file.

anc12*_01.dat Static Ancillary Science Team DEM mask file.
March 2013 Page 12-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Reader
GLAS_Reader will create an output file for each type of input file requested. GLAS_Reader
will add a ‘.txt’ extension to the name of the file which is processed. Time selection for the
output files is based on the time specified with the input files or the user interface.

A corresponding ANC29 file is required to process GLA00 APID files. When processing
GLA00 APID files, GLAS_Reader writes all output to the ANC29 text file, instead of to indi-
vidual APID files. The benefit of this is that the output is created in time-aligned fashion. Also
note that specific APID files may be processed even though the ANC29 file was created with
a superset of the selected APIDs.

12.4 GLAS_Reader

The basic processing algorithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

anc13*.dat Static Ancillary Science Team Geoid file

anc16*.dat Static Ancillary Science Team Ocean Tide file

anc17*.dat Static Ancillary Science Team Load Tide file

anc18*.dat Static Ancillary Science Team Standard Atmosphere file

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc27*.dat Static Ancillary Science Team Regional mask files.

anc30*.dat Static Ancillary Science Team Aerosol file

anc31*.dat Static Ancillary Science Team Troposphere file

anc32*.dat Dynamic Ancillary GLAS_L0proc Frequency board to GPS time
correlation file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc36*.dat Dynamic Ancillary atm_anc Atmosphere Calibration file.

anc45*.dat Static Ancillary Science Team Metadata input files.

Control File Control ISIPS Operations Control file.

gla00*.dat/
ANC29*.dat

Level-0 APID/
Dynamic Ancillary

EDOS/
GLAS_L0proc

GLAS Level-0 APID files and
the requisite ANC29 index file.

gla*.dat GLAS Product GSAS GLAS Product files.

Gla*.qap GLAS Product QA GSAS GLAS Product Quality Assur-
ance file.

Table 12-1 GLAS_Reader Inputs (Continued)

File Spec Type Source Short Description
Version 6.0 Page 12-2 March 2013

GLAS_Reader The GLAS Science Algorithm Software Detailed Design Document
• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer)

• Print ancillary files (PrintAnc)

• Print quality Assurance Files (PrintQAP)

• Until all input files are processed...

- Read and write data until all data written (ReadData, PrintData)

• Close all files and generate summaries (MainWrap)

PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this document.

• MainInit

• Cntl_Init

• GetControl

• OpenFiles

• Print_Cntl

• ReadAnc

• Write_LibVer

• Write_eCntl

• PrintAnc

• PrintQAP

• ReadData

• PrintData

• MainWrap
March 2013 Page 12-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Reader
Version 6.0 Page 12-4 March 2013

Section 13

met_util

13.1 Overview

met_util is a GSAS utility which uses the minimum functionality of the GSAS core PGE
model. met_util is simply a processing shell wrapped around wgrib legacy code.

13.2 Function

Met_util reads a WGRIB meteorological (MET) file and creates subset files (i.e. temperature,
relative humidity, etc.).

13.3 Design Approach

• met_util sets up input/output files and uses a system call to execute the wgrib external
program.

• met_util does not fully follow the model GSAS PGE.

• met_util does not perform multi-granule processing or allow for time selection.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

13.4 Input and Output Files

Table 13-1 lists the required inputs to met_util. Table 13-2 lists the outputs created by
met_util. See the GLAS Data Products Specifications Volumes or GLAS Science Data Man-
agement Plan for details regarding the these files..

Table 13-1 met_util Inputs

File Spec Type Source Short Description

anc40*.dat Dynamic Ancillary GSFC DAAC Input NCEP Global Analysis
met file. 1 by 1 degree gridded
data set with sampling every 6
hours. Variables included are
temperature, geopotential
height, and relative humidity at
standard upper atmospheric
pressure levels. The MET files
are in the GRIB format, which is
the WMO (World Meteorological
Organization) standard for
exchanging gridded binary data.
March 2013 Page 13-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document met_util
anc07*_06.dat Static Ancillary Science Team Utility error/constants file.

Control File Control ISIPS Operations Control file.

Table 13-2 met_util Outputs

File Spec Type Destination Short Description

anc01*_00.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological header file. Sub-
setted NCEP Global Analysis
file.

anc01*_01.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological precipitable
water file. Subsetted NCEP
Global Analysis file.

anc01*_02.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological height file. Sub-
setted NCEP Global Analysis
file.

anc01*_03.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological relative humidity
file. Subsetted NCEP Global
Analysis file.

anc01*_04.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological temperature file.
Subsetted NCEP Global Analy-
sis file.

anc01*_05.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological wind speed u
file. Subsetted NCEP Global
Analysis file.

anc01*_06.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological wind speed v
file. Subsetted NCEP Global
Analysis file.

anc01*_07.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological PBL height file.
Subsetted NCEP Global Analy-
sis file.

anc01*_08.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological specific humid-
ity file. Subsetted NCEP Global
Analysis file.

anc01*_09.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological above ground
temperature file. Subsetted
NCEP Global Analysis file.

anc01*_10.dat Dynamic Ancillary atm_anc
GLAS_Atm
GLAS_Alt (elev)

Meteorological total cloud cover
file. Subsetted NCEP Global
Analysis file.

Table 13-1 met_util Inputs

File Spec Type Source Short Description
Version 6.0 Page 13-2 March 2013

met_util The GLAS Science Algorithm Software Detailed Design Document
13.5 Functions

met_util includes the following functions:

• - M_read_control_mod.f90: Reads the control file and passes the input and output file
names to the program.

• - wgrib: A stand alone 'C' program developed at NCEP to manipulate and decode
GRIB files. This routine is used extensively to extract relevant MET parameters and
create global data files. See http://wesley.wwb.noaa.gov/wgrib.html for details on
wgrib.

13.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and output file
names. These names are passed to a script which calls an executable (wgrib) that creates the
subset files

Figure 13-1 Process Flow Diagram: Overall Process
March 2013 Page 13-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document met_util
Figure 13-2 Process Flow Diagram: Shell Script
Version 6.0 Page 13-4 March 2013

Section 14

reforbit_util

14.1 Overview

reforbit_util is a GSAS utility. It does not follow the GSAS core PGE model.

14.2 Function

The purpose of the reforbit_util program is to process a given Reference Orbit file for all
ascending equatorial crossings. Each ascending equatorial crossing will be given a track
number. The first track west of Greenwich (or on Greenwich) will be assigned a Track num-
ber of 1 and its time will be determined. All consecutive tracks after that (in increasing time
order) will be assigned numbers 2, 3, 4, and so on. All tracks that were to the right of Track
1, will be wrapped around the last track on the left and numbered accordingly.

14.3 Design Approach

• reforbit_util does not follow the model GSAS PGE.

• reforbit_util does use facilities of the common libraries.

• reforbit_util does not perform multi-granule processing or allow for time selection.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

14.4 Input and Output Files

Table 14-1 lists the required inputs to reforbit_util. Table 14-2 lists the outputs created by
reforbit_util. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

14.5 Functions

reforbit_util includes the following functions:

• rd_reforb_cntrl_mod.f90: Reads the control file and passes the input and output file
names to the program.

Table 14-1 createGran_util Inputs

File Spec Type Source Short Description

anc26*.dat Dynamic Ancillary UTexas Reference orbit t file.

anc07*_06.dat Static Ancillary Science Team Utility error/constants file.

Control File Control ISIPS Operations Control file.
March 2013 Page 14-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document reforbit_util
• c_profRefOrbit_mod.f90: Reads the Reference Orbit file and determines the ascend-
ing equatorial crossing longitudes and track numbers.

• c_legacyintrpPOD_mod.f90: Interpolates the reference orbit data to determine the
position vectors for a given time.

• c_calcsploc_mod.f90: Calculates the location (lat, lon) that corresponds to a given
position vector.

14.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and output file
names. It then opens these files and passes their lon numbers to c_procRefOrbit. The
c_procRefOrbit routine will read the reference orbit file one record at a time and geolocate
using c_calcsploc. It will be looking for records that straddle the equator in the ascending
direction. When such records are found, the exact equatorial crossing location and time is
determined. This is done by determining the location at a time that is midway between the
two records that straddle the equator. If the latitude is within tolerance limits, an ascending
equatorial crossing has been found. If not, the location of the midpoint between the recently
located point and one of the previous points on the other side of the equator is determined, and
checked if it is on the equator. This process is repeated until the exact equator crossing is
determined (within tolerance limits).

The c_procRefOrbit routine will then assign a track number to this equator crossing, and will
continue the above process until all records are read or until it starts reading repeat tracks.
The routine will then search through all the equator crossing longitudes to find the first cross-
ing west of (or on) Greenwich. That track will be assigned a Track number of 1 and its time
will be determined. All consecutive tracks after that (in increasing time order) will be
assigned numbers 2, 3, 4, and so on. All tracks that were to the right of Track 1, will be
wrapped around the last track on the left and numbered accordingly.

Table 14-2 createGran_util Outputs

File Spec Type Destination Short Description

anc22*.dat Dynamic Ancillary I-SIPS Track file.The first record con-
tains the average period of the
tracks (in seconds), and the
number of tracks in the refer-
ence orbit file. All subsequent
records contain the longitude (in
degrees E longitude), the track
number, time in seconds relative
to Track 1, the actual MJD time
(in days), and the seconds of
day.

anc43*.dat Dynamic Ancillary SCF SCF track file.

anc28*.dat Dynamic Ancillary ISIPS NOSE track file
Version 6.0 Page 14-2 March 2013

reforbit_util The GLAS Science Algorithm Software Detailed Design Document
Figure 14-1 Process Flow Diagram
March 2013 Page 14-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document reforbit_util
Version 6.0 Page 14-4 March 2013

Section 15

createGran_util

15.1 Overview

createGran_util is a GSAS utility. It does not use the functionality of the GSAS core PGE
model.

15.2 Function

The purpose of the createGran_util program is to process a given Predicted Orbit file for all
ascending equatorial crossings, and +/- 50 degree latitude crossings. The +/-50 degree lati-
tude crossings will be designated by segment numbers. The segment numbers are defined as
follows:

• Segment 1 - start of +50 degree latitude crossing (on the ascending portion of the
track),

• Segment 2 - start of +50 degree latitude crossing (on the descending portion of the
track),

• Segment 3 - start of a -50 degree latitude crossing (on the descending portion of the
track),

• Segment 4 - start of a -50 degree latitude crossing (on the ascending portion of the
track).

15.3 Design Approach

• createGran_util does not follow the model GSAS PGE.

• createGran_util does use facilities of the common libraries.

• createGran_util does not perform multi-granule processing or allow for time selection.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

15.3.1 Definitions

The reference orbit information will be stored in the Oracle database, and will henceforth be
referred to as the Reference Orbit table. The Reference Orbit table will contain the following
information for each of the Reference Orbits to be used during data processing:

1) The Repeat groundtrack phase (p):

where,

P=1 for 8-day

P=2 for 183-day
March 2013 Page 15-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document createGran_util
P=3 for transfer orbit

2) Reference Orbit number (r):

This number will start at 1, and increment each time we receive a new reference orbit. It
will be unique for each set of ground tracks.

3) Instance (k):

The instance will start at 1, and increment by one every time we change from one refer-
ence orbit to another.

4) Cycle (ccc):

The cycle number will restart at 1 every time the instance number, k, changes. The cycle
number will then increment within the instance every time track 1 for that orbit is reached.
It should be noted that most instances will begin in an arbitrary track (not 1) because of
how we are numbering the tracks.

5) Track (tttt):

Tracks are defined from a reference orbit. Each track begins and ends at the ascending
equator crossing. Tracks will be numbered such that track 1 is the closest track to Green-
wich from the west, and then contiguous in time after that. For transfer orbits, for which
we have no predefined reference orbit, track 1 is the first track for which we have data for
that instance, k.

6) Begin Time:

Begin time to use the reference orbit file.

7) End Time:

End time to use the reference orbit file.

8) Begin Track Number:

The first track number that is before the Begin time.

9) Time into Begin Track:

Time into the begin track. This will be difference between the Begin Time of the refer-
ence orbit file and the beginning time of the Begin Track.

10) Number of tracks per cycle:

The number of tracks per cycle for the reference orbit.

11) Begin Rev number:

TBD

12) Track file name:

The Track file name will be the name of the track file that corresponds to the reference
orbit file. This file will contain all the tracks that are relevant to the reference orbit file,
Version 6.0 Page 15-2 March 2013

createGran_util The GLAS Science Algorithm Software Detailed Design Document
along with their ascending node longitudes. These tracks will be numbered according to
the convention mentioned above in 5.

15.3.2 Assumptions

1) A start and end time will be provided by UTCSR for each reference orbit. The start
time will be provided before we get data or a predicted orbit file for that reference orbit.
The end time will be provided at a later date.

2) The reference orbit file will be cataloged in the reference orbit ID table after the refer-
ence orbit tracks are created. The name of the reference orbit track file will be noted in
this table.

3) For transfer orbits we will not receive real reference orbits from UTSCR, and will need
to use the tracks generated from the predicted orbit file. This will be done by running the
reference orbit track program on the predicted orbit file.

4) Each predicted orbit file will be for 48 hours, starting at noon on day n-1, and going
until noon on day n+1, where n is the day for which we want to use the file. A day starts
at 00 hours, and ends at midnight.

5) When a predicted orbit file is received, the reference orbit files pertaining to this pre-
dicted orbit file should already be in the reference orbit ID table.

6) For GLA01, 05, and 06, each granule starts at the beginning of each segment (for all
tracks).

7) For GLA02, and GLA07, each granule starts at segment 1 of odd track numbers.

8) For GLA08 through GLA15, each granule starts at segment 1, when the track number
MODed by 14 equals 1.

9) The start of each new instance, or the start of a new cycle, will automatically create a
new granule.

10) During normal processing, the granule files will start with the first granule encoun-
tered in the predicted orbit file. When there is a new instance, then the first granule will
be the granule preceding the first encountered granule. Its start time will be the actual
start time of the data. The next granule will be the first encountered granule, with its start
time. All subsequent granules will be numbered and processed as in the normal case.

11) A predicted orbit file can cover more than one reference orbit.

12) The SCF rev file will always start with rev number 1, and increment for every rev.

13) The cycle in a transfer orbit will span only one track (as opposed to 119 tracks in an 8-
day orbit file).

15.4 Input and Output Files

Table 15-1 lists the required inputs to createGran_util. Table 15-2 lists the outputs created by
createGran_util. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..
March 2013 Page 15-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document createGran_util
Table 15-1 createGran_util Inputs

File Spec Type Source Short Description

anc26*.dat Dynamic Ancillary UTexas Predicted orbit file

anc42*.dat Dynamic Ancillary ISIPS Reference orbit table

anc07*_01.dat Static Ancillary Science Team Global constants file

anc07*_06.dat Static Ancillary Science Team Utility error/constants file

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion

Control File Control ISIPS Operations Control File

Table 15-2 createGran_util Outputs

File Spec Type Destination Short Description

-none- Dynamic Ancillary I-SIPS Quarter rev file. Contains the
quarter rev start time (in J2000
seconds), repeat ground track
phase, reference orbit number,
instance, product type (1 for
quarter rev granule), cycle num-
ber, track number, and segment
number for all the quarter rev
granules determined from the
predicted orbit file.

-none- Dynamic Ancillary I-SIPS Two rev file. Contains the two
rev start time (in J2000 sec-
onds), repeat ground track
phase, reference orbit number,
instance, product type (2 for two
rev granule), cycle number,
track number, and segment
number for all the two rev gran-
ules determined from the pre-
dicted orbit file..
Version 6.0 Page 15-4 March 2013

createGran_util The GLAS Science Algorithm Software Detailed Design Document
15.5 Functions

createGran_util includes the following functions:

• rd_GranCntrl_mod.f90: Reads the control file and passes the input and output file
names to the program.

• createGranule_mod.f90: Reads the Predicted Orbit file and determines the ascending
equatorial crossing longitudes and times, as well as the granule start times and loca-
tions (latitudes and longitudes). The results are output to the two files indicated in the
control file.

• c_legacyintrpPOD_mod.f90: Interpolates the predicted orbit data to determine the
position vectors for a given time.

• c_calcsploc_mod.f90: Calculates the location (lat, lon) that corresponds to a given
position vector.

15.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and output file
names. It will then open two scratch files (a rev file, and a granule file). The LUN numbers of
these files, along with the predicted orbit file, will be passed to the createGranule routine.
This routine will read the predicted orbit file, and calculate the ascending equatorial crossing
locations and times (which will be written to the rev file), and the segment locations and times
(which will be written to the granule file). Once the rev and granule files have been popu-
lated, the utility will check to see what the processing mode has been set to. If it is set to
REFORB, then the update_RefTab routine will be called. This routine will read the reference
orbit ID file, and check to see which of the reference orbits do not have a begin track. It will
then check if that reference orbit is a candidate for update. This will be determined by the ref-
erence orbit begin time and the predicted orbit start and stop time. The routine will then

-none- Dynamic Ancillary I-SIPS Fourteen rev file. Contains the
fourteen rev start time (in J2000
seconds), repeat ground track
phase, reference orbit number,
instance, product type (3 for two
rev granule), cycle number,
track number, and segment
number for all the fourteen rev
granules determined from the
predicted orbit file.

-none- Dynamic Ancillary I-SIPS SCF rev file. Contains the rela-
tive rev numbers, starting from 1
(during each execution), that
were determined from the given
predicted orbit file.

Table 15-2 createGran_util Outputs (Continued)

File Spec Type Destination Short Description
March 2013 Page 15-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document createGran_util
determine the closest rev to the reference orbit begin time or the predicted orbit start time
(which ever is greater). The track number corresponding to the closest rev will be determined
from the reference orbit track file. The begin track number will then be determined, as well
as the time into the begin track. If it is a transfer orbit, then the begin track will be set to 1,
and the period will be set to the period of the rev file.

Figure 15-1 Process Flow Diagram
Version 6.0 Page 15-6 March 2013

createGran_util The GLAS Science Algorithm Software Detailed Design Document
If the processing mode is set to PREDORB, then the calc_granules routine will be called. The
predicted orbit file will be read, and processing will start from the predicted orbit start time or
the reference orbit begin time (which ever is greater). The processing will continue until the
reference orbit end time (if it is greater that zero), or the predicted orbit end time (which ever
is less). The cycle number will be determined at the beginning on the basis of the granule
start time and the reference orbit start time. The start track number will also be determined.
All subsequent tracks will be increments of the start track. The 1/4 rev, 2 rev, and 14 rev
granules will be written out to appropriate 1/4 rev, 2 rev, and 14 rev granule files. Using the
information from the 1/4 rev information file, a SCF rev file will also be created. The first
rev on that file will be rev 1, and its start time will be the start of the actual rev that the 1/4 rev
information file started with. All subsequent revs will be increments of rev 1, and will ignore
any change of reference orbit files during the run.
March 2013 Page 15-7 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document createGran_util
Version 6.0 Page 15-8 March 2013

Section 16

atm_anc

16.1 Overview

atm_anc is a GSAS utility. It does not use the functionality of the GSAS core PGE model.

16.2 Function

Atm_anc reads a GLA02 product file and computes 532 nm and 1064 nm calibration coeffi-
cients for specified-time segments. The coefficients per segment are output to an ancillary
(ANC36) file which is used in the level 1B atmosphere data processing. A second ancillary
file (ANC44) contains the 532 and 1064 data for clouds that were detected above about 10
km.

16.3 Design Approach

• atm_anc does not follow the model GSAS PGE.

• atm_anc does use facilities of the common libraries.

• atm_anc does not perform multi-granule processing or allow for time selection.

• Implementation of the control files does not follow GSAS PGE conventions.

• No log/metadata (ANC06) file is created.

16.4 Input and Output Files

Table 16-1 lists the required inputs to atm_anc. Table 16-2 lists the outputs created by
atm_anc. See the GLAS Data Products Specifications Volumes or GLAS Science Data Man-
agement Plan for details regarding the these files..

Table 16-1 atm_anc Inputs

File Spec Type Source Short Description

gla02*.dat L1A Product GLAS_L1A GLAS L1A Atmosphere product
file.

anc01*_??.dat Dynamic Ancillary met_util Subsetted MET files. There is a
separate MET file per MET data
type. All of the MET files (1-10)
must be specified.

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_02.dat Static Ancillary Science Team GLAS atmosphere constants
file.

anc18*.dat Static Ancillary Science Team Standard Atmosphere file
March 2013 Page 16-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document atm_anc
16.5 Functions

atm_anc includes the following functions:

• A_common_mod.f90: Contains common parameters and structures

• A_read_control_mod.f90: Reads the control file and passes back the input and output
file names to the program

• A_prod_reader_mod.f90: Opens and reads the product file

• A_open_met_mod.f90: Opens and reads the MET and standard atmosphere files

• A_open_ozone_mod.f90: Opens and reads the ozone file

• A_sum_lidar_mod.f90: Sums and averages lidar data over time segments

• A_seg_cal_cofs_mod.f90: Creates 532 nm and 1064 nm calibration coefficients for
each time segment and writes results to an output file

16.6 Functional Overview of Calibration Modules

This portion is taken from the document, "Calibration Processing ATBD v4.1.doc" written
January, 2001 by Steve Palm of the GLAS lidar science team. The atmosphere ancillary utility
was written to perform the algorithms described in this document. The A_sum_lidar_mod.f90
subroutine performs the functions of the SAM module described below and the
A_seg_cal_cofs_mod.f90 subroutine performs the functions of the CALM module.

16.6.1 Segment Averaging Module (SAM)

The segment averaging reads in the output from GLA02 and produces segment averages of
the data at two calibration heights. There is an upper calibration height and a lower calibration
height. The upper calibration height is fixed (or at least specified by input from the constants
file), while the lower calibration height is calculated from the minimum average signal
between 8 and 15 km. SAM also eliminates profiles that are cloud contaminated from the seg-
ment average (this only applies to the lower calibration height). The steps (directly from the
ATBD) are given below:

anc35*.dat Static Ancillary Science Team Ozone file

Control File Control ISIPS Operations Control file.

Table 16-2 atm_anc Outputs

File Spec Type Destination Short Description

anc36*.dat Dynamic Ancillary atm_util Atmosphere Calibration file.

anc44*.dat Dynamic Ancillary Science Team Atm 1064 Cirrus CAL File

Table 16-1 atm_anc Inputs (Continued)

File Spec Type Source Short Description
Version 6.0 Page 16-2 March 2013

atm_anc The GLAS Science Algorithm Software Detailed Design Document
Figure 16-1 Process Flow Diagram
March 2013 Page 16-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document atm_anc
1) Construct a 1 Hz continuous profile of P’ from –1 to 41 km for the 532 channel and
from –1 to 20 km for the 1064 channel.

2) Add the background to ‘summing’ variables for each channel

3) Sum the P’532 data from H1 to H2 km and add it to a ‘summing’ variable. The val-
ues of H1 and H2 will be roughly 29 and 31, respectively, but will be changeable
and read in from the constants file. Increment an ‘upper counter’.

4) Check for clouds from 22 km to 8 km above ground. If clouds were not found for
this second, then do the following (number 5 below):

5) Add the 1 Hz data (each bin) between 8 and 15 km to a ‘summing’ array for each
channel. Increment a ‘lower counter’.

6) If you have been doing this for t minutes, where t is read in from the constants file
(default value: t=10), and at least 50 percent of the expected number of seconds
have been summed (based on the ‘upper counter’), then do the following:

- compute the average 532 signal from H1 to H2 km for the entire ‘t’ minute
segment. Call this P2(532) from the sum generated in step 3 above.

- If the ‘lower counter’ exceeds 50 percent of the expected number of seconds,
then perform c, d, and e below. Otherwise, set P1(532) and P1(1064) to invalid
and skip c, d and e. This effectively means that clouds have made calculations
impossible at the lower height.

- Compute the average 532 and 1064 profiles between 15 and 8 km from the
summing array produced in steps 4 and 5 above.

- Find the height of the minimum in the 532 average profile between 8 and 15
km call this hmin – this is the lower calibration height

- Compute the average of the data between hmin+D and hmin-D km for both the
532 and 1064 channels, where D is in km and is read from the constants file
(default = 1km). Call these P1(532) and P1(1064).

- Compute the average background for the segment for each channel call these
B532 and B1064

- Output to a structure: P1(532), P1(1064), P2(532), B532, B1064, hmin, D, H1,
H2 and: the latitude, longitude and time at ‘m’ points along the segment, where
m is a variable read from the constants file, not to exceed 30. A default value
for m is 20. These points would be t/m minutes apart.

7) 1. If after ‘t’ minutes, less than 50 percent of the expected number of seconds have
been summed (based on the ‘upper counter’), then output missing values (invalid)
for P1(532), P1(1064), P2(532), B532, B1064, and the other output described in 6g
above.

8) Zero out summing variables, summing array and counters

9) Process next ‘t’ minute segment in the same manner
Version 6.0 Page 16-4 March 2013

atm_anc The GLAS Science Algorithm Software Detailed Design Document
16.6.2 CALibration Module (CALM)

The function of CALM is to compute the calibration constant for each of the segments output
by SAM. The following steps summarize the process:

1) Read in the output from the segment averaging utility (run after GLA02 com-
pletes). This output contains segment averages (maybe 20-30 per granule) at the
two calibration heights. For each segment average, there is maybe 10-20 latitude/
longitude pairs (these are the m points along the orbit segment, described in 6g
above). NOTE: If the SAM and CALM modules are combined into one module,
obviously this step is skipped.

2) For each segment that has a valid (not invalid) P1(532), P1(1064) or P2(532) do
steps 3-6 below. If all 3 of these are invalid, then there is no need to perform steps
3-6, below. In this case, we set the 3 calibration values to invalid and skip to step 9
below)

3) At each lat/lon point, compute the average attenuated molecular backscatter at the
two calibration heights using ATBD equations 3.2.5 and 3.2.11 (here average
means a vertical average – nominally 2 km). This requires access to the MET data
at that lat/lon.

4) At each lat/lon point, compute the ozone transmission from the top of the atmo-
sphere to the calibration height (ATBD, equation 3.2.8).

5) Compute the average attenuated molecular backscatter for the segment at the two
calibration heights and the average ozone transmission for the segment (average of
the values calculated in steps 3 and 4).

6) Compute the calibration constant as the ratio of the segment signal average to the
average attenuated molecular backscatter times the average ozone transmission
(ATBD, equation 3.2.6).

7) Repeat steps 2-6 for each of the 20-30 segment averages. This will yield 20-30 of
the following: C1(532) – the lower 532 calibration constant, C1(1064) – the 1064
calibration constant and C2(532) – the upper 532 calibration constant.

8) For each segment, write out to a file the following: 1) The start and end time for the
segment, 2) the 3 calibration values (532 upper and lower, and 1064 lower), 3) the
standard deviations of the C values (s1(532), s1(1064) and s2(532)), 4) the three
segment signal averages (532 upper and lower, 1064 lower), 5) the segment average
attenuated molecular backscatter at the two calibration heights, 6) the segment
average ozone transmission from the top of the atmosphere to the calibration
height, 7) the center height and thickness of the upper calibration zone, 8) the center
height and thickness of the lower calibration zone, 9) the segment average 532
background (B532). Note that if calibration points are thrown out during step 8
above, they are still output to the file, but have the value of ‘invalid’.
March 2013 Page 16-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document atm_anc
Version 6.0 Page 16-6 March 2013

Section 17

GLAS_Meta

17.1 Function

GLAS_Meta is a utility GSAS PGE. It will read product header records and the ANC45 meta-
data input files to create inventory-level EOS metadata files.

17.2 Design Approach

The following design criteria are specific to GLAS_Meta

• With the exception of ReadData, GLAS_Meta fully uses the standard routines from
the model GSAS PGE.

• Only the header information is read from the product files.

17.3 Input and Output Files

Table 17-1 lists the required inputs to GLAS_Meta. Table 17-2 lists the outputs created by
GLAS_Meta. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

Table 17-1 GLAS_Meta Inputs

File Spec Type Source Short Description

gla*.dat GLAS Products GSAS GLAS product files.

anc45*.dat Static Ancillary Science Team Product metadata input files.

anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth
Rotation Data File.

anc46*_0004.dat Static Ancillary Science Team Ancillary metadata input file for
ANC09.

anc08*.dat Dynamic Ancillary UTexas Precision Orbit file.

anc46*_0008.dat Static Ancillary Science Team Ancillary metadata input file for
ANC08.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc46*_0009.dat Static Ancillary Science Team Ancillary metadata input file for
ANC09.

anc20*.dat Dynamic Ancillary UTexas Predicted orbit file.

anc46*_0020.dat Static Ancillary Science Team Ancillary metadata input file for
ANC20.

anc22*.dat Dynamic Ancillary ISIPS Track file.
March 2013 Page 17-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Meta
anc46*_0022.dat Static Ancillary Science Team Ancillary metadata input file for
ANC22.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc46*_0025.dat Static Ancillary Science Team Ancillary metadata input file for
ANC25.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc46*_0033.dat Static Ancillary Science Team Ancillary metadata input file for
ANC33.

anc37*.dat Dynamic Ancillary UTEXAS Spacecraft CG file.

anc46*_0037.dat Static Ancillary Science Team Ancillary metadata input file for
ANC37.

anc39*.dat Dynamic Ancillary UTEXAS GPS file.

anc46*_0039.dat Static Ancillary Science Team Ancillary metadata input file for
ANC39.

anc51*.dat Static Ancillary GSAS Operations SRTM Track files.

anc46*_0051.dat Static Ancillary GSAS Operations Ancillary metadata input file for
ANC51

anc52*.dat Static Ancillary Science Team Saturation Correction Tables

anc46*_0052.dat Static Ancillary Science Team Ancillary metadata input file for
ANC52

anc07*_0001.dat Static Ancillary Science Team GLAS global constants file.

Control File Control ISIPS Operations Control file.

Table 17-2 GLAS_Meta Outputs

File Spec Type Destination Short Description

gla*.met Metadata ECS ECS-compliant metadata inven-
tory files.

anc04*.met Metadata ECS IERS Polar Motion and Earth
Rotation metadata File.

anc08*.met Metadata ECS Precision Orbit metadata file.

anc09*.met Metadata ECS Precision Attitude metadata file.

anc20*.met Metadata ECS Predicted orbit metadata file.

anc22*.met Metadata ECS Track metadata file.

Table 17-1 GLAS_Meta Inputs (Continued)

File Spec Type Source Short Description
Version 6.0 Page 17-2 March 2013

GLAS_Meta The GLAS Science Algorithm Software Detailed Design Document
17.4 GLAS_Meta

The basic processing algorithm for GLAS_Meta is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Loop through available Product and Ancillary Types...

- Parse header and control data using appropriate ANC45/46 information to create
inventory-level metadata.

• Close all files and generate summaries (MainWrap)

17.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

anc25*.met Metadata ECS GPS/UTC conversion metadata
file.

anc33*.mett Metadata ECS UTC time conversion metadata
file.

anc37*.met Metadata ECS Spacecraft CG metadata file.

anc39*.met Metadata ECS GPS metadata file.

Anc51*.met Metadata ECS SRTM metadata file.

Anc52*.met Metadata ECS Range saturation metadata file.

anc06*.txt Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

Table 17-2 GLAS_Meta Outputs (Continued)

File Spec Type Destination Short Description
March 2013 Page 17-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Meta
• ReadANC

• Write_AncVer

• MainWrap

17.4.2 Metadata Processing

The process of creating metadata files first begins with the GSAS library routines. Based on
input file availability, the readGLAxx subroutine reads input product/ancillary header records
and control information and parses the data into common and local header data structures. The
common header data structure is further subsetted into a metadata substructure by matching
header keywords with keywords found in the appropriate ANC45/46 file. The header is parsed
in a very specific way. It is important to note that the first keyword found which does not
match a keyword in the ANC45/46 files causes the rest of the header information to be stored
in the common_header data structure (NOT in the metadata substructure). It is critical that the
metadata information within the product headers be contiguous and consistent with the
ANC45/ANC46 files. Inconsistency will prevent the metadata information from being filled
correctly.

After the header information is parsed, WriteMetaFile walks through the ANC45/ANC46 key-
words and finds appropriate values from the header metadata substructure. It then replaces
default values found in the ANC45/ANC46 file with actual values contained within the prod-
uct headers. It writes the keywords and values in a format specific to EOS inventory-level
metadata.

17.4.3 ANC45/ANC46 File Updates

The manually created ANC45/ANC46 text files share information contained in the ECS
descriptor files. The descriptor files are created in cooperation with ECS. There is a descrip-
tor for each product and selected ancillary files. The descriptor files contain a section of com-
ments on implemented changes, followed by collection and core (inventory) metadata
information in ODL (Object Description Language) format. Changes made to the ECS
descriptor files will produce a new MCF file and will be delivered to the developer from ECS
when requested. MCF files contain strictly inventory/core metadata, and product specific
attribute information. MCF files are in Object Description Language format.

The first section of the ANC45 file contains global metadata parameters, and remains the
same for all products. The second section contains additional attributes. The last section con-
tains the parameters/GCMD keywords that are specific to a particular product, and can be
traced back to the collection level for a particular product. When a new MCF file is created by
ECS it may have changes that will require the ANC45/ANC46 file to be changed. Addition or
removal of additional attributes, or changes in the parameters are possible changes that would
require an ANC45 change. Changes to the parameters or additional attributes must be coordi-
nated with ECS, then the ANC45 can be edited by hand to make the changes. The format of
the ANC45 file must not be altered outside of additional attribute or parameter container
changes. The EOSDIS ICD Between ECS and SIPS Volume 0 Interface Mechanisms 423-41-
57 explains the exchange of MCF files, and .met files between EOSDIS and I-SIPS.
Version 6.0 Page 17-4 March 2013

GLAS_Meta The GLAS Science Algorithm Software Detailed Design Document
The ANC46 file contains only the global metadata parameters section. Product specific attri-
butes, and parameters have not been defined for the selected ancillary files that have descrip-
tors.

Partial Sample of an ANC45 file
#
Global Metadata Parameters
#
ReprocessingPlanned = further update anticipated using enhanced PGE
ReprocessingActual = processed once
LocalGranuleID = NOT SET
ProductionDateTime = NOT SET
LocalVersionID = NO SET
OrbitNumber = NOT SET
EquatorCrossingLong = NOT SET
EquatorCrossingTime = NOT SET
EquatorCrossingDate = NOT SET
ShortName = NOT SET
VersionID = 1
InputPointer = NOT SET
RangeBeginningTime = NOT SET
RangeEndingTime = NOT SET
RangeBeginningDate = NOT SET
RangeEndingDate = NOT SET
PGEVersion = NOT SET
#
Additional Attributes
#
Additional_Attribute = Track
Track = NOT SET
Additional_Attribute = Track_Segment
Track_Segment = NOT SET
Additional_Attribute = ReferenceOrbit
ReferenceOrbit = NOT SET
Additional_Attribute = Instrument_State
Instrument_State = NOT SET
Additional_Attribute = Instrument_State_Date
Instrument_State_Date = NOT SET
Additional_Attribute = Instrument_State_Time
Instrument_State_Time = NOT SET
Additional_Attribute = Cycle
Cycle = NOT SET
Additional_Attribute = Instance
Instance = NOT SET
#
Parameters - Waveform
March 2013 Page 17-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Meta
#
ParameterName=Waveform
AutomaticQualityFlag = Passed
AutoQualFlagExpl = Passed indicates parameter passed for specific automatic test; Failed,
parameter failed specific automatic test.
OperationalQualityFlag= Inferred Passed
OpQualFlagExpl = Passed,parameter passed the specified operational test. Inferred
Pass,parameter terminated with warnings. Failed parameter terminated with fatal errors.
ScienceQualityFlag = Inferred Passed
SciQualFlagExpl = Passed,parameter passed the specified science test. Inferred Pass,parame-
ter terminated with warnings for specified science test. Failed parameter terminated with fatal
errors for specified science test.
QAPercentMissingData = 0
QAPercentOutofBounds = 0
Version 6.0 Page 17-6 March 2013

Section 18

GLAS_Tick

18.1 Function

GLAS_Tick reads ANC09, ANC32 and (optionally) GLA03 input files and creates
ANC50_00 and ANC50_01 output files. The ANC50_00 contains merged ANC09/ANC32
information which is written at a GPS update event. The ANC50_01 contains 6 hour statistics
for oscillator and engineering data.

18.2 Design Approach

The following design criteria are specific to GLAS_Tick.

• GLAS_Tick fully uses the standard routines from the model GSAS PGE.

• GLA03 processing is optional. GLAS_Tick performs GLA03 processing based on the
presence of a GLA03 input file

• There are no execution scenarios for GLAS_Tick (besides that determined by the pres-
ence or absence of GLA03 inputs).

18.3 Input and Output Files

Table 18-1 lists the required inputs to GLAS_Tick. Table 18-2 lists the outputs created by
GLAS_Meta. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

Table 18-1 GLAS_Tick Inputs

File Spec Type Source Short Description

anc07*_00.dat Static Ancillary Science Team Error file.

anc07*_01.dat Static Ancillary Science Team Global constants file.

anc07*_05.dat Static Ancillary Science Team L1A constants file.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc32*.dat Dynamic Ancillary GLAS_L0proc GPS time correlation file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

gla03*.dat
(optional)

L1A Product GLAS_L1A L1A Engineering product file.

Control File Control ISIPS Operations Control file.
March 2013 Page 18-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Tick
18.4 GLAS_Tick

The basic processing algorithm for GLAS_Meta is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Initialize output Headers

• Initialize Statistics

• Until all data are processed

- Compute Statistics

- Write Tick Data upon GPS Time Update

- Write Engineering Statistics at desired frequency

• Close all files and generate summaries (MainWrap)

18.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

Table 18-2 GLAS_Tick Outputs

File Spec Type Destination Short Description

anc50*_0000.txt Text file ISF/Science Team Merged ANC09/ANC32 file.

anc50*_0001.txt Text file ISF/Science Team Frequency trend file.

anc06*.txt Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.
Version 6.0 Page 18-2 March 2013

GLAS_Tick The GLAS Science Algorithm Software Detailed Design Document
• MainWrap

18.4.2 Engineering Statistics Processing

Selected statistical Engineering parameters are computed at a 6 hour interval. Statistics
reported include minimum, maximum, and mean. Precision problems are avoided by using
offsets to perform computations on the deltas of parameters (as opposed to using the whole
values). Common routines from the math library (lib_math) are used to ensure consistency.

18.4.3 GPS Update Processing

GPS update information is written only when a GPS update event occurs (nominally every 10
seconds.) Please reference the “Construction of the Lookup Table of GLAS Clock Oscillator
Frequencies” memo by C. Field, X. Sun, and D. Hancock for algorithm specifications.
March 2013 Page 18-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_Tick
Version 6.0 Page 18-4 March 2013

Section 19

GLAS_APID

GLAS_APID is a utility GSAS PGE. It will read ANC29, ANC32, and/or GLA00 APID files
and create tab-delimited text output files of the data. Currently, the only APID supported is
APID19. Future versions of this utility will provide support for APID12 and APID13.

19.1 Function

GLAS_APID creates tab-delimited text output files for ANC29, ANC32 and APID19. The
APID19 data are split among multiple files, the data being separated by subpacket type.

19.2 Design Approach

The following design criteria are specific to GLAS_APID

• With the exception of ReadData, GLAS_APID fully uses the standard routines from
the model GSAS PGE.

• Output files are named by adding extensions to the input file name.

• Multiple-input files (of differing types) is supported. Multiple-granule input is not sup-
ported since APID19 output granules must be multiple-granule.

• All products are output at one record per 1 sec. Only the first of the 40/second shot
times is output in APID19.

19.3 Input and Output Files

Table 19-1 lists the required inputs to GLAS_APID. Table 19-2 lists the outputs created by
GLAS_APID. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files. Those files which are only required by
specific subsystems are noted within the table..

Table 19-1 GLAS_APID Inputs

File Spec Type Source Short Description

gla00*_19.dat Level-0 APID19 EDOS GLAS Level-0 APID19 files.

anc07*_00.dat Static Ancillary Science Team GLAS error file.

anc07*_01.dat Static Ancillary Science Team GLAS global constants file.

anc29*.dat Dynamic Ancillary GLAS_L1A Index file correlating APID
times.

anc32*.dat Dynamic Ancillary GLAS_L1A GPS time correction file used for
precision timing of GLAS data.

Control File Control ISIPS Operations Control file.
March 2013 Page 19-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_APID
19.4 GLAS_APID

The basic processing algorithm is summarized below:

• Initialize (MainInit)

• Set the local execution flags (eCntrl_Init)

• Parse the Control File (GetControl)

• Open the specified files (OpenFiles)

• Print the control file (Print_Cntl)

• Read ancillary files (ReadAnc)

• Write version info (Write_LibVer, Write_AncVer)

• Write requested ANC29 data

• Write requested ANC32 data

• Loop through available APID Types...

- If APID is input, ProcessAPID

• Close all files and generate summaries (MainWrap

Table 19-2 GLAS_APID Outputs

File Spec Type Destination Short Description

gla00*_19.dat.time.
txt

Tab-delimited text. User Time-related APID19 parame-
ters.

gla00*_19.dat.ac.tx
t

Tab-delimited text. User Altimeter-digitizer-related
APID19 parameters.

gla00*_19.dat.pc.tx
t

Tab-delimited text. User Photon-counter-related APID19
parameters.

gla00*_19.dat.cd.tx
t

Tab-delimited text. User Cloud digitizer-related APID19
parameters.

gla00*_19.dat.time.
txt

Tab-delimited text. User Time-related APID19 parame-
ters.

gla00*_19.dat.gps.t
xt

Tab-delimited text. User GPS-related APID19 parame-
ters.

gla00*_19.dat.ct.txt Tab-delimited text. User C&T-related APID19 parame-
ters.

anc29*.dat.txt Tab-delimited text. Users Index file parameters.

anc32*.dat.txt Tab-delimited text. Users GPS time correction parame-
ters.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.
Version 6.0 Page 19-2 March 2013

GLAS_APID The GLAS Science Algorithm Software Detailed Design Document
19.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this document.

• MainInit

• eCntrl_Init

• GetControl

• OpenFiles

• Print_Cntl

• Write_LibVer

• ReadANC

• Write_AncVer

• MainWrap
March 2013 Page 19-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document GLAS_APID
Version 6.0 Page 19-4 March 2013

Section 20

Maker

20.1 Overview

Maker is a GSAS utility, but it does not use the functionality of the GSAS core PGE model.

20.2 Function

The Shuttle Radar Topography Mission (SRTM) was flown in February 2000. Interferometric
Synthetic Aperture Radar data collected on that mission was used to produce a high resolution
DEM of world land areas visible during the mission. This data was processed by the NASA
Jet Propulsion Laboratory (JPL) into a product consisting of a set of 1-degree square cells of
elevations suitable for distribution and research. Cell granularity is 1200 increments per coor-
dinate degree of latitude and longitude, with some degradation at the extreme latitude limits.
Data is available between 60°N and 56°S latitudes.

The purpose of the Maker program is to access and assimilate this data and to generate a set of
pre-sorted, ICESat specific Track Files of SRTM DEM data which follow the fixed ICESat
orbital tracks. The ultimate goal is to use to Maker's output Track Files quickly and efficiently
to attach high resolution SRTM DEM data to GSAS Product Files.

20.3 Design Approach

Maker is a stand-alone utility that does not follow any of the GSAS prescriptions, libraries, or
processing techniques discussed in previous chapters. It is essentially a single use utility,
though it may be necessary to regenerate the track files if any initial conditions such as the
fixed orbits are changed or the SRTM raw data has an update. Multiple files or a single track
can be processed. Track Files produced by Maker have a complex series of four levels of self-
referencing headers that can be used by software that reads the files to point directly to a
desired elevation value if given an input location.

20.4 Input and Output Files

Table 20-1 lists the required input files for Maker. Appendix A of the “Interface Control Doc-
ument Between ISIPS/ISF and CSR” can provide a description of the reference orbit file.
Table 20-2 lists the output files created by Maker.

20.5 Functions

All functions utilized by Maker are contained within the source code. No additional library
routines non-specific to FORTRAN are required.
March 2013 Page 20-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Maker
Table 20-1 Maker Input Files

File Spec Type Source
Short

Description

“Control_Params” text user NAMELIST for-
mat text file of
parameters gov-
erning program
execution.

“cell_names.txt” text user Comprehensive
list of available
cell files, derived
from directory
listing of files

Orbit File Direct access GSAS Operations SCF ICESat Ref-
erence Orbit file

Cell Files Direct access USGS Set of direct
access binary
files of DEM ele-
vations arranged
in 1° x 1° cell
according to lati-
tude and longi-
tude

Table 20-2 Maker Output Files

File Spec Type Destination
Short

Description

“Pointings.txt” text Transient compu-
tational file

List of pointings
along the path of
the reference
orbit being pro-
cessed at the
incremental gran-
ularity of the cell
files in latitude.

“Swath.txt” text Transient compu-
tational file

List of pointings
along the refer-
ence orbit path
for a given lati-
tude and within a
longitudinal limit
of the central
point. DEM val-
ues are attached.
Version 6.0 Page 20-2 March 2013

Maker The GLAS Science Algorithm Software Detailed Design Document
20.6 Functional Overview

Processing for the Maker program is strictly linear. Each step makes use of the preceding
event, whether it be successful opening of a file, reading of a file, or creation of a file. A fail-
ure at any step terminates processing with an error message. The program performs the fol-
lowing primary algorithmic steps to build a track file:

• Get control parameters from namelist file.

• Read reference orbit to obtain values of latitude and longitude from specified orbit
track.

• Identify a maximum list of SRTM cells crossed by track swath, utilizing the east/west
bounds for any given time point, and based solely on possible track locations.

• Compare the maximum list with the directory of available cells, and flag those that can
be used.

• Create the sequential pointings file for every potential central pointing. This set of
pointings is continuous along the orbit, with no skips other than those for values
deemed to be outside the useful range (e.g. high latitude).

• Rewind the pointings file, for use as an input.

• Create a sequential swath file containing an entry for every pointing. Use the saved
coordinate data to compute each SRTM file name and internal location, and to then
access the elevations along a swath line and attach them to the pointing data in the new
swath file.

• Rewind the swath file, for use as input.

• Allocate a direct access file for the output track file.

• Cycle through the swath file to accumulate statistics needed in the Level One and
Level Two headers.

• Create basic header data in the track file, and insert times in Level Three headers as
placeholders instead of record numbers.

“Tracknnnn.DAT” Direct access Track Files Internally indexed
file with multiple
layers of head-
ers containing
DEM data.

“P_ref_orb.txt” Text Diagnostic Text listing of ref-
erence orbit file.

Screen display Text Status and Diag-
nostics

Text listing of pro-
gram progress.

Table 20-2 Maker Output Files (Continued)

File Spec Type Destination
Short

Description
March 2013 Page 20-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Maker
• Rewind the swath file, for use as input.

• Cycle through the swath file data a second time, accumulate the records of elevations
at the end of the existing track file, and insert locations for that data into existing
header records.
Version 6.0 Page 20-4 March 2013

Appendix A

Processing Scenarios

A.1 Scenarios

All identified scenarios that will be eventually tested.

Table A-1 Reprocessing Scenarios

Scenario Primary Inputs Output Dependencies Processes

End to end Lidar Level 0, ANC data
(POD, Met, Cal file),
Cntrl

GLA02, 7-
11, Meta-
data

L1A Atm ATBD,
L1B Atm ATBD,
L2 Atm ATBD,
POD interp, Met
interp

End to end Altime-
ter

Level 0, POD, PAD, Met,
Cal file, Cntrl

GLA05,6,12
-15, Meta-
data

L1A Altimeter
ATBD, L1B
Waveform ATBD,
L1B Elevation, L2
Elevation, POD,
PAD, Geoloc

Level 1A Altimeter Level 0, Cal file, Cntrl GLA01,
Metadata

L1A Altimeter
ATBD

Level 1B Waveform GLA01, POD, PAD, Cal
file, ANC 19,
surf_type_grid, Cntrl

GLA05,Met
adata

L1B Waveform
ATBD, POD,
PAD, Geoloc,
surf_type interp

Level 1B Elevation GLA05, GLA09&11 (if
avail), tide coeff, geoid,
ANC 12, DEM, Met

GLA06,
Metadata

GLA09 and 11
from GLAS_Atm

Geoid, Tides,
Geoloc, Met,
DEM interp, Instr
Range Cor (5)
Reflectance, Atm
Flag

Level 2 Elevation GLA05, GLA06, 4
Masks

GLA12-15,
Metadata

Geoloc, Instr Cor
Range Region-
Specific Parame-
ter Calculations

Waveform Algo-
rithm changes
(standard, ice
sheet, sea ice,
ocean, land)

GLA01, GLA05, Cal file GLA05,
Metadata

GLA06, GLA12-
15 (1 or all)

Specific Wave-
form algorithm
process, Geolo-
cation

Replace POD and/
or PAD on GLA05

GLA05, POD and/or
POD

GLA05,
Metadata

POD and/or PAD,
Geolocation
March 2013 Page A-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Processing Scenarios
Replace PAD and/
or POD on GLA06

GLA06, PAD and/or
POD

GLA06,
Metadata

GLA12-15 PAD and/or POD,
Geolocation

Met changes, redo
Met Cor

GLA06, GLA12-15, Met
file

GLA06,
GLA12-15,
Metadata

Met Interpola-
tion, Geolocation

Tides Change,
redo tide cor

GLA06, GLA12-15, tide
coeff

GLA06,
GLA12-15,
Metadata

Tide algorithms,
Geolocation

Geoid changes GLA06, GlA12-15,
Geoid

GLA06,
GLA12-15,
Metadata

Geoid

Standard Instr Cor
Changes

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Standard Instr
Cor Algorithm,
Geolocation

Region Spec Instr
Cor Changes

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Region Specific
Instr Cor Algo-
rithm

Reflectance Algo-
rithm changes

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Reflectance
ATBD

Change GLA06
based on WF Algo-
rithm changing for
GLA05

GLA05, GLA06, GLA12-
15

GLA06,
GLA12-15,
Metadata

Range Instr Cor
Calculation, Geo-
location

Replace PAD and/
or POD on GLA12-
15

GLA12-15, PAD and/or
POD

GLA12-15,
Metadata

POD and or PAD,
Geolocation

Creation of GLA07
BackScatter Pro-
files

GLA02, Met, POD, 400
sec avg file

GLA07,
Metadata

Interp POD,
Interp Met, Molec
BackScat Pro-
files, Calib Coeff,
1064 BackScat
Profiles, 532
BackScat Profiles

Creation of GLA08
Aerosol Layers

GLA07, Constants,
GLA09

GLA08 1 and 4 sec
BackScat aver-
ages, PBL/Aero-
sol <20 km
layers, 20-40 km
aerosol layers

Table A-1 Reprocessing Scenarios (Continued)

Scenario Primary Inputs Output Dependencies Processes
Version 6.0 Page A-2 March 2013

Processing Scenarios The GLAS Science Algorithm Software Detailed
Creation of GLA09
Cloud Layers

GLA07, Constants GLA09 1 and 4 sec
BackScat aver-
ages, Cloud Lay-
ers

Creation of GLA10
Cross Section Pro-
files and Creation
of GLA11 Optical
Depths

GLA07, GLA08, GLA09,
Constants

GLA10,
GLA11

Cloud Optical
Properties, Aero-
sol Optical Prop-
erties, 1 and 4
sec BackScat
averages

Table A-1 Reprocessing Scenarios (Continued)

Scenario Primary Inputs Output Dependencies Processes
March 2013 Page A-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Processing Scenarios
Version 6.0 Page A-4 March 2013

Appendix B

Makefiles and Libraries

Developers are “strongly” encouraged to use standard GSAS libraries and makefiles. GSAS
libraries leverage existing code to speed development and ease maintenance. Makefiles ensure
common compiler flags and allow developers to deliver their software as part of a general
GSAS delivery.

B.1 Compilation

Note: This documentation is specific to the GLAS development environment. It assumes that
the core directory of the GLAS software is located at “/glas/vob”.

B.1.1 To compile the whole distribution

cd /glas/vob/src
make

B.1.2 To compile only the libraries

cd /glas/vob/src
make libs

B.1.3 To recompile a library in debug mode

cd /glas/vob/src/library_directory
make debug

B.1.4 To recompile a library in optimized mode

cd /glas/vob/src/library_directory
make fast

B.1.5 To compile a specific executable

(requires that the libraries are compiled beforehand)

cd /glas/vob/src/executable_directory
make

B.1.6 To compile a specific executable in debug mode

(requires that the libraries are compiled beforehand)

cd /glas/vob/src/executable_directory
make debug

B.1.7 To compile a specific executable in optimized mode

(requires that the libraries are compiled beforehand)

cd /glas/vob/src/executable_directory
make fast
March 2013 Page B-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Makefiles and Libraries
B.2 Using Libraries

This section details the use of libraries, both at development and run time stages.

B.2.1 Development

To use a library, you need to include the path and the library name in your Makefile. The fol-
lowing example shows how to use the platform_lib (which is stored in the /glas/vob/src/lib
directory) to compile a test program:

f90 test.f90 -L/glas/vob/src/lib -lplatform -otest

The next example show how to use the file and anc libraries as well. (A side note: By unix
convention the full filenames are libplatform.sl, libfile.sl, and libanc.sl, however when they
are specified with the -l argument on the compile line, the “lib” and “.sl” parts are dropped).

f90 test.f90 -L/glas/vob/src/lib -lplatform -lanc -lfile –otest

ORDER IS IMPORTANT. See Foundation Libraries section of this document to verify that
the libraries are specified in the correct order on the compile line.

B.2.2 Runtime

GSAS libraries are dynamically-linked shared libraries. What this means is that the libraries
are not statically linked with executables, but dynamically linked on demand at runtime. With
this in mind, it is important that the executable be able to determine the location of the librar-
ies at runtime. During compilation, the location of the libraries is stored in the executable
code. If the executable is moved, and the location is relative, the libraries will not be found
upon execution. In this case, a developer should use the following procedure to allow execut-
ables to link to dynamic libraries, no matter their location.

chatr +s enable <executable_name>
setenv SHLIB_PATH <pathname to libraries>

This procedure tells the executable to use the SHLIB_PATH environmental variable to find its
libraries, then sets that variable to the path of the shared libraries.

The other way of handling this is to link the libraries into the current directory. The executable
is set to look in the current directories first for its libraries.

B.3 Some Development Hints

• If you want to use the GLAS libraries, simply compile them (as above) and include the
appropriate lines in your makefile (again, as above).

• As long as you model the Makefile for your executable after that of the GLAS PGEs,
you will be using shared libraries and will not need to recompile your executable after
recompiling a library - unless global data structures or subroutine arguments are
changed.

• If you would like to debug the routines in a specific library, cd to that directory and do
a make clean; make debug. Next time you run your executable (you don’t have to
recompile it), it will run with the debug version of the library.
Version 6.0 Page B-2 March 2013

Makefiles and Libraries The GLAS Science Algorithm Software Detailed
• Using the –g and +check=all flags (included with make debug) is a good idea during
testing.

• If you want to get fancy and create a custom makefile for a special purpose, simply use
another name for the makefile and use make –f mymakefile.

• You may add custom options to the standard makefiles by putting the options on the
gF90_AUX_FLAGS line. For example, if you wish to define a custom flag
(DEBUG_TIME) for debugging purposes, define it as follows:

gF90_AUX_FLAGS= -DDEBUG_TIME

B.4 Makefile Details

This is an attempt to explain how GLAS makefiles work. This assumes the reader is some-
what familiar with the GLAS VOB layout.

B.5 Types of Makefiles

There are different types of makefiles. This section identifies each.

B.5.1 The Main Makefile

This makefile is located at /glas/vob/Makefile. This makefile builds all GSAS software and
installs the binaries and libs in the /glas/vob/bin and /glas/vob/lib directories. This makefile is
primarily used during production, not development. Developers should always use/link to the
binaries and libraries within the src directory, not those in the /bin and /lib directories since the
top-level makefile is the only one which populates such directories.

B.5.2 The src Makefile

This makefile is located at /glas/vob/src/Makefile. It is the main development makefile which
will recursively build all GSAS deliverable software. There are options to:

• build all deliverable GLAS Libraries (make libs)

• build all deliverable GLAS binaries (make progs)

• build all deliverable Libraries and binaries (make all) -the default

• build all deliverable Libraries and binaries in debug mode (make debug)

• build all deliverable Libraries and binaries in optimization mode (make fast)

• clean up all object code and module files (make clean)

B.5.3 Library Makefiles

These makefiles are located at src/common_libs/*/Makefile. There are options to:

• Compile library source and install library (make)

• Compile library source in debug mode and install library (make debug)

• Compile library source in optimization mode and install library (make fast)
March 2013 Page B-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Makefiles and Libraries
The libraries are derived objects and installed into /glas/vob/src/lib

B.5.4 Subsystem Makefiles

These makefiles are located at /glas/vob/src/*_lib/Makefile (where * = l1a, atm, elev, wf)

• Compile library source and install library (make)

• Compile library source in debug mode and install library (make debug)

• Compile library source in optimization mode and install library (make fast)

The libraries are derived objects and installed into /glas/vob/src/lib. When installed, the librar-
ies are stored in /glas/vob/lib.

B.5.5 Exec makefiles

These makefiles are located in the directory of each delivered executable: src/GLAS_L1A/
Makefile, src/GLAS_L0proc/Makefile, etc. There are options to:

• Compile binary source (make)

• Compile binary source in debug mode (make debug)

• Compile binary source in optimization mode (make fast)

The executables are derived objects and installed into /glas/vob/bin.

B.6 A Sample Heavily-Commented Makefile

NAME: Makefile
#
FUNCTION: Makefile for GLAS_Exec
#
FILES ACCESSED: See TARGETS definition.
ALL DIRECTORY SPECIFICATIONS SHOULD BE RELATIVE, NOT ABSOLUTE,
PATHS!!
#
COMMENTS: None.
#
HISTORY:
#
1998 December 18, JLee, Initial Version
1999 January 14, JLee, Ported to HP
1999 October 18, JLee Removed default DEBUG, removed recursion
1999 October 24, JLee Set the bit to do SHLIB_PATH
#
#----- Set filepaths
#
PATHLVL is the path you use to get to /glas/vob/src, but it should
be a relative path so that we can compile outside the VOB.
#
PATHLVL=..
#
UTILDIR is where the GLAS makefile includes can be found. These files
contain settings specific to GLAS Makefiles.
/glas/vob/cc_util is the actual path.
#
UTILDIR=$(PATHLVL)/../cc_util
Version 6.0 Page B-4 March 2013

Makefiles and Libraries The GLAS Science Algorithm Software Detailed
#
Include Standard GLAS Definitions
#
include $(UTILDIR)/make_defs.$(BRAND)
include $(UTILDIR)/make_defs.incl
#
Define libraries we will need. They are located in /glas/vob/src/lib.
This path is pre-defined (relatively) in the GLAS include files.
The actual filename for –lwf is libwf.sl, -file is libfile.sl

LIBS= -ll1a -latm -lwf -lelev -lprod -lfile -ltime -lanc -lcntrl \
-lerr –lplatform
#
Define the Production directory where we will copy the binary upon
creating a production build
#
PRODDIR=$(PATHLVL/../bin)
#
Define the target binary
#
TARGET=GLAS_Exec
#
Define the objects will are needed by the Target
#
OBJECTS= \

CntlDefs_mod.o fCntl_mod.o eCntl_mod.o \
MainInit_mod.o ReadData_mod.o GetControl_mod.o \
CloseFiles_mod.o OpenFiles_mod.o WriteL1A_mod.o WriteWF_mod.o \
WriteAtm_mod.o WriteElev_mod.o MainWrap_mod.o \
ReadAnc_mod.o L1AMgr_mod.o ElevMgr_mod.o WFMgr_mod.o AtmMgr_mod.o \
vers_exec_mod.o GLAS_Exec.o

#
Custom Rules
#
gF90_AUX_FLAGS=
#
Make our Target by default
#
all: $(TARGET)
#
TARGET, LIBS and OBJECTS are defined in this makefile.
LINK_EXE.f90 and FFLAGS are defined in the GLAS includes.
chart +s enable allows the executable to use the SHLIB_PATH to
look for its shared libraries.
#
$(TARGET): $(OBJECTS) Makefile

 $(LINK_EXE.f90) $(FFLAGS) -o $(TARGET) $(OBJECTS) $(LIBS); \
chatr +s enable $(TARGET)

#
Include Standard GLAS Dependencies
#
include $(UTILDIR)/make_depends.incl
#
End of MakeFile
#

March 2013 Page B-5 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Makefiles and Libraries
Version 6.0 Page B-6 March 2013

Abbreviations & Acronyms

A2P Algorithm-to-Product Conversion

ALT Altimeter or Altimetry, also designation for the EOS-Altimeter spacecraft series

ANCxx GLAS Ancillary Data Files

APID GLAS Level-0 Data file

ATBD Algorithm Theoretical Basis Document

ATM Atmosphere

CCB Change Control Board

ClearCase GSAS version tracking software

CR Change Request

DAAC Distributed Active Archive Center

DEM Digital Elevation Model

DFD Data Flow Diagram

DLT Digital Linear Tape

EDOS EOS Data and Operations System

EDS Expedited Data Set

ELEV Elevation

EOC EOS Operating Center

EOS NASA Earth Observing System Mission Program

EOSDIS Earth Observing System Data and Information System

GB Gigabyte

GDS GLAS Ground Data System

GLAS Geoscience Laser Altimeter System instrument or investigation

GLAxx GLAS Science Data Product Files

GLOP GLAS Level-0 PGE (correctly called GLAS_L0proc)

GPS Global Positioning System

GSAS GLAS Science Algorithm Software

GSFC NASA Goddard Space Flight Center at Greenbelt, Maryland

GSFC/WFF NASA Goddard Space Flight Center/Wallops Flight Facility at Wallops Island,
Virginia
March 2013 Page AB-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Abbreviations & Acronyms
HDF Hierarchal Data Format

HDF-EOS EOS-specific Hierarcial Data Format

I-SIPS Icesat Science Investigator Led Processing System

I/O Input/Output

ICESAT Ice, Cloud and Land Elevation Satellite

ID Identification

ID Identification

IEEE Institute for Electronics and Electrical Engineering

ISF Instrument Support Facility

IST Instrument Star Tracker

KB Kilobyte

JPL Jet Propulsion Laboratory

L0 Level 0

L1A Level-1A

L1B Level-1 B

L2 Level-2

LASER Light Amplification by Stimulated Emission of Radiation

LASER Light Amplification by Stimulated Emission of Radiation

LIDAR Light Detection and Ranging

LIDAR Light Detection and Ranging

LPA Laser Pointing Array

LRS Laser Reference System

MB Megabyte

MET (context sensitive) Mission Elapsed Time or Meteorological

N/A or NA Not (/) Applicable

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

NOSE Nominal Orbital Spatial Extent

P2A Product-to-Algorithm Conversion

PAD Precision Attitude Determination

PDF Portable Document Format

PDS Production Data Set
Version 6.0 Page AB-2 March 2013

Abbreviations & Acronyms The GLAS Science Algorithm Software Detailed Design Document
PGE Product Generation Executable

POD Precision Orbit Determination

POD Precision Orbit Determination

PR Problem Report

QA Quality Assessment

QAP Quality Assessment Processing

SC Structure Chart

SCF Science Computing Facility

SDMP Science Data Management Plan

SDMS Scheduling and Data Management System

SDP Standard Data Products

SRS Stellar Reference System

SRTM Shuttle Radar Topography Mission

SSMP Science Software Management Plan

SSRF Science Software Requirements Document

TBD to be determined, to be done, or to be developed

UNIX the operating system jointly developed by the AT&T Bell Laboratories and the
University of California-Berkeley System Division

UTC Universal Time Correlation

WF Waveform
March 2013 Page AB-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Abbreviations & Acronyms
Version 6.0 Page AB-4 March 2013

Glossary

aggregate A collection, assemblage, or grouping of distinct data parts together to make a
whole. It is generally used to indicate the grouping of GLAS data items,
arrays, elements, and EOS parameters into a data record. For example, the
collection of Level 1B EOS Data Parameters gathered to form a one-second
Level 1B data record. It could be used to represent groupings of various
GLAS data entities such as data items aggregated as an array, data items and
arrays aggregated into a GLAS Data Element, GLAS Data Elements aggre-
gated as an EOS Data Parameter, or EOS Data Parameters aggregated into a
Data Product record.

array An ordered arrangement of homogenous data items that may either be syn-
chronous or asynchronous. An array of data items usually implies the ability to
access individual data items or members of the array by an index. An array of
GLAS data items might represent the three coordinates of a georeference
location, a collection of values at a rate, or a collection of values describing an
altimeter waveform.

file A collection of data stored as records and terminated by a physical or logical
end-of-file (EOF) marker. The term usually applies to the collection within a
storage device or storage media such as a disk file or a tape file. Loosely
employed it is used to indicate a collection of GLAS data records without a
standard label. For the Level 1A Data Product, the file would constitute the
collection of one-second Level 1A data records generated in the SDPS work-
ing storage for a single pass.

header A text and/or binary label or information record, record set, or block, prefacing
a data record, record set, or a file. A header usually contains identifying or
descriptive information, and may sometimes be embedded within a record
rather than attached as a prefix.

item Specifically, a data item. A discrete, non-decomposable unit of data, usually a
single word or value in a data record, or a single value from a data array. The
representation of a single GLAS data value within a data array or a GLAS Data
Element.

label The text and/or binary information records, record set, block, header, or head-
ers prefacing a data file or linked to a data file sufficient to form a labeled data
product. A standard label may imply a standard data product. A label may
consist of a single header as well as multiple headers and markers depending
on the defining authority.

Level 0 The level designation applied to an EOS data product that consists of raw
instrument data, recorded at the original resolution, in time order, with any
duplicate or redundant data packets removed.

Level 1A The level designation applied to an EOS data product that consists of recon-
structed, unprocessed Level 0 instrument data, recorded at the full resolution
with time referenced data records, in time order. The data are annotated with
ancillary information including radiometric and geometric calibration coeffi-
cients, and georeferencing parameter data (i.e., ephemeris data). The
included, computed coefficients and parameter data have not however been
applied to correct the Level 0 instrument data contents.
March 2013 Page GL-1 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Glossary
Level 1B The level designation applied to an EOS data product that consists of Level 1A
data that have been radiometrically corrected, processed from raw data into
sensor data units, and have been geolocated according to applied georefer-
encing data.

Level 2 The level designation applied to an EOS data product that consists of derived
geophysical data values, recorded at the same resolution, time order, and geo-
reference location as the Level 1A or Level 1B data.

Level 3 The level designation applied to an EOS data product that consists of geo-
physical data values derived from Level 1 or Level 2 data, recorded at a tem-
porally or spatially resampled resolution.

Level 4 The level designation applied to an EOS data product that consists of data
from modeled output or resultant analysis of lower level data that are not
directly derived by the GLAS instrument and supplemental sensors.

metadata The textual information supplied as supplemental, descriptive information to a
data product. It may consist of fixed or variable length records of ASCII data
describing files, records, parameters, elements, items, formats, etc., that may
serve as catalog, data base, keyword/value, header, or label data. This data
may be parsable and searchable by some tool or utility program.

orbit The passage of time and spacecraft travel signifying a complete journey
around a celestial or terrestrial body. For GLAS and the EOS ALT-L spacecraft
each orbit starts at the time when the spacecraft is on the equator traveling
toward the North Pole, continues through the equator crossing as the space-
craft ground track moves toward the South Pole, and terminates when the
spacecraft has reached the equator moving northward from the South Polar
region.

model A graphical representation of a system.

module A collection of program statements with four basic attributes: input and output,
function, mechanics and internal data.

parameter Specifically, an EOS Data Parameter. This is a defining, controlling, or con-
straining data unit associated with a EOS science community approved algo-
rithm. It is identified by an EOS Parameter Number and Parameter Name. An
EOS Data Parameter within the GLAS Data Product is composed of one or
more GLAS Data Elements

pass A sub-segment of an orbit, it may consist of the ascending or descending por-
tion of an orbit (e.g., a descending pass would consist of the ground track seg-
ment beginning with the northernmost point of travel through the following
southernmost point of travel), or the segment above or below the equator; for
GLAS the pass is identified as either the northern or southern hemisphere por-
tion of the ground track on any orbit

PDL Program Design Language (Pseudocode). A language tool used for module
programming and specification. It is at a higher level than any existing compil-
able language.

process An activity on a dataflow diagram that transforms input data flow(s) into output
data flow(s).
Version 6.0 Page GL-2 March 2013

Glossary The GLAS Science Algorithm Software Detailed Design Document
product Specifically, the Data Product or the EOS Data Product. This is implicitly the
labeled data product or the data product as produced by software on the
SDPS or SCF. A GLAS data product refers to the data file or record collection
either prefaced with a product label or standard formatted data label or linked
to a product label or standard formatted data label file. Loosely used, it may
indicate a single pass file aggregation, or the entire set of product files con-
tained in a data repository.

program The smallest set of computer instructions that can be executed as a stand-
alone unit

record A specific organization or aggregate of data items. It represents the collection
of EOS Data Parameters within a given time interval, such as a one-second
data record. It is the first level decomposition of a product file.

Scenario A single execution path for a process.

Standard Data
Product

Specifically, a GLAS Standard Data Product. It represents an EOS ALT-L/
GLAS Data Product produced on the EOSDIS SDPS for GLAS data product
generation or within the GLAS Science Computing Facility using EOS science
community approved algorithms. It is routinely produced and is intended to be
archived in the EOSDIS data repository for EOS user community-wide access
and retrieval.

State Transition
Diagram

Graphical representation of one or more scenarios.

Stub (alias dummy module) a primitive implementation of a subordinate module,
which is normally used in the top-down testing of superordinate (higher) mod-
ules.

Structure Chart A graphical tool for depicting the partitioning of a system into modules, the
hierarchy and organization of those modules, and the communication inter-
faces between the modules.

Structured Design The development of a blueprint of a computer system solution to a problem,
having the same components and interrelationships amount the components
as the original problem has.

Subroutine A program that is called by another program

variable Usually a reference in a computer program to a storage location, i.e., a place
to contain or hold the value of a data item.
March 2013 Page GL-3 Version 6.0

The GLAS Science Algorithm Software Detailed Design Document Glossary
Version 6.0 Page GL-4 March 2013

	The GLAS Science Algorithm Software Detailed Design Document
	Version 6.0
	Foreword
	Table of Contents
	Foreword -iii
	Table of Contents -v
	List of Figures -xi
	List of Tables -xiii
	Section 1 Introduction
	1.1 Identification of Document 1-1
	1.2 Scope of Document 1-1
	1.3 Purpose and Objectives of Document 1-2
	1.4 Document Organization 1-2
	1.5 Document Change History 1-2

	Section 2 Related Documentation
	2.1 Parent Documents 2-1
	2.2 Applicable Documents 2-1
	2.3 Information Documents 2-2

	Section 3 Design Issues
	3.1 Requirements 3-1
	3.2 Single vs. Multiple Executables 3-1
	3.3 Software Reuse 3-2
	3.4 I/O and Unit Conversion 3-2
	3.5 Reprocessing and Pass-Thrus 3-2
	3.6 Data Buffering 3-3

	Section 4 Design Overview
	4.1 GSAS Design Overview 4-1
	4.2 PGEs 4-1
	4.3 Files 4-3
	4.4 Science Algorithms 4-3
	4.5 Utilities 4-3

	Section 5 Foundation Libraries
	5.1 The Platform Library (platform_lib) 5-1
	5.2 The Control Library (cntrl_lib) 5-2
	5.3 The Error Library (err_lib) 5-3
	5.4 The Math Library (math_lib) 5-4
	5.5 The Ancillary Library (anc_lib) 5-5
	5.6 The File Library (file_lib) 5-7
	5.7 The Time Library (time_lib) 5-7
	5.8 The Product Library (prod_lib) 5-8
	5.9 The Exec Library (exec_lib) 5-9

	Section 6 GSAS Core PGEs
	6.1 Function 6-1
	6.2 Requirements 6-1
	6.3 Approach 6-1
	6.4 Design 6-2

	Section 7 Common Functionality
	7.1 Control File Parsing 7-1
	7.2 ANC07 Constants Files 7-5
	7.3 Invalid Values and Error/Status Reporting 7-6
	7.4 ANC06 Metadata/Log File 7-9
	7.5 Product Internal Data Storage, Conversion and I/O 7-10
	7.6 Product Headers 7-12
	7.7 Summary 7-13

	Section 8 GLAS_L0proc
	8.1 Overview 8-1
	8.2 Function 8-1
	8.3 Approach 8-2
	8.4 Input and Output Files 8-2
	8.5 Design 8-8

	Section 9 GLAS_L1A
	9.1 Overview 9-1
	9.2 Function 9-1
	9.3 Design Approach 9-1
	9.4 Input and Output Files 9-2
	9.5 GLAS_L1A PGE 9-3
	9.6 L1A Manager (L1A_Mgr) 9-5
	9.7 PGE/Manager Implementation Details 9-6
	9.8 L1A_Subsystem 9-8

	Section 10 GLAS_Alt
	10.1 Function 10-1
	10.2 Design Approach 10-1
	10.3 Input and Output Files 10-2
	10.4 GLAS_Alt 10-6
	10.5 Waveform Manager (WFMgr) 10-6
	10.6 Elevation Manager (Elev_Mgr) 10-10
	10.7 PGE/Manager Implementation Details 10-14
	10.8 WF_Subsystem 10-14
	10.9 Elev_Subsystem 10-22

	Section 11 GLAS_Atm
	11.1 Overview 11-1
	11.2 Function 11-1
	11.3 Design Approach 11-1
	11.4 Input and Output Files 11-2
	11.5 Functions 11-4
	11.6 Atm_Subsystem 11-9

	Section 12 GLAS_Reader
	12.1 Function 12-1
	12.2 Design Approach 12-1
	12.3 Input and Output Files 12-1
	12.4 GLAS_Reader 12-2

	Section 13 met_util
	13.1 Overview 13-1
	13.2 Function 13-1
	13.3 Design Approach 13-1
	13.4 Input and Output Files 13-1
	13.5 Functions 13-3
	13.6 Functional Overview 13-3

	Section 14 reforbit_util
	14.1 Overview 14-1
	14.2 Function 14-1
	14.3 Design Approach 14-1
	14.4 Input and Output Files 14-1
	14.5 Functions 14-1
	14.6 Functional Overview 14-2

	Section 15 createGran_util
	15.1 Overview 15-1
	15.2 Function 15-1
	15.3 Design Approach 15-1
	15.4 Input and Output Files 15-3
	15.5 Functions 15-5
	15.6 Functional Overview 15-5

	Section 16 atm_anc
	16.1 Overview 16-1
	16.2 Function 16-1
	16.3 Design Approach 16-1
	16.4 Input and Output Files 16-1
	16.5 Functions 16-2
	16.6 Functional Overview of Calibration Modules 16-2

	Section 17 GLAS_Meta
	17.1 Function 17-1
	17.2 Design Approach 17-1
	17.3 Input and Output Files 17-1
	17.4 GLAS_Meta 17-3

	Section 18 GLAS_Tick
	18.1 Function 18-1
	18.2 Design Approach 18-1
	18.3 Input and Output Files 18-1
	18.4 GLAS_Tick 18-2

	Section 19 GLAS_APID
	19.1 Function 19-1
	19.2 Design Approach 19-1
	19.3 Input and Output Files 19-1
	19.4 GLAS_APID 19-2

	Section 20 Maker
	20.1 Overview 20-1
	20.2 Function 20-1
	20.3 Design Approach 20-1
	20.4 Input and Output Files 20-1
	20.5 Functions 20-1
	20.6 Functional Overview 20-3

	Appendix A Processing Scenarios
	A.1 Scenarios A-1

	Appendix B Makefiles and Libraries
	B.1 Compilation B-1
	B.2 Using Libraries B-2
	B.3 Some Development Hints B-2
	B.4 Makefile Details B-3
	B.5 Types of Makefiles B-3
	B.6 A Sample Heavily-Commented Makefile B-4
	Abbreviations & Acronyms AB-1
	Glossary GL-1

	List of Figures
	List of Tables
	Introduction
	1.1 Identification of Document
	1.2 Scope of Document
	Figure 1-1 I-SIPS Software Top-Level Decomposition

	1.3 Purpose and Objectives of Document
	1.4 Document Organization
	1.5 Document Change History

	Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents

	Design Issues
	3.1 Requirements
	3.2 Single vs. Multiple Executables
	3.3 Software Reuse
	3.4 I/O and Unit Conversion
	3.5 Reprocessing and Pass-Thrus
	3.6 Data Buffering

	Design Overview
	4.1 GSAS Design Overview
	Figure 4-1 GSAS Layers

	4.2 PGEs
	Figure 4-2 Simplified GSAS Data Flow Diagram

	4.3 Files
	4.4 Science Algorithms
	Table 4-1 Subsystem, Libraries and Products

	4.5 Utilities

	Foundation Libraries
	Table 5-1 Library Inter-dependencies
	5.1 The Platform Library (platform_lib)
	Table 5-2 platform_lib Modules

	5.2 The Control Library (cntrl_lib)
	Table 5-3 cntrl_lib Modules

	5.3 The Error Library (err_lib)
	Table 5-4 err_lib Modules

	5.4 The Math Library (math_lib)
	Table 5-5 math_lib Modules

	5.5 The Ancillary Library (anc_lib)
	Table 5-6 anc_lib Modules

	5.6 The File Library (file_lib)
	Table 5-7 file_lib Modules

	5.7 The Time Library (time_lib)
	Table 5-8 time_lib Modules

	5.8 The Product Library (prod_lib)
	Table 5-9 prod_lib Modules

	5.9 The Exec Library (exec_lib)
	Table 5-10 fexec_lib Modules

	GSAS Core PGEs
	6.1 Function
	6.2 Requirements
	6.3 Approach
	6.4 Design
	Figure 6-1 Top-Level Structure Chart
	6.4.1 MainInit
	Figure 6-2 MainInit
	6.4.1.1 Error_Boot
	6.4.1.2 fCntl_Init
	6.4.1.3 GLAxx_scal_init, GLAxx_prod_init, GLAxx_alg_init

	6.4.2 eCntl_Init
	6.4.3 GetControl
	Figure 6-3 GetControl
	6.4.3.1 Init_StdCntl
	6.4.3.2 OpenCF
	6.4.3.3 Parse_StdCntl
	6.4.3.4 Sanity_Check

	6.4.4 OpenFiles
	6.4.5 PrintCntl
	6.4.6 Write_LibVer
	6.4.7 ReadAnc
	6.4.8 Write_AncVer
	6.4.9 ReadData
	Figure 6-4 ReadData
	6.4.9.1 ReadRecord
	6.4.9.2 next_granule
	6.4.9.3 InvalidRec

	6.4.10 Managers
	6.4.11 MainWrap

	Common Functionality
	7.1 Control File Parsing
	Table 7-1 Required Single-Instance Keywords
	Table 7-2 Optional Multiple-Instance Keywords
	7.1.1 PASSID Specification
	Table 7-3 PASSID Control Line Elements
	Table 7-4 passid Field Description

	7.1.2 Input/Output File Specification
	Table 7-5 File Segment and Version Fields

	7.1.3 Input Data Time Selection
	7.1.4 Output Data Time Selection
	7.1.5 Execution scenarios

	7.2 ANC07 Constants Files
	7.3 Invalid Values and Error/Status Reporting
	7.3.1 Invalid Values
	Table 7-6 Invalid Values

	7.3.2 Exit Status
	Table 7-7 PGE Exit Status Codes

	7.3.3 Error and Status Reporting
	Figure 7-1 Error Ancillary File Format
	Table 7-8 Error String Format
	Table 7-9 Error Sections
	Table 7-10 Error Severity Codes

	7.4 ANC06 Metadata/Log File
	7.5 Product Internal Data Storage, Conversion and I/O
	7.5.1 Product Modules
	Table 7-11 Product Module Functionality

	7.5.2 Internal Product Data Storage
	7.5.3 Product Input/Output
	7.5.4 Product-to-Algorithm Conversion (P2A)
	7.5.5 Pass-Thru
	7.5.6 Managers
	7.5.7 Algorithm to Product Conversion (A2P)

	7.6 Product Headers
	7.7 Summary

	GLAS_L0proc
	8.1 Overview
	8.2 Function
	8.3 Approach
	8.4 Input and Output Files
	Table 8-1 GLAS_L0proc Inputs
	Table 8-2 GLAS_L0proc Outputs
	8.4.1 GLA00 APID Files
	Table 8-3 Supported APIDs

	8.4.2 ANC47 PDS Files
	8.4.3 ANC33 MET Counter to UTC Conversion File
	Table 8-4 ANC33 Field Descriptions

	8.4.4 Control File
	8.4.5 ANC29 Index File
	Table 8-5 ANC29 Format/Description

	8.4.6 ANC32 GPS File
	Table 8-6 ANC32 Format/Description

	8.5 Design
	Figure 8-1 GLAS_L0proc Structure Chart
	8.5.1 PGE Core Routines
	8.5.2 ReadGLOP
	8.5.3 sort_gla00_index
	8.5.4 sort_gps
	8.5.5 utc_time_conversion
	8.5.6 Index_Grouping

	GLAS_L1A
	9.1 Overview
	9.2 Function
	9.3 Design Approach
	9.4 Input and Output Files
	Table 9-1 GLAS_L1A Inputs
	Table 9-2 GLAS_L1A Outputs

	9.5 GLAS_L1A PGE
	Figure 9-1 GLAS_L1A Structure Chart
	9.5.1 PGE Core Routines

	9.6 L1A Manager (L1A_Mgr)
	Figure 9-2 L1A_Mgr Structure Chart
	Figure 9-3 L1A Manager Flow Chart

	9.7 PGE/Manager Implementation Details
	9.7.1 ANC29/ANC32/GLA00 Input
	9.7.2 Missing APIDs

	9.8 L1A_Subsystem
	Figure 9-4 Level 1A Computations
	9.8.1 Subsystem Design Decisions and Assumptions
	9.8.2 DFDs and their Descriptions
	9.8.2.1 Level 1A Altimeter Processing
	9.8.2.2 L1A Atmosphere Processing
	9.8.2.3 Engineering Data Processing
	9.8.2.4 Collect Instrument and S/C Position and Attitude
	9.8.2.5 Calculate Shot Time
	9.8.2.6 Get Predicted Location

	GLAS_Alt
	10.1 Function
	10.2 Design Approach
	10.3 Input and Output Files
	Table 10-1 GLAS_Alt Inputs
	Table 10-2 GLAS_Alt Outputs

	10.4 GLAS_Alt
	10.4.1 PGE Core Routines

	10.5 Waveform Manager (WFMgr)
	Figure 10-1 WFMgr Structure Chart
	10.5.1 WFMgr Subprocesses

	10.6 Elevation Manager (Elev_Mgr)
	Figure 10-2 ElevMgr Structure Chart
	10.6.1 ElevMgr Subprocesses

	10.7 PGE/Manager Implementation Details
	10.7.1 GLA05 Requirement

	10.8 WF_Subsystem
	10.8.1 Assess Waveforms (W_Assess)
	10.8.1.1 W_Assess Subprocesses
	10.8.1.2 Calculate the WF Functional Fit (W_FunctionalFt)
	10.8.1.3 W_FunctionalFt Subprocesses

	10.9 Elev_Subsystem
	10.9.1 L1B DFDs and their Descriptions
	10.9.1.1 Calculate Coelev, Azimuth & Sun Angle (C_Beam_Sun_Ang)
	10.9.1.2 Interpolate POD (C_IntrpPOD)
	10.9.1.3 Tide Correction Routines (E_CalcLoadTD, E_CalcOceanTD, E_CalcEarthTD)
	10.9.1.3.1 Compute Load Tide Correction (E_calcLoadTd)
	10.9.1.3.2 Compute Ocean Tide Correction (E_calcOceanTd)
	10.9.1.3.3 Compute Earth Tide Correction (E_calcEarthTd)

	10.9.1.4 Calculate Std surface Elevation and spot loc (C_CalcSploc)
	10.9.1.5 Interpolate Geoids (C_GetGeoid)
	10.9.1.6 Calculate Troposphere Corrections (E_CalcTrop)
	10.9.1.7 Calculate Angle (C_CalcAngle)
	10.9.1.8 10.9.1.8 Identify Regions (C_GetRegions)
	10.9.1.9 10.9.1.9 Interpolate DEM (E_CalcDEM)
	10.9.1.10 10.9.1.10 Calculate Slope & Roughness (E_CalcSlope)
	10.9.1.11 Create L1B Quality Statistics (update_GLA06QA)
	10.9.1.12 10.9.1.12 Create L1B Quality Statistics

	10.9.2 L2 DFDs and their Descriptions
	10.9.2.1 Calc Reg Params (E_OceanParm, E_LandParm)
	10.9.2.2 Create L2 Elevations QA (update_GLA12QA, update_GLA13QA, update_GLA14QA, update_GLA15QA)
	10.9.2.3 Create Elevation QA Statistics (wrapUpQAP06, wrapUpQAP12_15)

	GLAS_Atm
	11.1 Overview
	11.2 Function
	11.3 Design Approach
	11.4 Input and Output Files
	Table 11-1 GLAS_Atm Inputs
	Table 11-2 GLAS_Atm Outputs

	11.5 Functions
	Figure 11-1 GLAS_Atm Structure Chart
	11.5.1 PGE Core Routines
	11.5.2 Atm Manager (Atm_Mgr)
	Figure 11-2 Atm_Mgr Structure Chart
	Figure 11-3 ATM Manager - Part 1
	Figure 11-4 ATM Manager - Part 2

	11.6 Atm_Subsystem
	Figure 11-5 Atmosphere Subsystem Processes
	11.6.1 DFDs and their Descriptions
	11.6.1.1 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM Subprocesses
	Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM Subprocesses
	11.6.1.1.1 ATM L1B Calculate Calibration Coefficients (A_cal_cofs)
	11.6.1.1.2 ATM L1B Interpolate POD (C_IntrpPOD)
	11.6.1.1.3 ATM L1B Calculate Profile Locations (C_CalcSpLoc)
	11.6.1.1.4 ATM L1B Get Geoid (C_GetGeoid)
	11.6.1.1.5 ATM L1B Calculate DEM (E_CalcDEM)

	11.6.1.2 ATM L1B Backscatter Subprocesses
	Figure 11-7 ATM L1B Backscatter Subprocesses
	11.6.1.2.1 ATM L1B Interpolate Met Data (A_interp_met)
	11.6.1.2.2 ATM L1B Calculate Molecular Backscatter Cross Sections (A_mbscs)
	11.6.1.2.3 ATM L1B Vertically Align Profiles (A_rebin_lid)
	11.6.1.2.4 ATM L1B Calculate Backscatter Cross Section Profiles (A_ bscs)

	11.6.1.3 ATM L1B QA Statistics and WriteATM Subprocesses
	Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses
	11.6.1.3.1 ATM L1B Create QA Statistics (A_qa_G7)
	11.6.1.3.2 ATM L1B Write Atmosphere (WriteAtm)

	11.6.1.4 ATM L1B L2 Buffer 20 Seconds Subprocess
	Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses
	11.6.1.4.1 ATM L2 Buffer 20 seconds (A_buff_data)

	11.6.1.5 ATM L2 Calculate Layer Heights Subprocesses
	Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses
	11.6.1.5.1 ATM L2 Calculate Cloud Layers (A_cld_lays)
	11.6.1.5.2 ATM L2 Calculate PBL Layer (A_pbl_lay)
	11.6.1.5.3 ATM L2 Calculate Elevated Aerosol Layers (A_aer_lays)

	11.6.1.6 ATM L2 Calculate Optical Properties
	Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses
	11.6.1.6.1 ATM L2 Calculate Aerosol Optical Properties (A_aer_opt_prop)

	11.6.1.7 ATM L2 QA Statistics and WriteATM Subprocesses
	Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses
	11.6.1.7.1 ATM L1B Write Atmosphere (WriteAtm)

	11.6.2 Structure Charts
	Figure 11-13 ATM Calibration Coefficient / Profile Location / DEM Modules
	Figure 11-14 ATM Backscatter Modules
	Figure 11-15 ATM L1B QA Statistics / Write ATM Modules
	Figure 11-16 ATM 20 sec Buffering Module
	Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules
	Figure 11-18 ATM Optical Properties Module
	Figure 11-19 L2 QA Statistics / Write ATM Modules

	GLAS_Reader
	12.1 Function
	12.2 Design Approach
	12.3 Input and Output Files
	Table 12-1 GLAS_Reader Inputs

	12.4 GLAS_Reader

	met_util
	13.1 Overview
	13.2 Function
	13.3 Design Approach
	13.4 Input and Output Files
	Table 13-1 met_util Inputs
	Table 13-2 met_util Outputs

	13.5 Functions
	13.6 Functional Overview
	Figure 13-1 Process Flow Diagram: Overall Process
	Figure 13-2 Process Flow Diagram: Shell Script

	reforbit_util
	14.1 Overview
	14.2 Function
	14.3 Design Approach
	14.4 Input and Output Files
	Table 14-1 createGran_util Inputs
	Table 14-2 createGran_util Outputs

	14.5 Functions
	14.6 Functional Overview
	Figure 14-1 Process Flow Diagram

	createGran_util
	15.1 Overview
	15.2 Function
	15.3 Design Approach
	15.3.1 Definitions
	15.3.2 Assumptions

	15.4 Input and Output Files
	Table 15-1 createGran_util Inputs
	Table 15-2 createGran_util Outputs

	15.5 Functions
	15.6 Functional Overview
	Figure 15-1 Process Flow Diagram

	atm_anc
	16.1 Overview
	16.2 Function
	16.3 Design Approach
	16.4 Input and Output Files
	Table 16-1 atm_anc Inputs
	Table 16-2 atm_anc Outputs

	16.5 Functions
	Figure 16-1 Process Flow Diagram

	16.6 Functional Overview of Calibration Modules
	16.6.1 Segment Averaging Module (SAM)
	16.6.2 CALibration Module (CALM)

	GLAS_Meta
	17.1 Function
	17.2 Design Approach
	17.3 Input and Output Files
	Table 17-1 GLAS_Meta Inputs
	Table 17-2 GLAS_Meta Outputs

	17.4 GLAS_Meta
	17.4.1 PGE Core Routines
	17.4.2 Metadata Processing
	17.4.3 ANC45/ANC46 File Updates

	GLAS_Tick
	18.1 Function
	18.2 Design Approach
	18.3 Input and Output Files
	Table 18-1 GLAS_Tick Inputs
	Table 18-2 GLAS_Tick Outputs

	18.4 GLAS_Tick
	18.4.1 PGE Core Routines
	18.4.2 Engineering Statistics Processing
	18.4.3 GPS Update Processing

	GLAS_APID
	19.1 Function
	19.2 Design Approach
	19.3 Input and Output Files
	Table 19-1 GLAS_APID Inputs
	Table 19-2 GLAS_APID Outputs

	19.4 GLAS_APID
	19.4.1 PGE Core Routines

	Maker
	20.1 Overview
	20.2 Function
	20.3 Design Approach
	20.4 Input and Output Files
	Table 20-1 Maker Input Files
	Table 20-2 Maker Output Files

	20.5 Functions
	20.6 Functional Overview

	Processing Scenarios
	A.1 Scenarios
	Table A-1 Reprocessing Scenarios

	Makefiles and Libraries
	B.1 Compilation
	B.1.1 To compile the whole distribution
	B.1.2 To compile only the libraries
	B.1.3 To recompile a library in debug mode
	B.1.4 To recompile a library in optimized mode
	B.1.5 To compile a specific executable
	B.1.6 To compile a specific executable in debug mode
	B.1.7 To compile a specific executable in optimized mode

	B.2 Using Libraries
	B.2.1 Development
	B.2.2 Runtime

	B.3 Some Development Hints
	B.4 Makefile Details
	B.5 Types of Makefiles
	B.5.1 The Main Makefile
	B.5.2 The src Makefile
	B.5.3 Library Makefiles
	B.5.4 Subsystem Makefiles
	B.5.5 Exec makefiles

	B.6 A Sample Heavily-Commented Makefile

	Abbreviations & Acronyms
	Glossary

