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Forest Canopy Cover and Height From
MISR in Topographically Complex
Southwestern US Landscapes Assessed
With High Quality Reference Data
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Abstract—This study addresses the retrieval of spatially con-
tiguous canopy cover and height estimates in southwestern US
forests via inversion of a geometric-optical (GO) model against
surface bidirectional reflectance factor (BRF) estimates from the
Multi-angle Imaging SpectroRadiometer (MISR). Model inver-
sion can provide such maps if good estimates of the background
bidirectional reflectance distribution function (BRDF) are avail-
able. The study area is in the Sierra National Forest in the Sierra
Nevada of California. Tree number density, mean crown radius,
and fractional cover reference estimates were obtained via analysis
of QuickBird 0.6 m spatial resolution panchromatic imagery using
the CANopy Analysis with Panchromatic Imagery (CANAPI)
algorithm, while RH50, RH75 and RH100 (50%, 75%, and 100%
energy return) height data were obtained from the NASA Laser
Vegetation Imaging Sensor (LVIS), a full waveform light detection
and ranging (lidar) instrument. These canopy parameters were
used to drive a modified version of the simple GO model (SGM),
accurately reproducing patterns of MISR 672 nm band surface re-
flectance (mean RMSE , mean , ).
Cover and height maps were obtained through model inversion
against MISR 672 nm reflectance estimates on a 250 m grid.
The free parameters were tree number density and mean crown
radius. RMSE values with respect to reference data for the cover
and height retrievals were 0.05 and 6.65 m, respectively, with
of 0.54 and 0.49. MISR can thus provide maps of forest cover and
height in areas of topographic variation although refinements are
required to improve retrieval precision.
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I. INTRODUCTION

T HIS study uses high quality reference data derived from
high spatial resolution (0.6 m) panchromatic imagery

and full waveform lidar to investigate the accuracy with which
forest canopy cover and height can be retrieved by adjust-
ment of a geometric-optical canopy reflectance model against
multiangle 672 nm reflectance data from MISR, a moderate
resolution imager on NASA’s Terra satellite. Forest canopy
cover and height are important first-order canopy structure pa-
rameters in basic and applied ecological research. They reflect
tree density, successional stage, canopy response to stand-re-
placing fires and other disturbance, forest health, susceptibility
to fire, species distribution, wildlife habitat, and carbon storage
in aboveground woody biomass. In the southwestern United
States the need for forest canopy cover, height, and biomass
mapping capabilities has never been more pressing, with open
canopy forests expected to come under increasing stress from
climate-related disturbance, e.g., unusually severe and exten-
sive wildfires, mortality from insect and pathogen outbreaks, as
well human population and management factors (e.g., grazing,
fire suppression) in the coming decades [1]–[6]. Since the
mid-1970s the southwestern US has warmed rapidly and pre-
cipitation has decreased leading to more intense drought [7];
moreover, there is a consensus that trends towards warming
and increased potential evapotranspiration will cause negative
water balances by the middle of the century [8], [9]. This
will affect forests importantly: higher elevations—where most
southwestern forests exist—have experienced greater warming
than low elevations. The implication is that if temperature and
aridity follow their expected trajectories, these forests will
experience substantially reduced growth during this century
[6]. Warmer winters and earlier melting of the snowpack and
drying of soils and fuels in the spring are already linked to
increasingly extensive and severe wildfires in western U.S.
forests [1]. Some fires are stand-replacing whereas others are
less damaging: canopy cover and height maps can help in
remotely determining the severity of a burn. In addition, cover
and height are important for assessing habitat. For example,
current management on all Sierra Nevada National Forests

1939-1404/$31.00 © 2012 IEEE



CHOPPING et al.: FOREST CANOPY COVER AND HEIGHT FROMMISR IN TOPOGRAPHICALLY COMPLEX SOUTHWESTERN US LANDSCAPES 45

uses canopy cover and tree size guidelines based on the need
to provide habitat for sensitive species such as the California
spotted owl (Strix occidentalis occidentalis). At present the
Forest Service often estimates habitat suitability from sparse
plot data using a model, the Forest Vegetation Simulator [10].
Lidar, radar, and passive multiangle imaging all have a role

to play in mapping these forest parameters at regional scales.
For example, the Geoscience Laser Altimeter System—a
large footprint profiling waveform lidar that was flown on the
Ice, Cloud, and land Elevation Satellite—has provided good
estimates of canopy height over large areas [11] but did not
provide contiguous mapping. Airborne instruments such as
the NASA Laser Vegetation Imaging Sensor (LVIS, [12]) can
provide robust, precise, and contiguous estimates of canopy
height and other structural measures [13] but only sporadi-
cally and over relatively small areas. Radar data can provide
estimates of canopy height when additional elevation data
are available [14]; and aboveground biomass when calibrated
with lidar or ground measurements [15]. Multiangle passive
solar wavelength reflectance data from moderate resolution
instruments provides a third option that has some advantages
but also presents important challenges, discussed below.
For assessing changes in forest at regional scales and larger

it is necessary to adopt an approach that will provide informa-
tion on a regular basis and with as long a record as possible. The
estimates must have both the accuracy and precision sufficient
to differentiate real from spurious trends and to resolve changes
from forest degradation or re-growth as well as large changes
from harvesting or fire. It is relatively straightforward to de-
tect total forest loss from a large, severe wildfire with a tech-
nology that provides a cover estimation precision of 30% but it
would be impossible to say anything meaningful about gradual
or subtle changes, such as those arising from selective logging
and recovery, especially over periods of less than 10 years. This
implies that there is utility in data from moderate resolution in-
struments (i.e., those with instantaneous fields-of-view (IFOVs)
of 100–300 m) that provide a long record and have good spa-
tial and temporal coverage. However the data are difficult to
interpret in terms of structural attributes such as canopy cover
and height; canopy physical quantities must be inferred from
variation in the remotely-sensed signal with respect to wave-
length, polarization, and/or viewing and illumination angles,
rather than from information available in the spatial domain, as
with photogrammetric methods. Moreover, the results are diffi-
cult to validate because of the large ground resolution element of

250 m: it is difficult and expensive to obtain ground-based
measurements that cover the range of conditions sufficiently
well. Plot data that may be used with high- and medium-res-
olution imagery—such as the U.S. Forest Service’s Forest In-
ventory Analysis (FIA) survey data—are at the wrong scale for
use with moderate resolution imagery because the 36 m diam-
eter FIA plot size is almost an order of magnitude too small.
There are several approaches to mapping canopy cover and

height over large areas using moderate resolution multiangle
satellite remote sensing but they may be divided into two broad
categories: empirical and physical. The empirical approach re-
lies on calibration of models whose parameters while poten-
tially meaningful are not physical quantities (e.g., the coeffi-
cients of a regression equation or the connection weights used

in an artificial neural network). The physical approach exploits
models that describe the variation in the remotely-sensed signal
with respect to wavelength, polarization, and/or viewing and il-
lumination angles. Both categories involve models of varying
complexity, from simple to highly complex and with few or
many parameters. Heiskanen [16] and Kimes et al. [17] provide
examples of empirical approaches to interpretation of multi-
angle data (exploiting regression and artificial neural networks,
respectively); while Widlowski et al. [18], Schull et al. [19],
Zeng & Schaepman [20], Chopping et al. [21]–[23], Wang et al.
[24], and Laurent et al. [25] are some examples of physical ap-
proaches (BRDF models, geometric-optical models, directional
escape probabilities). These studies have shown that it is pos-
sible to access the information on canopy structure that is en-
capsulated in multiangle reflectance data.
The approach pursued in this study involves adjusting a geo-

metric-optical (GO) model in a framework in which the con-
tribution of the (non-tree) background at different viewing and
illumination angles is estimated for each location using a dy-
namically-estimated bidirectional reflectance distribution func-
tion (BRDF), rather than a static surface BRDF or brightness
value [21]–[23]. A BRDFmodel provides both reflectance mag-
nitude and anisotropy (i.e., the angular distribution of the out-
going radiation field with respect to the surface and the solar
direction), rather than only the isotropic, or diffuse, scattering
component. Specification of the background BRDF—or at least
the part of it corresponding to the viewing and illumination an-
gles of the observations—is critical for accurate GO canopy re-
flectance modeling. The background has long been recognized
as an important component of the remote sensing problem [26],
[27] and remains an area of active research [28]. In this study
the background BRDF is estimated via least-squares regression,
using the kernel weights of a BRDF model that has been ad-
justed against the available set of bidirectional reflectance factor
(BRF) observations.
Two previous published studies have demonstrated the

utility of red band multiangle BRF data from MISR in such a
GO model inversion framework (hereafter termed MISR/GO)
for forest canopy mapping. In a first study over an area of
200,000 km in New Mexico and Arizona, retrievals of

fractional cover (fcov) and mean canopy height were assessed
against United States Department of Agriculture, Forest Service
Interior West (FS-IW) map series [21]. However the FS-IW
estimates were derived using an empirical modeling technique
that ingested moderate resolution multispectral products from
the NASA MODerate resolution Imaging Spectroradiometer
(MODIS), as well as other geospatial inputs and so are not
suitable for validation purposes, especially for structural pa-
rameters such as canopy height [22], [29]. A second study
assessed canopy height retrievals against high resolution dis-
crete return lidar heights from the NASA Cold Land Processes
Experiment (CLPX) in the Colorado Rockies. Forest height
RMSE distributions with respect to the CLPX lidar estimates
were centered between 2.5 and 3.7 m while distributions
were centered between 0.4 and 0.7 [22].
While good compatibility was found between MISR/GO

cover, height, and aboveground biomass retrievals and the
FS-IW estimates and height retrievals were accurate with
respect to high resolution lidar height measurements, initial
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TABLE I
DATA SETS USED

attempts to map the entire southwestern US using a MISR/GO
method produced anomalous results in some places. For ex-
ample, in locations where the topography is complex and
sometimes extreme, cover was severely overestimated and
height severely underestimated [30]. This can happen because
of the non-uniqueness of solutions when adjusting a model
using numerical methods and the pattern of modeled BRFs
is very similar with different parameter sets (i.e., the same
minimum error within the defined convergence precision can
be obtained with more than one solution). Such artifacts may be
owing to model inadequacy, poor estimates of the background
BRDF, geometric effects of topography, residual atmospheric
or intrinsic noise in the BRF data, and/or problems with the
inversion protocol (e.g., sensitivity to the starting point).
This study uses robust high quality reference data derived

from analysis of high spatial resolution (0.6 m) panchromatic
imagery and full waveform lidar to investigate the precision and
accuracy with which forest cover and height can be retrieved by
adjustment of a GO model against multiangle reflectance data
from MISR. Lidar data acquired from the air provide the best
means of adequately assessing MISR/GO height retrievals; in
this study height metrics from the NASA LVIS full waveform
lidar with a nominal spot size of 20 m were used. Accurate es-
timates of tree density and crown cover, as well as first order
tree heights from shadowing were provided by the CANopy
Analysis with Panchromatic Imagery (CANAPI) algorithm that
was developed to provide maps of these parameters using high
spatial resolution (0.5–1 m) panchromatic imagery [31]. These
data are required for validation of MISR/GO retrievals and also
to drive forward-modeling runs that provide an indication of
whether the model is able to accurately reproduce BRF patterns
at MISR observation geometries; they are described more fully
below.

II. METHODS

In this study tree number density, mean crown radius de-
rived fromQuickBird imagery with CANAPI and canopy height
from analysis of LVIS waveforms were used to drive a geo-
metric-optical canopy reflectance model in forward mode (to
test the ability of a model to predict the 672 nm wavelength ra-
diation field above the canopy as seen by MISR)—as well as

Fig. 1. The location of the study area in the Sierra Nevada National Forest in
California, USA (a) over a crown cover map (b) MISR multi-angle composite
( vol, geo, iso kernel weights). The irregular area indicates the area sur-
veyed by LVIS on day 4 of the September 2008 campaign. The small rectangle
shows the extent of the area used to collect high quality reference data. Black
indicates data missing owing to cloud.

in inverse mode (to extract background BRDFs for calibration
of the regression models that provide the weights required for
calculation of the background contribution for each location,
prior to adjusting the model to obtain fractional crown cover
and mean canopy height). The following sections describe the
data and procedures followed. Please see Table I for a list of the
data sets used and their spatio-temporal extents.

A. Study Area

The study area is centered on the area surveyed by LVIS in
September 2008 in the Sierra National Forest in the southern
Sierra NevadaMountains of California, USA (Fig. 1). It encom-
passes an area of 65,625 ha ( , by

, ) with elevation ranging from
850 to 2,700 m. The area includes upland forest in the western

part and high desert grassland and scrub in the eastern part.
The upland area covers a wide range of vegetation associations
including fir, pine, mixed conifer, mixed hardwood and conifer
forests sparsely interspersed with meadows. Common tree
species include red fir (Abies magnifica), white fir (Abies con-
color), ponderosa pine (Pinus ponderosa), Jeffrey pine (Pinus
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jeffreyi), and incense cedar (Calocedrus decurrens) [32]. Tree
canopy cover can range from completely open in meadows,
rocky ridges, and scree slopes to very dense (but rarely ex-
ceeding 50%, or fractional cover ). The topography is
highly variable, often complex, and sometimes extreme, with
many steep slopes, some well over 40 . There is high variation
in slope and aspect within 250 250 m mapped MISR cells,
with standard deviations between 0 –13 (slope) and 2 –158
(aspect). On the mountain range precipitation ranges from
500–2030 mm during fall, winter, and spring and occurs mostly
as snow above 1828 m. Summers are dry with low humidity,
and temperature averages 5.5–15.5 C with a growing season
lasting 20–230 days. On the foothills precipitation ranges
from 510–1020 mm, temperature averages 13–18 C, and the
growing season lasts 200 to 320 days [33].

B. MISR Data Sets and Processing

The MISR instrument is flown on Terra, the first of NASA’s
Earth Observing System satellites that was launched in De-
cember 1999. The instrument consists of nine pushbroom
cameras arranged to view along-track that acquire image data
with nominal view zenith angles relative to the surface refer-
ence ellipsoid of 0.0 , , , , and
(forward and aft of the Terra satellite) in four spectral bands
(446, 558, 672, and 866 nm) at 1.1 km spatial resolution. The
672 nm (red) band images are also acquired with a nominal
maximum cross-track ground spatial resolution of 275 m in all
nine cameras and all bands are acquired at this resolution in the
nadir camera [34]. Except as otherwise noted, MISR data prod-
ucts are obtained using theMISROrder and Customization Tool
hosted at the NASA Langley Atmospheric Science Data Center
(http://l0dup05.larc.nasa.gov/MISR/cgi-bin/MISR/main.cgi).
The high resolution (275 m) surface BRF is obtained by first

performing a linear regression of the red band 1.1 km MISR
surface BRFs against the red band 1.1 km MISR top-of-atmos-
phere BRFs to obtain the regression coefficients for each of the
nine camera view data sets. The regression is performed on the
data within each 17.6 km region, producing a grid of regression
coefficients, which then are smoothed to eliminate discontinu-
ities between regions. The smoothed regression coefficients are
then applied to the red band 275 m top-of-atmosphere MISR
BRFs to produce red band 275 m land surface BRFs at the nine
camera angles. Top-of-atmosphere BRFs contaminated by sun
glint from water surfaces are excluded from input to the regres-
sion coefficient calculations.
The surface BRF regression algorithm utilizes four MISR

data products: the MISR Level-1B2 Terrain-projected Radiance
product (MI1B2T); the MISR Level-1B2 Geometric Parame-
ters product (MI1B2GEOP); the MISR Level-2 Land Surface
product (MIL2ASLS); and the Ancillary Geographic product
(MIANCAGP). The MI1B2T product provides 275 m terrain-
projected top-of-atmosphere radiance in all 4 spectral bands for
the nadir view; and in the red band for off-nadir views. Sun and
view geometries from the MI1B2GEOP product are combined
with a land/water mask from the MIANCAGP product to de-
termine view angles and surfaces susceptible to sun glint. The
MIL2ASLS product provides surface BRFs at 1.1 km.

Fig. 2. Schematic showing the principles on which the CANAPI algorithm iso-
lates tree or shrub crowns, finds crown radii, and estimates heights from shadow
lengths. The algorithm is implemented in the Image J image processing package
from the U.S. National Institutes of Health.

The MISR data used in this study were from Terra orbit
46009 (August 11, 2008), path 41, blocks 60–61. The data were
resampled onto a 250 m grid in the Universal Transverse Mer-
cator projection, Zone 11N, WGS84 spheroid/datum. The latest
operational MIL2ASLS product (version 22) available from the
Langley data center lacked adequate coverage in the study area,
primarily due to a topographic complexity constraint imposed
by the MISR aerosol algorithm ([35], sections 3.3.1.2.2 and
3.3.8.2.5). Relaxing the regional and subregional topographic
complexity thresholds to 1000 m (from 500 m and 250 m,
respectively), substantially improved coverage in mountainous
regions. Additional coverage was gained by allowing the
aerosol retrieval to proceed without the views, when
doing so improved coverage. This latter modification is also
relevant in mountainous regions due to topographic obscura-
tion of the oblique camera views. The improved MIL2ASLS
product was used as input to the surface BRF regression.

C. Forest Canopy Cover and Statistics From Panchromatic
Imagery

The CANopy Analysis with Panchromatic Imagery
(CANAPI) algorithm allows the calculation of estimates
of crown cover, mean crown radius, tree number density,
background (non-tree) brightness, and tree height, over large
areas [31]. The algorithm identifies crowns in high resolution
panchromatic imagery by finding the crescent-shaped areas
that correspond to illuminated crowns. It accomplishes this by
rotating the original image so that the sun direction is at the
top and applying normalization and convolution operations
to emphasize sunlit crown pixels (Fig. 2). CANAPI produces
maps of idealized (circular) crowns, crown centers, radii, and
tree height from shadow-following, wherever possible (Fig. 3).
Statistics such as tree number density and mean crown radius
can then be calculated for a window of user-selected dimen-
sions, with the mean radius calculated after removing a few
values at the edge of the distribution because the maximum is
often the result of misidentification of several crowns as one
and the minimum is constrained by pixel size.
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Fig. 3. Typical CANAPI crown (circle) and tree shadow (line) detections over
QuickBird 0.6 m panchromatic images in the Teakettle Experimental Forest,
Sierra National Forest, California. Shadows that are truncated by tree crowns or
the edge of the image are not used in tree height calculation. The imagery was
acquired June 25, 2003.

Here, CANAPI estimates of number density and mean crown
radius were calculated for 250 250 m windows corresponding
to mappedMISR cells, using QuickBird 0.6 m spatial resolution
panchromatic imagery acquired on June 25, 2003. The area cor-
responds to 32 34 MISR cells, providing a reference data set
with . This particular image was selected because it
is one of the few available that provides extensive views of the
surface during the summer season. There is the possibility that
the forest may have changed over the five-year period between
the acquisition of the QuickBird imagery and the other data sets,
owing to disturbance. In Sierra Nevada mixed conifer forest
the main disturbances affecting canopy conditions are fire and
bark beetle mortality; wind damage, pests and snow breakage
are very rare, localized events. While it is not absolutely cer-
tain that there were no major disturbance events in the valida-
tion area over the 2003–2008 period, this seems unlikely: it is
known that there were no fires in the Teakettle Experimental
Forest, a 1300 ha old growth watershed about 2 km to the east
that has been intensively studied (e.g., [36]). Bark beetles and
other pests and pathogens were studied at Teakettle over this pe-
riod [37]: while there were chronic levels of bark beetle damage
these affected a very small fraction of trees and there were no
significant droughts—which are a catalyst for increased beetle
mortality—during this period. In the absence of these major dis-
turbances there were likely only small changes in primary forest
canopy structural properties (crown cover, mean height) over
the period June 2003–September 2008.
CANAPI provides very accurate estimates of fractional

cover. When these estimates were compared with those derived
from the extensive and detailed Teakettle Ecosystem Experi-
ment (TEE) database of field measurements collected between

1998 and 2001 for fifteen 200 m plots [36], they yielded an
absolute RMSE of 0.03 and an adjusted of 0.92, significant
at the 99% level [31]. Maximum CANAPI-derived heights
showed a good spatial agreement with LVIS RH100 (100%
energy return) maximum canopy height estimates interpolated
onto a 20 m grid, although the CANAPI map includes far fewer
very tall trees and the relationship was rather weak over the
entire range of RH100 values, with obvious underestimation
and anomalies at low and high values owing to the inability to
obtain heights for all trees falling in the calculation window
(shadows may be truncated by crowns or the edge of the
window). However when the range 3 m to 60 m (61% of the
total) was considered then the was 0.94, significant at the
99% level, with a relative RMSE of 0.25 and an absolute RMSE
of 13.9 m that reflects the divergence from the 1:1 line [31].

D. Lidar Canopy Heights

The lidar data used in this study were collected by the Laser
Vegetation Imaging Sensor (LVIS) [12]. LVIS is a full-wave-
form laser altimeter system optimized to measure canopy
structure across large areas. In September of 2008, as a part of
an experiment for NASA’s Deformation, Ecosystem Structure
and Dynamics of Ice (DESDynI) mission, LVIS mapped a
large portion of the Sierra National Forest with a 1–2 km wide
swath in a series of parallel flight tracks (Fig. 1). Flying at high
altitude LVIS produced millions of (nominally 20-m diameter)
footprints at the surface. The data from the LVIS surveys used
here were collected on Day 4 of the campaign (September
26, 2008) and cover approximately 7,400 ha ( ,

by , ). They are
entirely within the area covered by the MISR imagery. The
waveforms were analyzed by the LVIS science team to provide
ground elevation and canopy height estimates and made avail-
able via the LVIS web server at NASA Goddard Space Flight
Center [38]. The products used were the ground elevation
estimates (“LGE”) with respect to the International Terrestrial
Reference Frame 2000 (horizontal coordinates)/WGS84 El-
lipsoid (vertical coordinates) and the canopy relative height
metrics RH50, RH75, and RH100 (“LCE”). In the LVIS
product, the height at which the indicated percentage of energy
has been returned is estimated; thus RH100 is a measure of
maximum tree height within the lidar footprint while RH50 is
the height of median energy (HOME). RH75 is the height at
which 75% of the energy is returned to the sensor. The mean
incidence angle of the LVIS data set was 2.8 with a standard
deviation 1.4 ; none of the data were acquired at an incidence
angle greater than 10 . The LVIS RH50, RH75, and RH100
values within each mapped MISR 250 250 m cell were av-
eraged to obtain first-order canopy height reference data sets,
thus these data are not original LVIS data but quantities derived
from them. The LGE elevations were used to construct a 37 m
horizontal resolution digital elevation model (DEM, Fig. 4) that
was used to effect first-order corrections to the RH100 values
for slope.

E. Modified Simple Geometric-Optical Model
Geometric-optical (GO) models are able to resolve statistical

distributions of discrete objects within an instrument’s instan-
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Fig. 4. Topography of the Sierra National Forest study site (a) digital elevation
model (DEM) using linear interpolation on LVIS ground returns (b) slope map
generated from the DEM (c) aspect map generated from the DEM. Only valid
data in the center of the maps—as shown by the solid lines—were used.

taneous field-of-view (IFOV) [39]. Simple geometric-optical
models treat the surface as an assemblage of discrete objects
of equal radius, shape and height, evenly distributed within a
spatial unit. A tree or shrub crown is represented by a spheroid
whose center is located at a specified mean height above a
background with defined reflectance magnitude and anisotropy
(i.e., the background is represented by a BRDF model). These
models predict the top-of-canopy reflectance response to im-
portant canopy physical parameters (e.g., plant number density,
foliage volume, mean canopy crown height, radius, and crown
shape, background brightness and anisotropy) as a linear
combination of the contributions from sunlit and viewed, and
shaded and viewed crown and background components [40],
[41]:

(1)

where is bidirectional spectral reflectance factor; , ,
and are the GO modeled proportions of sunlit background,
sunlit crown, shaded crown and shaded background, respec-
tively; and , , , and are the contributions of the sunlit
background, sunlit crown, shaded crown, and shaded back-
ground, respectively. GO functions have been used in Li-Ross
BRDF models [42], [43] and are particularly appropriate for
the exploitation of solar wavelength remote sensing data ac-
quired at differing viewing and/or illumination angles (i.e.,
multiangle remote sensing data) because the proportions of
sunlit and shaded crown and background in the remote sensing
instrument ground-projected IFOV vary with both viewing and
illumination angles and canopy configuration.
GO models calculate the proportions of sunlit background
and crown with respect to illumination and viewing

directions. These are calculated exactly for the principal and

perpendicular planes and approximated away from these, as in
(2) and (3), respectively:

(2)

(3)

where and indicate zenith and azimuth angles where the
subscripts i and v indicate illumination and viewing angles; is
the tree number density; is the average radius of tree crowns;
is the transformed scattering phase angle:

(4)

and is the overlap area between the shadows of illumination
and viewing [43]:

(5)

where is a parameter that indirectly expresses the locations of
the end points of the line that intersects the shadows of viewing
and illumination. This allows to be expressed in a way that
depends only on the value of (see [43]). The prime indicates
equivalent zenith angles obtained by a vertical scale transfor-
mation based on , in order to treat spheroids as spheres [43]:

(6)

These functions thus depend on the parameters (vertical
crown radius/horizontal crown radius) and (height of
crown center/vertical crown radius) which describe the shape
and height of the crown. The model’s primary structural param-
eters are therefore: tree number density , mean crown radius
, crown vertical to horizontal radius ratio , and crown

center height to vertical radius ratio . The crown signature
may be represented by a volume scattering function [44], in
which case an in-crown LAI or foliage volume parameter may
also be specified.
In this study a modified version of the simple geometric

model (SGM), a GO model incorporating a dynamic back-
ground (calculated for each location separately), was used
[21]–[23]. It is formulated as

(7)

where , and are the view zenith, solar zenith and
relative azimuth angles, respectively; , and are the
calculated proportions of sunlit and viewed background and
crown, and shaded components (shaded ground and crown),
respectively; is the background contribution repre-
sented by the RossThick-LiSparse-reciprocal (RTLS) BRDF
model; is the red wavelength bidirectional reflectance
signature for crowns (set at 0.03 in this study); and is
the estimated contribution of shaded components (here set to
0.02). Note that the crown signature differs from the spectral
reflectance of fir leaves ( 0.05; [45]) because the observed
crown area in the instrument IFOV is not composed simply
of leaves but includes non-negligible in-crown shadows. The
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crown and shadow signature values are estimated but they are
not arbitrary. The model’s physical upper canopy parameters
are tree number density ( , trees per square meter), mean
crown radius , crown vertical to horizontal radius ratio

, crown center height to vertical radius ratio , and
crown spectral reflectance. The model used in this study differs
from the previous version in several ways:
• The shaded components and ((1)) that were previously
assumed black (as in the kernel-driven BRDF models) are
no longer discarded because in these tall forests shaded
ground and crown can account for a relatively large pro-
portion of a nadir-viewing instrument’s IFOV (Fig. 3(c));
instead they are allocated a signature, , of 0.02;

• The 3-parameter RTLS BRDF model replaced the 4-pa-
rameter modified Walthall model [46], [47] in order to
make assessment of extracted and predicted backgrounds
more straightforward; and to increase the robustness of
background BRDF retrievals (with four kernels it is more
likely that their contributions will be confounded);

• The Ross volume scattering function with its in-crown LAI
parameter is replaced by a crown red wavelength signature
of 0.03, based on a leaf red wavelength reflectance value
of 0.05 for fir [45] minus a small decrement to account for
in-crown shadows.

F. Isolation of the Background Contribution

The “background” includes everything within the mapped
IFOV of the instrument that is not part of the upper canopy and is
here typically composed of many elements, possibly including
bare soil, rock faces, scree, gravel, crusts, mosses, lichens, and
understory plants such as grasses, forbs, and sub-shrubs (Fig. 5).
In order to estimate background brightness and anisotropy in
the various MISR illumination/viewing configurations, linear
multiple regression based on a number of calibration sites was
used. The independent variables are RossthiN-LiSparse-recip-
rocal (RNLS) BRDF model red band isotropic (iso), geometric
(geo), and volume scattering (vol) kernel weights, obtained by
adjusting the model against MISR red band BRFs in all nine
cameras using the Algorithm for Modeling Bidirectional Re-
flectance Anisotropies of the Land Surface (AMBRALS) code
[48], with the objective function . Since it is dif-
ficult to find 250 250 m areas that are partly vegetated but do
not contain shrubs or trees, background contributions must usu-
ally be extracted: provided with a set of MISR red band BRFs,
estimates of upper canopy statistics from CANAPI (and op-
tionally, LVIS), and the GO model, an optimization algorithm
can extract the best-matching background for each site. In other
words, when the contribution of the upper canopy in the ob-
servedMISRBRF pattern has been accounted for, the remaining
contribution must be from the background (Fig. 6). Background
BRDFs retrieved in this way are hereafter referred to as “op-
timal” backgrounds.
Two methods were used to find sets of background RTLS

model red band kernel weights (i.e., the dependent variables
in the regression equations). First, an automated approach was
followed: since CANAPI provides canopy statistics for large
areas it is possible to extract kernel weight sets for many con-
tiguous 250 250mwindows corresponding toMISR grid cells.

Fig. 5. A selection of 250 x 250 m image chips from Google Earth showing
the wide range of non-tree- backgrounds for which the GO modeling frame-
work must attempt to predict BRDF: (a) rocky/stony scrub; (b) meadow with
lichens; (c) senescent sparse grasses with rocks; (d) lush meadow; (e) senescent
grasses; (f) senescent grasses with exposed soil; (g) low shrubs, rocks/stones,
exposed soil, grasses; (h) highly stratified uplifted and tilted rock face; (i) senes-
cent grasses with exposed bright mineral soil; (j) bright exposed caliche with
rock outcrops and stones; (k) wet meadow grasses and low shrubs; (l) talus
slope.

Here 1048 windows from the part of a QuickBird scene from
June 25, 2003 that included LVIS canopy height metrics were
used (the “validation area”). To find the optimal backgrounds,
for each location the GO model and parameters were set
to the CANAPI-derived values, was fixed at 1.0 (typical
for conifers), and was adjusted so that mean crown height

matched the corresponding LVIS RH50 value. RH50
was used because it is more closely related to GO model mean
canopy height than RH75 or RH100 [13], [49]. The RTLS back-
ground BRDF model kernel weights were then adjusted to min-
imize the absolute RMSE between the GO model and MISR
BRFs. In the second approach, an extensive visual scan of high
resolution imagery was performed in Google Earth for the area
of the MISR scene, seeking 250 250 m cells with very low
(generally 10%) canopy cover. The same extraction proce-
dure was followed, though mean crown radius was estimated
from the imagery, tree number density set to give a match with
fractional cover (measured via thresholding), and was set to
1.0 and 4.0 for broadleaf and coniferous trees, respectively.
Having obtained the best-fitting RTLS background model

kernel weights with respect to the MISR data, regression
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Fig. 6. Observed and modeled MISR red band (672 nm) bidirectional reflectance factor patterns, indicating the contributions from the upper canopy (trees) and
the background ( , where RTLS indicates the RossThin-LiSparse BRDF model). The background BRDF model kernel weights were adjusted to provide
the lowest absolute RMSE between the GO model and the MISR observations. (a) Bare rock; (b) abundant shrubs; (c) sparsely vegetated; (d) broadleaf trees over
grass; (e) conifers over grass; (f) 10% tree crown cover over rocky surface; (g) 5% tree crown cover over rocky surface; (h) 5% tree crown cover over lush
grass.

coefficients were obtained for each of the model parameters
using the RNLS kernel weights as the independent variables.
The resulting regression equations can be used to obtain esti-
mates of the background response prior to adjustment of the
GO model [21]–[23]. For the automated approach, the set of
locations used to obtain the regression coefficients was reduced
by considering only those locations where the CANAPI crown
cover estimate was 15%.

G. Model Evaluation in Forward Mode

In forwardmode the GOmodel was driven to predict red band
BRFs for all available MISR cameras (in these data ranging
from six to nine looks but usually eight or nine) for all loca-
tions with reference data, using tree number density and mean
crown radius from CANAPI; mean from adjustment against
LVIS RH100 (because modeled height depends on ); and the
RTLS BRDF model background (predicted by red band RNLS
BRDF model kernel weights). This was accomplished for 1048
of the 1088 250 250 m areas within the QuickBird sub-scene
as complete LVIS data were not available for 40 MISR pixels.
The resulting BRFs were then compared with the observed pat-
terns from MISR.

H. Model Inversion Protocol

Retrieval of fractional cover and mean canopy height for
each mapped grid location was performed by adjusting the
model against the MISR data using a numerical optimization
algorithm. Forward differencing was used for estimates of par-
tial derivatives of the objective function and a Newton search
method was used at each iteration to decide which direction
to pursue in the parameter space [50]. The objective function

Fig. 7. Flowchart of the operations performed to retrieve and validate fractional
crown cover and mean canopy height via GO model inversion against MISR
672 nm band BRFs.

was with no weighting of the error terms with
respect to viewing angle. No constraints were imposed. Tree
number density and mean radius were left as adjustable
parameters, with and set to 1.0 (typical for conifers)
and 4.0 (tall trees), respectively. Retrievals were thus effec-
tively for fractional crown cover (a function of and ) and
mean canopy height (a function of , since model height is
controlled by the terms and that are both fixed). MISR
red band data in all available cameras were used. The number
available is usually nine but is occasionally six, seven, or eight.
The initial values of and were set to 0.004 (250 trees per

MISR grid cell of 62,500 m ) and 3.0 m, respectively. Note that
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Fig. 8. (a)–(c) Predicted versus optimal background BRDF model red band isotropic, volume, and geometric scattering kernel weights for the 28 background
calibration sites; (d)–(f) for backgrounds predicted using kernel weights plus the green and near-infrared BRFs from the MISR nadir camera.

effective values are retrieved: the parameters are internally cou-
pled and the same BRF pattern is obtained if these two param-
eters are varied with fractional cover maintained, so it is not
feasible to adjust both parameters simultaneously to obtain real
values. However also determines mean top-of-canopy height

: since and are fixed, and and are adjusted, the
inversion effectively provides an estimate of (vertical crown
radius) allowing the calculation of an estimate of , via ,
noting that refers to the mean height of crown centers. Frac-
tional crown cover was calculated assuming overlap be-
tween crowns, according to the Beer-Lambert law (e.g., [10]):

(8)

The retrieved values of and were read into raster image
layers for mapping and analysis, along with the model-fitting
RMSE, , fractional cover, and top-of-canopy height.
The procedures by which the data and GO model are used

to extract background BRDFs and to invert the GO model and
validate retrievals are depicted in a flow-chart (Fig. 7).

III. RESULTS AND DISCUSSION

CANAPI crown cover within the validation area ranges from
0.0–0.4 and it is therefore clearly critical that the background
contribution at the instrument illumination and observation an-
gles is predicted as accurately as possible. This is a challenging
task using simple regression methods in view of the diversity

of background types and each candidate set of coefficients must
be assessed in both forward and inverse modes. Attempts to ob-
tain a regression model using the automated approach in which
all 1048 MISR grid cells for which CANAPI and and LVIS
RH50 data were available did not produce reasonable inversion
results, even when the CANAPI-derived canopy cover was used
to restrict the set of locations considered to 15%. There was
only a small improvement when combining a low cover set ob-
tained in this way with data from a few individually-selected
low cover locations outside the validation area. This may be be-
cause the 1048 cells do not cover a sufficiently wide range of
background conditions.
Using 28 grid cells selected for low woody plant cover drawn

from a larger area provided a much wider variety of background
types, as indicated in Fig. 5. The predicted background BRDF
model kernel weights rendered of 0.99, 0.61, and 0.91 for
the isotropic, volume-scattering, and geometric kernel weights,
respectively, with respect to the optimal weights (Fig. 8(a)–(c)).
This is surprisingly good in view of the wide diversity of
components that may include stony scrub, lush meadow,
exposed soil, low shrubs, exposed soil, uplifted rock faces,
rocks of various sizes, caliche, and talus slopes. Only slightly
improved results were obtained using kernel weights plus green
and near-infrared band BRFs from the MISR nadir camera
(Fig. 8(d)–(f)). The regression results show that not all indepen-
dent variables contributed to accurate results, for example, the
RNLS geometric scattering kernel weight was not significant
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TABLE II
BACKGROUND KERNEL WEIGHT COEFFICIENTS

Fig. 9. Maps of the predicted background BRDF model kernel weights:
(a) isotropic (diffuse) scattering; (b) volume scattering; (c) geometric
scattering.

in predicting the RTLS background model isotropic kernel
weight (Table II). Maps of the predicted RTLS background
BRDF model kernel weights show reasonable distributions,
with higher isotropic kernel weight values for the snow-cov-
ered mountain tops in the east-central part of the scene and
lower values in densely-vegetated areas (Fig. 9). The geometric
kernel weight also shows a strong spatial correspondence with
snow cover and is higher over sparse vegetation and lower over
densely-vegetated areas, while the volume scattering kernel
weight is relatively high over dense vegetation, as expected,
although its behavior varies over snow-covered areas.
Comparison of the model-predicted patterns with those from

MISR for 1048 locations provided distributions in which 96.6%

have and 97.0% have [Fig. 10(a), (b)].
When the RMSE and values are plotted against fractional
crown cover it can be seen that there is only a small change
in accuracy with cover [Fig. 10(c), (d)], with a mean RMSE
of 0.011 and a mean of 0.82. These results suggest that the
GO model is able to predict the sequence of BRFs observed by
MISR in all nine cameras rather well, implying that the back-
ground prediction is effective. Note however that even if the
background prediction were perfect this is no guarantee of ac-
curacy on model inversion: there is still a potentially strong de-
pendence on the optimization algorithm, its scaling and preci-
sion settings, and the starting point. The distributions of tree
number density (effective), mean crown radius (m; effective),
fractional cover (unitless) and mean canopy height (m) are all
approximately normal (Fig. 11).
Model adjustment against the MISR red band BRFS resulted

in mean (standard deviation) model-fitting RMSE and coeffi-
cient of determination values of 0.009 (0.009) and 0.78 (0.199)
respectively, with mode values of 0.008 and 0.925 (Table III).
The inversion algorithmwas thus able to fit the model to the data
well. The MISR/GO fractional cover retrievals showed a mod-
erately strong relationship to the CANAPI estimates, with an
of 0.56 [Fig. 12(a)], significant at the 99% level. The RMSE

with respect to the CANAPI data is 0.05 over a range that spans
0.01–0.39. The MISR/GO mean canopy height retrievals show
a somewhat less strong relationship to the LVIS RH100, RH75,
and RH50 data, with of 0.49, 0.38, and 0.44, respectively
[Fig. 12(b)–(d)], all significant at the 99% level. The RMSE
with respect to LVIS RH100 is 6.65 meters, considerably higher
than that obtained under the less strenuous topographic condi-
tions and lower canopies of the Rocky Mountains in Colorado
[22], although in this Sierra Nevada landscape the mean and
range are also much larger: 30.1 m, spanning 3.4–62.0 m. There
is marked overestimation at low values and underestimation at
high values with respect to RH100, noting that the RH100 value
indicates themean of the set of RH100 values within themapped
MISR cells. This bias is less marked in the relationship with
RH75 and is almost negligible in the relationship with RH50
[Fig. 12(c) and (d), respectively], which may indicate that it
is not reasonable to compare MISR/GO mean canopy heights
with themean ofmany lidarmaximum canopy heights (RH100),
even though RH100 provided the best match.
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Fig. 10. Results of the GO model predictions when driven by CANAPI tree number density and mean crown radius, LVIS RH100, and the RTLS BRDF model
representing the background, for 1048 contiguous locations: (a) histogram of modeled versus MISR RMSE values; (b) histogram of modeled versus MISR coef-
ficient of determination values; (c) distribution of RMSE values with respect to CANAPI/QuickBird fractional cover estimates (fcov); (d) distribution of
values with respect to CANAPI/QuickBird fractional cover estimates.

Fig. 11. Histograms for tree number, mean crown radius, fractional cover, and
mean canopy height obtained by inversion of the GO model against MISR red
band BRFs in all nine cameras.

Representations of typical 250 m grid interval MISR/GO
maps of model-fitting RMSE, fractional cover, and mean
canopy height are given in Fig. 13, together with a standard

TABLE III
SGM INVERSION STATISTICS

false color composite (RGB = Near-Infrared/Red/Green). The
missing data in these maps correspond to 17.6 km blocks
where the MISR aerosol/surface retrievals failed because of
cloud cover. High model-fitting RMSE has been found to
indicate contamination by clouds [21], [22] but there is no
indication of cloud contamination in this scene, except perhaps
in the north-central part; it is also possible that RMSE cannot
be used to detect cloud over snow, which also results in high
values. The distributions of cover and height values appear
reasonable on comparison with features in high resolution
imagery in the Google Earth archive, i.e., high (low) canopies
appear to have taller (shorter) trees, although this assessment
is necessarily qualitative.
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Fig. 12. (a) MISR fractional crown cover from inversion of the GO model versus CANAPI/QuickBird-derived fractional crown cover (b) MISR mean canopy
heights with no rescaling versus mean LVIS RH50 canopy heights (average over the 250 250 m MISR cell) (c) versus RH75 (d) versus RH100. See Table II for
inversion statistics.

Fig. 13. (a) MISR An (nadir) camera 250 m false color composite with
, Red, Green BRFs (b) 250 m map of RMSE on GO model fitting

(c) 250 m map of retrieved fractional crown cover, assuming crown overlap
(d) 250 m map of retrieved mean canopy height. The dotted line indicates the
validation area for which CANAPI and LVIS data were both available. Black
rectangular areas indicate missing data owing to cloud.

IV. CONCLUSIONS

This study has demonstrated that multiangle red band surface
BRF estimates from MISR can be used to invert a simple geo-
metric-optical canopy reflectance model for mapping canopy
cover and height in open forest canopies, even in areas of
complex and often severe topography and with a very wide
range of background conditions. The retrieved cover and height
estimates were obtained independently from the reference data,
not via training or empirical relationships. While a part of the
signal observed byMISR originates from the background and is
obtained via regression, its contribution at any given geometry
is based on kernel weights that have a physical meaning. The
ability of the modified simple GO model to reproduce observed
672 nm BRF patterns was demonstrated. The use of a non-zero
shadow component and a leaf+shadow crown signature instead
of the non-linear Ross scattering function provided a realistic
model, as shown by the forward-modeling results: when driven
with first order canopy structural parameters (tree number
density, mean crown radius, LVIS RH100 canopy heights),
the modified model reproduced MISR BRF patterns quite
accurately. For large area mapping there are some important
caveats: the major factor in avoiding anomalous cover and
height retrievals was the use of a locally-calibrated background
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BRDF, implying that more than one set of calibration coeffi-
cients might be required in order to enable accurate GO model
inversion for very different landscape types. The study has also
shown that is it difficult to obtain high precision in canopy
height retrievals in these circumstances, with an RMSE of 6.7 m
versus LVIS RH100. This allows only a rather coarse binning
of canopy height to obtain high accuracy, although it is still a
very useful capability, noting that the range of canopy heights is
quite large (the minimum, maximum, and mean heights are 3.4,
62.0, and 30.1 m, respectively). Nevertheless, the study showed
that it is possible to leverage moderate resolution multiangle
data using a GO model to map forest structural parameters at
regional scales; assuming data continuity, this could help to
provide a more complete picture of changes in the forests of
the southwestern United States as they respond to changing
disturbance and management regimes over the coming decades.
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