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Abstract. The marked increase in the use of composite and sandwich material systems in 
aerospace, civil, and marine structures leads to the need for integrated Structural Health 
Management systems. A key capability to enable such systems is the real-time reconstruction 
of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-
location strain measurements. This technology is commonly referred to as shape- and stress-
sensing. Presented herein is a computationally efficient shape- and stress-sensing 
methodology that is ideally suited for applications to laminated composite and sandwich 
structures. The new approach employs the inverse Finite Element Method (iFEM) as a general 
framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-
node inverse plate finite element is formulated. The element formulation enables robust and 
efficient modeling of plate structures instrumented with strain sensors that have arbitrary 
positions. The methodology leads to a set of linear algebraic equations that are solved 
efficiently for the unknown nodal displacements. These displacements are then used at the 
finite element level to compute full-field strains, stresses, and failure criteria that are in turn 
used to assess structural integrity. Numerical results for multilayered, highly heterogeneous 
laminates demonstrate the unique capability of this new formulation for shape- and stress- 
sensing. 

 
 
1 INTRODUCTION 

The inverse problem of shape- and stress-sensing is manifested by reconstruction of 
structural displacements, strains, stresses, and failure criteria using real-time strain 
measurements. Aircraft wings with embedded conformal antennas and those of morphed 
capability require real-time shape sensing to provide feedback for their actuation and control 
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systems. For structural health monitoring, shape- and stress-sensing technologies are the 
enabling capabilities for assessing structural integrity and cost-efficient maintenance. For 
composite and sandwich structures, structural health monitoring using embedded optical-fiber 
networks presents an attractive technology for in-situ strain measurements that give rise to a 
large amount of strain data. Despite their numerous advantages, composite structures may 
experience such modes of failure as delamination and impact damage, and these can affect 
their load carrying capabilities. Thus, the monitoring of structural integrity of multilayered 
composite and sandwich structures is an issue of primary importance. 

Various shape-sensing approaches for plates undergoing bending deformations have been 
explored [1–3]. Bogert et al. [1] examined a modal transformation method, which requires a 
large number of natural vibration modes. Using classical bending assumptions, Jones et al. [2] 
performed the reconstruction of plate deflections by fitting discrete measures of the bending 
curvatures and then integrating the regression curves. Nishio et al. [3] explored shape-sensing 
of thin laminated composite plates by enforcing compatibility between analytic and measured 
strains in a weighted least-squares sense. Both [2] and [3] employed Kirchhoff plate theory, 
thus restricting their methods to homogeneous or nearly homogeneous thin plates. Tessler and 
Spangler [4] proposed a general framework for full-field reconstruction of displacements, 
strains, and stresses, using arbitrary positioned strain sensors on the load-carrying structural 
surfaces. The methodology is based on a least-squares variational principle and accounts for 
the complete set of First-order Shear Deformation Theory (FSDT) modes. They include 
stretching, bending and shear deformations. The variational principle [4] is also well suited 
for finite element approximations. In [5], the authors proposed an inverse Finite Element 
Method (iFEM) based on C0-continuous kinematic approximations. This resulted in an 
efficient three-node inverse shell finite element called iMIN3.  

Although generally regarded as an accurate theory, FSDT may lead to somewhat 
inadequate predictions when applied to relatively thick composite and sandwich structures. 
Higher-order equivalent-single-layer theories [6] provide improved predictions for such 
structures, specifically for the global response quantities such as deflection and natural 
frequency; nevertheless, even these theories fail to predict through-the-thickness distributions 
of displacements, strains, and stresses with sufficient accuracy. Layer-wise theories [7] 
usually lead to highly accurate response predictions; however, these are obtained at the 
expense of computational efficiency and modeling complexity, especially for multilayered 
structures, since the number of unknowns depends on the number of material layers. The 
recently developed Refined Zigzag Theory (RZT) [8,9] is a good compromise between 
adequate accuracy and computational efficiency. For plate analysis, RZT has seven kinematic 
variables regardless of the number of material layers, just two more than FSDT. This new 
theory is able to model the cross-sectional distortion that is typical of multilayered composite 
and sandwich structures. 

In this paper, the Tessler-Spangler [4,5] iFEM formulation is reformulated to include the 
kinematic assumptions of RZT [8,9]. The new formulation is thus intended for applications 
dealing with multilayered composite and sandwich structures possessing a high degree of 
anisotropy and heterogeneity. The variational principle is then discretized using a C0-
continuous three-node inverse plate finite element. Numerical results are presented for 
moderately thick sandwich laminates subjected to various boundary and loading conditions. 
Finally, superior stress-sensing capabilities of the present formulation are demonstrated for a 
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select set of challenging material systems. 

2 KINEMATIC ASSUMPTIONS OF THE REFINED ZIGZAG THEORY FOR 
PLATES 

Herein the kinematic assumptions of the Refined Zigzag Theory (RZT) for plates are 
briefly reviewed. In particular, the strain field is formally re-written in order to define the 
strain measures to be used in the iFEM variational formulation (see Sect. 3).  

Consider a plate of thickness 2h  made of N perfectly bonded orthotropic material layers 
(see Figure 1(a)); the superscript ( )k  denotes the kth layer. The plate is referred to a Cartesian 
coordinate system 1 2( ,  ,  )x x z  where 1 2( ,  )x x  are the in-plane coordinates and z  is the 
thickness coordinate that ranges from h  to h , with 0z  identifying the mid-plane and z(j) 
identifying the jth interface (see Figure 1(b)). 

The displacement field of RZT for plates is [9] 
( ) ( )
1 1 2 1 2 1 1 2 1 1 1 2
( ) ( )
2 1 2 1 2 2 1 2 2 2 1 2

1 2 1 2

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , )

k k

k k

z

u x x z u x x z x x z x x
u x x z v x x z x x z x x

u x x z w x x

 

(1) 

where ( )
1

ku  and ( )
2
ku  are the in-plane displacements and zu  is the transverse displacement. 

RZT has seven kinematic variables, 1 2 1 2, , ,[ , , , ]Tv wuu . u , v , and w  are the uniform 
displacement components along the 1x , 2x , and z -axis respectively; 1  and 2  are the 
average rotations of the transverse normal around the positive 2x -axis and the negative 1x -
axis, respectively; and 1,2  are the amplitudes of the zigzag contributions to the in-
plane displacement in the x -directions (see Figure 1(a)). The zigzag terms ( ) 1,2k  

in Eq. (1) describe the 0C -continuous cross-sectional distortions that are typical of multilayer 
laminates. The zigzag functions, ( ) ( )k z , have units of length and are piecewise linear, 0C -
continuous functions of the thickness coordinate and of the transverse shear moduli of the 
laminate layers. Refer to [9] for the detailed derivation of the zigzag functions. 

  
(a) (b) 

Figure 1: Plate notation (a) and layer notation for a three-layer laminate (b) 
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The in-plane components of the strain field are given as 
( ) ( )
11 10 10 10
( ) ( )
22 20 20 20
( ) ( )
12 120 120 120

k k

k k

k k

z

z

z

 

(2) 

where 

10 ,1 10 1,1

20 ,2 20 2,2

120 ,2 ,1 120 1,2 2,1

,
u
v

u v
e u κ u  (3) 

( ) ( )
10 1 1,1

( ) ( ) ( )
20 2 2,2
( ) ( ) ( )
120 1 1,2 2 2,1

,

k k

k k k

k k k

zm u

 

 

represent the membrane, bending and zigzag strain measures, respectively. Note that, whereas 
the membrane and bending strain measures are constant with respect to the thickness 
coordinate, the zigzag strain measures have the “zigzag”, z-dependent distributions. 

The transverse shear strains are given by 
( ) ( )
1 1 1 1

( ) ( )
2 2 2 2

1

1

k k
z

k k
z  

(4) 

where ( ) ( )
, ( 1,2)k k
z  and 

,1 1 11 1 1

,2 2 21 2 2

w
w

g u
 

(5) 

with ( 1,2) denoting the transverse-shear strain measures of RZT.  

3 INVERSE FINITE ELEMENT METHOD BASED ON RZT 
In this section, the iFEM variational formulation based on the RZT kinematics is 

presented. The formulation enables reconstruction of the deformed shape of composite and 
sandwich structures from in situ strain measurements. 

The general framework is that of finite element approximations. Thus, a discretization of 
the structure with plate elements is introduced, in which the element kinematic variables are 
interpolated by a set of suitable shape functions, 

1 2 1 2, ,e ex x x xu u N qeue xe  (6) 

where 1 2,x xN  denotes the shape functions and eq  the nodal degrees-of-freedom. 



Priscilla Cerracchio, Marco Gherlone, Marco Di Sciuva and Alexander Tessler. 

 5 

3.1 Error functional 
Following the iFEM methodology [4,5], the displacement solution is obtained through the 

minimization of an error functional, which is defined as the least-square error between the 
analytic strain measures (Eqs. (3), (5)) and their measured values, known at discrete locations 
from in-situ strain measurements. For a single element, the error functional is given as 

2 2 2 2( )e e e e k e eu e u e κ u κ m u m g u  (7) 

where the superscript “ε” is used to denote the measured values; for the membrane, bending 
and zigzag contributions, the squared norms that appear in Eq. (7) have the form 

22

1
2 22

1
2 22( ) ( )

( ) ( )
1

1

(2 )

(2 ) ,

n
e e

ii
i

n
e e

ii
i

n
k e k e

j i ji
i

n
h
n

h z
n

e u e e u e

κ u κ κ u κ

m u m m u m

 

(8) 

where n is the number of locations 1 2( , )i iP x x , where the strain measures, ie , iκ  and ( )i jm  
are evaluated from strain-sensor measurements. The zigzag strain measures, ( )i jm , are 
evaluated at the jth interface using embedded strain-sensors. The transverse shear strain 
measures, g u , cannot be obtained experimentally. Thus, the transverse shear term in Eq. 
(7) is given by the 2L  norm 

2 21
e

e e
e

A

dA
A

g u g u  (9) 

where eA  denotes the element area. In Eq. (8),  is a positive valued, small (compared to 
unity) weighting coefficient; refer to the numerical studies in Sect. 4 in which the value of 

510  is used. 
Considering Eqs. (3) and (5), while invoking the kinematic field interpolations given by 

Eq. (6), the strain measures can be expressed in terms of the nodal degrees-of-freedom, eq , as 

e 1 2 κ 1 2

( )
m 1 2 g 1 2

, , ,
  

, , , , ,

e e e e

k e e e e

x x x x

z x x z x x

e u B q κ u B q

m u B q g u B q
 

(10) 

where the matrices eB , κB , mB  and gB  contain the derivatives of the shape functions 

1 2,x xN . 
Substitution of Eq. (10) into Eqs.(8) and (9), and minimization of the functional e  with 

respect to the unknown nodal degrees-of-freedom, eq , yields the element matrix equation 
e e ea q b , where the matrix ea  is given as 
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2

e 1 2 e 1 2 κ 1 2 κ 1 2
1 1

2

m 1 2 ( ) m 1 2 ( ) g 1 2 g 1 2
1 1

1 (2 ), , , ,

(2 ) 1, , , , , ,

n n
e T T

i i i i
i i

n n
T T

j j i ii i
i i

hx x x x x x x x
n n

h x x z x x z x x x x
n n

a B B B B

B B B B
(11) 

whereas the right-hand-side vector is 
2

e 1 2 κ 1 2
1 1

2

m 1 2 ( ) ( )
1

1 (2 ), ,

(2 ) , ,

n n
e T T

i ii i
i i

n
T

j i ji
i

hx x x x
n n

h x x z
n

b B e B κ

B m
 (12) 

Taking into account appropriate coordinate transformations, the element contributions are 
assembled into a global system of equations. Upon enforcement of problem-dependent 
displacement boundary conditions that prevent rigid-body motion, the inverse-problem 
equations take on the form 

Aq b  (13) 

where A  is a well-conditioned square matrix.  
Equation (13) is well suited for real time applications. This is because A is inverted only 

once (assuming small displacements, the strain-sensor locations, 1 2[( , ) , ]ix x h  and 

1 2 ( )[( , ) , ]i jx x z , remain unchanged.)  On the other hand, the vector b needs to be updated at 
each strain-data acquisition increment. Thus, the displacement solution is efficiently 
computed by the vector-matrix multiplication, 1q A b . The strains and stresses are readily 
computed for each element using strain-displacement and constitutive relations of RZT. 
Furthermore, strains and stresses can be used to construct failure criteria.   

3.2 Evaluation of the experimental strain measures from strain-sensor data 
The present method is especially aimed at structures with embedded strain sensors. In 

particular, a strain-sensor configuration that measures the in-plane strains is considered on the 
top and bottom surfaces and at one interface (refer to Eq. (2)). Considering that the zigzag 
contributions to the in-plane strains vanish on the top and bottom surfaces [9], the expressions 
for the experimental membrane and bending strain measures are derived by evaluating Eqs. 
(2) at the discrete locations 1 2( , )i iP x x , z h ,  

10 11 11 10 11 11

20 22 22 20 22 22

120 12 12 120 12 12

1 1,
2 2i i

i i i i i i

h
e κ  (14) 

where 11 22 12, ,
i
 and 11 22 12, ,

i
 denote the in-plane strains measured respectively at 

1 2[( , ) , ]ix x h  and 1 2[( , ) , ]ix x h . Measuring the same strain components at the jth interface, 
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11 22 12, ,j j j

i
, and again using Eq. (2), the zigzag strain measures are determined as 

10 11 10 10

( ) 20 21 20 ( ) 20

120 12 120 120( )

j

j
i j j

j

i j i i i

zm

 

(15) 

Using this strain-sensor configuration, the zigzag strain measures, ( )i jm , are evaluated at the 
jth interface only. 

4 THREE-NODE PLATE INVERSE ELEMENT BASED ON RZT 
In this section, a brief description of a three-node inverse plate element is presented. The 

element has seven degrees-of-freedom at each node, 1 2 1 2, , , , , ,k k k k k k ku v w , where 
1, 2, 3k  is an index ranging over the three nodes. Considering that only first derivatives of 

the kinematic variables appear in the functional, Eq. (7), the shape functions are required to 
satisfy C0-continuity. For this purpose, the so-called anisoparametric interpolations are used 
(e.g., refer to Tessler and Hughes [12] and Versino et al. [11]).  

The in-plane displacements, bending rotations and zigzag amplitudes are interpolated using 
linear shape functions. The functions are defined in terms of the area-parametric coordinates 

kL  ( 1,..,3)k ,  

3

1 2 1 2 1 2 1 2
1

, , , , , , , ,k k
k

x x L x x u v  (16) 

whereas a quadratic interpolation is used for the deflection 
3 3

1 2 1 1 1 2 2 2
1 1

, k k k k k k k k
k k

w x x L w L L  (17) 

where the quadratic shape functions, 1kL  and 2kL , are given by the expressions 

1 22 2
k k

k l m m l k m l l m
L LL a L a L L b L b L  (18) 

1 1 2 2k m l k l ma x x b x x   

the subscripts being given by the cyclic permutation of 1 3k , 2, 3, 1l  and 3, 1, 2m . 
The anisoparametric interpolations, Eqs. (16) and (17), ensure that (a) truly thin plates can be 
modeled without any stiffening due to shear locking, and (b) the resulting element, herein 
referred to as iRZT3, has the same number of degrees-of-freedom as a standard linear-
interpolation element. 

5 NUMERICAL EXAMPLES 
A symmetric three-layer sandwich plate, with carbon-epoxy face-sheets and a PVC core is 

analyzed, under the action of different loadings and boundary conditions (see Table 1 for the 
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mechanical material properties). The thickness of each face-sheet is 10% of the total laminate 
thickness. In the following example problems, square plates are considered having edge 
length a and span-to-thickness ratios, ρ = a/2h=10. Regular mesh patterns are used having the 
same number of elements along the plate edges, ne. Figure 2 shows the plate geometry, the 
coordinate system, and a 2 × 2 discretization (ne = 2). 

Two example problems are analyzed: (1) a simply supported plate subjected to a transverse 
bi-sinusoidal pressure 1 2 0 1 2( , ) sin( )sin( )p x x p x a x a , and (2) a cantilever plate 
subjected to a uniform transverse pressure 1 2 0( , )p x x p . In lieu of the actual experimental 
strain measurements, an exact elasticity solution by Pagano [13] is used for the simply 
supported plate.  For the cantilever plate, an analytic RZT-based direct solution is used, [9].  
In both cases, the strain sensor configuration consists of three strain-sensor rosettes located at 
the element centroid on top and bottom surfaces and at z(1) (see Figures 1 and 2). 

Table 1: Mechanical properties of orthotropic (C) and isotropic (P) materials. The Young’s moduli and the shear 
moduli are expressed in GPa. 

C Carbon-epoxy 
unidirectional 

composite 

( ) ( ) ( )
1 2 3,  ,  k k kE E E  1.579 × 102, 9.584, 9.584 
( ) ( ) ( )
12 13 23,  ,  k k k  0.32, 0.32, 0.49 
( ) ( ) ( )
12 13 23,  ,  k k kG G G  5.930, 5.930, 3.227 

P PVC core E ,  1.040 × 10-1, 0.3 
 

 
Figure 2: Inverse plate finite element discretization, 2 × 2 mesh (ne=2), and strain-sensor locations. 

In Figures 3–5, the in-plane displacement, in-plane normal stress, and transverse shear 
stress are normalized as 

4 4 2
1 1 11 0 11 11 0 2 2 010 , 1 , 1z zu u D p a p p  (20) 

where 11D  is the bending stiffness coefficient. 
Figures 3–4 depict results for the simply supported plate where the displacements and 

stresses obtained using the present element formulation (labeled as iRZT3) are compared to 
Pagano’s exact elasticity solution. In Figure 3(b), for comparison purposes results are also 
depicted for the predecessor inverse element “iMIN3” [5], based on FSDT. When using ne = 
12 (Figure 3(a)), the present iRZT3 model accurately predicts the maximum deflection (error 
within 0.27%) whereas iMIN3 leads to an underestimation by 70% (not shown). Figures 3(b), 
4(a) and 4(b) show that through-the-thickness distributions of in-plane displacement, in-plane 

Strain-sensor 
rosette

1x

2x
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normal stress and transverse shear stress are accurately recovered using iRZT3 whereas 
iMIN3 in unable to model the zigzag shape of the in-plane displacement (Figure 3(b)) typical 
of a sandwich-like stacking sequence. 

 

 
(a) (b) 

Figure 3: Simply supported plate, a/2h=10: (a) Percent error of maximum deflection, 100( 1)Pagano
we w w , 

vs. the number of elements along the plate edge, ne; and (b) Through-the-thickness distribution of in-plane 
displacement, 1(0, 2)u a , for the discretization ne = 12. 

 
(a) (b) 

Figure 4: Simply supported plate, a/2h=10: through-the-thickness distributions of (a) In-plane stress, 
11( 2, 2)a a , and (b) Transverse shear stress, 2 (0, 2)z a , for the discretization ne=12. 
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In Figure 5, results are depicted for the cantilever plate, where the iFEM predictions are 
compared with the corresponding RZT analytic solutions of the direct problem. Figure 5(a) 
depicts rapid convergence of the maximum deflection error, whereas Figure 5(b) shows a 
through-the-thickness distribution of the normal stress, 11( 4, 2)a a . 

 
(a) (b) 

Figure 5: Cantilever plate, a/2h=10:  (a) Percent error of maximum deflection, 100( 1)RZT
we w w , vs. the 

number of elements along the plate edge, ne; and (b) Through-the-thickness distribution of in-plane stress, 
11( 4, 2)a a , for the discretization ne=20. 

6 CONCLUSIONS 
Real-time reconstruction of structural displacements and stresses from in-situ discrete-

location strain measurements, herein referred to as shape- and stress-sensing, is an inverse 
problem that has important implications for monitoring of structural integrity, as well as for 
the actuation and control of smart structures. A new variational formulation for shape- and 
stress-sensing of laminated composite and sandwich plates has been presented. The approach 
makes use of an inverse Finite Element Method (iFEM) that was previously developed on the 
basis of First-order Shear Deformation Theory (FSDT). The iFEM is based on the 
minimization of a least-square error functional in which analytic and measured strains are 
enforced in the least-square sense.  Within the present formulation, the kinematic assumptions 
of the Refined Zigzag Theory (RZT) are used and require that the measured strains be 
available along three surfaces through the laminate thickness (instead of only two surfaces for 
the FSDT-based formulation.) The RZT has previously been shown to be especially well 
suited for the modeling of laminated composite and sandwich plates. The error functional is 
discretized using C0-continuous interpolations of the displacement field, yielding an efficient 
three-node inverse plate finite element that has seven kinematic degrees-of-freedom at each 
node. From the reconstructed element displacements, strains and stresses at every material 
point of the structure are then computed using RZT’s strain-displacement and constitutive 
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relations. Numerical results for moderately thick laminated sandwich plates undergoing 
elasto-static deformations demonstrated superior full-field predictions for the displacements, 
strains, and stresses. As expected, the present iFEM-RZT formulation results in more accurate 
predictions than those based on iFEM-FSDT, and this is especially evident in highly 
heterogeneous and sandwich laminates.   
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