

Extravehicular Activity (EVA) Hardware & Operations Overview

Copyright © 2013 by United Space Alliance, LLC

Objectives and Overview

- Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program
- Identify the types of EVAs that may be performed
- Describe some of the U.S. Space Station equipment and tools that are used during an EVA
 - Extravehicular Mobility Unit (EMU)
 - Simplified Aid For EVA Rescue (SAFER)
 - International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1)
 - EVA Tools & Equipment
- Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations
- Describe the Russian spacesuit used to perform an EVA
- Provide a comparison between U.S. and Russian spacesuit hardware and EVA support
- Define the roles that different training facilities play in EVA training

Definition of EVA

- Extravehicular Activity (EVA)
 - Definition: Crewmember leaves the protective environment of a pressurized spacecraft cabin and ventures out into vacuum of space wearing an extravehicular spacesuit.
 - Purpose
 - Contingency or Mission Success Repairs
 - Experiments or Testing
 - Spacecraft Servicing
 - Space Structure
 Construction [e.g.,
 International Space Station (ISS)]

Definition of Spacesuits

Spacesuits

• Typically, 2 types of pressurized "spacesuits' have been constructed to

support our space programs

Launch, entry, and abort (LEA) spacesuit

- Used to protect crewmembers from launch, ascent, abort, landing and other dynamic loading.
- Capable of providing protection from loss of cabin pressure and crew rescue following landing.

- Extravehicular Activity (EVA) spacesuit
- Used to allow crewmembers to work effectively in the harsh external space environment (provides protection from vacuum, thermal, mircrometeoroids, radiation, etc.).

Historical Overview

- First EVA was conducted by USSR/Alexi Leonov on March 18, 1965.
 - Many EVAs have since been accomplished by the Soviet Union & Russia continuing into the International Space Station era.

U.S. EVA Experience

- Gemini EVA Experience -
 - Astronaut Edward White II performed first U.S. EVA during Gemini IV June 3, 1965.
 - Start of EVA program was excursion to perform a special set of procedures in a new and hostile environment.
 - Proved EVA to be a viable technique for operations outside the spacecraft crew compartment.
 - Problems encountered: helmet fogging, overheating due to high metabolic activity (primarily due to suit constraints and lack of training).
 - Gemini Extravehicular Spacesuit and Life Support
 - 5-layer Gemini spacesuit was intended primarily for Intravehicular Activity (IVA).
 - 2 additional layers were added for EVA (making 7 layers total).
 - An umbilical was used to tether the EVA crewmember to the spacecraft and to supply breathing oxygen.
 - 5 Gemini missions involved nine EVAs for a total of 12 hours and 22 minutes of EVA.

Russian Voskhod 2 1st EVA (Alexi Leonov)

Inflatable
Airlock

•<u>http://images.search.yahoo.com/search/images; ylt=A2KJkPo2y.xPWkgAsWOJzbkF?p=voskhod+airlock&fr=yfp-t-701&ei=utf-8&n=30&x=wrt</u>

U. S. Gemini Program 1st American EVA (Ed White)

Historical Overview

- Apollo EVA Experience
 - Spacesuit was redesigned to allow greater mobility.
 - Suit used for lunar and inspace EVAs.
 - Suit was configured with its own portable life support system providing:
 - Pressurization & Atmosphere
 - Communication
 - Ventilation
 - Cooling
 - Waste management system
 - 7 EVA missions totaling 170 hours of EVA (15 on lunar surface, 5 outside Crew Module).
 - Last 3 Apollo missions (15, 16, & 17) utilized the lunar rover vehicle for greater range in lunar exploration.

Historical Overview

Skylab EVA Experience

- Apollo-style suit used.
- Umbilical replaced portable life support system and provided breathing oxygen, cooling, and served as a tethering device.
- 10 EVAs were performed during the 3 Skylab missions totaling 82.5 hours.

Space Shuttle EVA Experience

- New space suit design for additional mobility and modularity.
- Portable life support system designed for microgravity operation.
- Increased operational capability from orbiter.
- Accumulated 1000s of hours of EVA experience over 200+ EVAs.

Space Station EVA Experience

- EMU certified for extended duration on-orbit operations (25 EVAs).
- Orbital Replacement Unit (ORU) capability added.
- Accumulated 1000s of hours of EVA experience over 150+ EVAs.

EVA Categories

ISS & Shuttle Terminology

Three basic categories of EVA:

Scheduled EVA:

EVA planned and trained prior to launch and included in the mission timeline.

- Both 'skills-' and 'task-based' training used

Unscheduled EVA:

EVA, although trained, not included in the scheduled mission activities, but which may be required to achieve mission or operational success.

- Both 'skills-' and 'task-based' training used

3. Contingency EVA:

EVA required to effect the safety of the crew and vehicle.

-'Skills-based' training used

US EVA Systems

- Extravehicular Mobility Unit (EMU)
- ISS Joint Airlock
- Equipment & Tools (including Simplified Aid For EVA Rescue (SAFER))

EVA Systems - EMU

- The EMU is an independent system that provides the crewmember with environmental protection, mobility, life support, and communications during EVA.
- EMU provides consumables to support an EVA of 7 hours maximum duration.
 - 15 minutes for egress
 - 6 hours for useful work
 - 15 minutes for ingress
 - 30 minutes for reserve
- EMU is an integrated system consisting of two subassemblies:
 - Space Suit Assembly (SSA)
 - Portable Life Support System (PLSS)

•orbiterchspacenews.blogspot.com

EVA Systems Space Suit Assembly

- Space Suit Assembly Components:
 - Hard Upper Torso (HUT)/arms
 - Lower Torso Assembly (LTA)
 - Extravehicular (EV) gloves
 - Helmet/Extravehicular Visor Assembly (EVVA)
 - Communications Carrier Assembly (CCA; Comm Cap)
 - Liquid Cooling and Ventilation Garment (LCVG) / Thermal Cooling Under-Garment (TCU)
 - Operational Bioinstrumentation System (EKG)
 - Disposable In-Suit Drink Bag (DIDB)
 - Maximum Absorption Garment (MAGs)

EVA Systems Space Suit Assembly

Extravehicular (EV) gloves

 Extravehicular (EV) boots (and insert)

EVA Systems – Life Support

- Life Support System Components:
 - Display and Control Module (DCM)
 - Provides Caution & Warning System (CWS) messages, EMU parameters, and EMU controls to crewmember

EVA Systems – Life Support

- Life Support System Components:
 - Portable Life Support Subsystem (PLSS)
 - Provides breathing O₂,
 electrical power,
 communications, cooling
 - Responsible for suit pressure control
 - Circulates O₂ and removes
 CO₂, humidity and trace
 contaminants
 - Controls thermal environment
 - Secondary Oxygen Package (SOP)
 - Provides a minimum of 30 minutes of emergency O₂ in open-loop purge mode
 - Activated automatically during EVA, if necessary

EVA Systems – Life Support

- Life Support System Components (Cont'd):
 - Space-to-Space EMU Radio (SSER)
 - Caution and Warning System (CWS)
 - Early Caution and Warning System (ECWS)
 - Provides EMU status parameters and biomedical data for transmission to Mission Control
 - Battery
 - Primary
 - Rechargeable EVA Battery Assembly (REBA)
 - Contaminant Control Cartridge (CCC; LiOH Cartridge or Metal Oxide (METOX) Cartridge)
 - Removes CO₂ and trace contaminants

EMU Quantity & Consumables

- Space Shuttle
 - Two (2) EMUs are baselined on each Shuttle flight with enough consumables to support three (3), two-crewmember EVAs. Of these 3 EVAs,
 - One 7-hour EVA may be supported.
 - Two EVAs of 3-hours and 4-hours respectively may be supported for Orbiter contingency EVA operations.
 - Consumables provided include:
 - CO2 cartridge (non-regenerable LiOH)
 - Oxygen
 - Potable water (for drink bags)
 - Feedwater (or sublimator water)
 - Power
 - Battery chargers
- International Space Station (ISS)
 - 4 EMUs are, typically, kept on board to support EVAs (sizes available: M, L, XL)
 - Sufficient consumables allow a large number of EVAs to be performed
 - Consumables provided include:
 - CO2 cartridge (metal oxide) and regenerator
 - Oxygen
 - Potable water (for drink bags)
 - Feedwater (or sublimator water)
 - Power
 - Battery chargers

EVA Systems - ISS Joint Airlock

- ISS Joint Airlock:
 - Primary for U.S. ISS EVAs
 - Compatible for use with Russian Orlans
 - Made up of two parts:
 Crew Lock and Equipment
 Lock
 - Equipment Lock is used for stowage, recharge & servicing of EMUs, and to suit don/doff
 - Crewlock is the volume nominally depressed to vacuum for EVA

International Space Station (ISS) Joint Airlock

ISS Joint Airlock

EVA Systems - ISS Joint Airlock

STS-104 / Flight 7A (Summer 2001)

22

EVA Systems - ISS Joint Airlock

- •EMU-mounted tools & equipment
 - -TV Camera
 - -Lights
 - -Mini-workstation
 - -Waist tethers
 - -EVA Cuff Checklist
 - -Wrist mirror
 - Body Restraint Tether
 - –Pistol Grip Tool (PGT)
 - -ISS Small Trash Bag

- Mini Work Station (MWS)
 - Attaches to front of the EMU
 - Used to carry small tools
 - Tools are secured via tether rings or via bayonet receptacles
 - MWS end effector with
 retractable tether
 provides restraint
 to EVA
 Crewmember at
 worksite

 Note: "Drop-proof tether" PIP pins are used to secure certain items such as a socket onto a tool caddy.

- Commonly Used Tethers
 - Safety Tether (55' and 85')
 - Used to secure the EVA crewmember to the vehicle
 - Suit tethers (Waist, Wrist)
 - Used to secure small items to the suit, usually for transfer
 - Retractable EVA Tether (RET)
 - Used to secure small items, usually while item is in use
 - Body Restraint Tether (BRT)
 - Attaches to the Mini-Work Station (MWS)
 - End-effector provides semi-rigid restraint to EVA crewmember at worksite via handrail (also used for translating small objects)
 - Requires less time than setting up a Portable Foot Restraint and is more stable than a MWS end effector
 - Note: EVA tether protocol is that crewmembers and equipment must be tethered at all times
 - Always <u>make</u> a connection before you <u>break</u> a connection.

EVA Systems SAFER (Simplified Aid for EVA Rescue)

- SAFER is a self-contained, propulsive backpack self-rescue system that provides the EV crewmember with self-rescue capability when the orbiter is not present or cannot immediately perform EVA rescue.
 - Propellant: Pressurized nitrogen gas
 - Controlled by a single hand controller
 - Stowed in ISS Airlock, used on ISS EVAs
 - Sufficient propellant and power for one self-rescue (~13 min)
 - Test flight on mission STS-64; selfrescue capability on STS-76
 - Power up of production model SAFER on STS-86
 - Tethered test flight of production model SAFER on Flights 2A and 3A

EVA Systems SAFER (Simplified Aid for EVA Rescue)

- Pistol Grip Tool (PGT)
 - EVA torque wrench (i.e., a bolt turner)
 - Has a programmable torque limiter and turn limiter
 - Crewmember needs to be secured depending on amount of torque required
 - 2ft-lbs to 25ft-lbs of torque available
 - Generally used for ISS assembly missions and maintenance EVAs

← 1-G Testing of the PGT

- Foot Restraints
 - Attach to structure via a socket
 - Provides EVA crewmember rigid restraint at a worksite (Newton's 3rd Law)
 - Different types:
 - Portable foot restraint (PFR) (Shuttle)
 - Articulating PFR (APFR) (U.S. ISS)
 - Înteroperable APFR (IAPFR) (U.S. & Russian ISS)

- Crew and Equipment Translation Aid (CETA) Cart
 - Essentially an EVA equipment cart
 - Translates by CM manually pulling it along truss
 - Use brakes to stop and stay parked
 - Typical use: small ORU replacement on front truss face

EVA Operations Overview

EVA operations can be divided into three phases:

Pre-EVA EVA Post-EVA

Pre-EVA: Preparation & Checkouts

- Equipment Prep
 - Prepares the airlock and the EMUs to be checked out before EVA.
 - This is normally performed a few days before the EVA or before the Orbiter docks to the Station.
- EMU Checkout
 - Checks all EMU systems.
 - Performed a few days before the EVA or before the Orbiter docks to the Station.
- EVA Prep
 - All steps performed the day of the EVA prior to going EVA, including:
 - EMU Donning
 - Prebreathe with 100% oxygen

Pre-EVA: Prebreathe

O₂ Prebreathe reduces the risk of Decompression Sickness (DCS)

Protocol	In-Suit	In Suit Light Exercise (ISLE)	Campout ~ 8 hours 40 min @ 10.2 PSI	Exercise
Mask prebreathe time	None	1 hour	1 hour (1st day)	80 minutes
In-suit prebreathe time	4 hours	100 min	50 min (2 nd day)	1 hour
Ops Overview (Details of EVA Prebreathe protocols are in the Aeromed Flight Rule #B13-107)	Breathe 100% O ₂ in-suit for 4 hours while cabin is at 14.7, go out the door.	In Suit prebreathe light exercise totals 90 min; 50 min light exercise, 40 min Metox change out	Breathe 100% O ₂ on mask while depressing cabin to 10.2, wait approx. 9 hours before in-suit prebreathe, go out the door.	Exercise on ergometer (i.e., bike) for 10 minutes at beginning of mask prebreathe (100% O2), depress airlock to 10.2, breathe in-suit for 1 hour, go out the door.
Total EVA prep & P/B time:	5:42 hrs	3:12 hrs	13:12 hrs	4:02 hrs

[•] Note: Long-duration exploration vehicles plan to utilize 8 psia / 32% O2 atmosphere.

NASA / JSC 20-Foot Chamber Facility Research

Deep Space Habitat Vertical Orientation Floor Plan

Deep Space Habitat Aboard Heavy Lift Launch Vehicle

Validation

8 psi 32% protocols

Overhead of an EVA

(EVA Campout – Times Approximate)

Night Before EVA

		=			
PRE SLEEP 3 hours		Time @ 10.2 psi = 8 hours 40 mins (includes sleep)			
:	60 min mask PB 10.2 De 45 min before 11.	7	3:15 3:27	4:	17 4:47
EVA Day	HYGIENE BREAK 70	⁵ EVA PREP 90 min			C/L Dep (30 min)
	min * 70 min mask P/B Rep 10.2 Depr	EMU Donning 55	min Ck Rep		
POST SLEEP 35 mi	POST SLEEP 40 min			11:17	12:37
EVA PET = 6:30				Rep PO	ST EVA w/o H2O

NIGHT BEFORE EVA SUMMARY

- Pre Sleep (3 hours total)
- Mask Prebreathe (1 hour)
 - 10.2 psi Airlock Depress (20 mins)
- 10.2 psi Overnight Campout (8 hours 40 mins minimum).

EVA DAY SUMMARY

- Post Sleep (1 hour 15 mins total)
- Mask Prebreathe (1 hour 10 mins)
 - Airlock Repress
 - Hygiene Break/Post Sleep activities
 - 10.2 psi Airlock Depress
- Mask Prebreathe Termination

- EVA DAY SUMMARY (continued)
- EVA Prep (~1 hour 30 mins)
 - EVA Prep for Donning (30 mins)
 - Suit Donning at 10.2 (1 hour)

Suit Purge (12 mins)

- Airlock Repress to 14.7
- In-suit Prebreathe (50 mins)
- Crewlock Depress to vacuum (30 mins)
- EVA tasks (6 hours 30 mins)
- Airlock Repress (20 mins)
- Post EVA without EMU H2O Recharge or METOX Regeneration (1 hour)
- Pre Sleep (2 hours)

EVA Operations: Overview of Typical EVA

30 min	Airlock depress		
15 min	Airlock egress		
	Worksite operations: Shuttle and ISS-based		
	 All Shuttle EVA crewmembers are trained to perform the following Orbiter contingency tasks (if necessary) for each flight: 		
	 Failed airlock hatch latches or actuator tasks 		
6 hours	 Failed Remote Manipulator System (RMS) tasks 		
onours	 Manual stowage of radiators or Ku-band antenna 		
	 Manual closure of payload bay doors 		
	 Installation of payload bay door latch tools 		
	 Manual separation of Shuttle from ISS (96 bolt task) 		
	 EVA crewmembers assigned to a flight are also trained for scheduled, unscheduled, or contingency tasks. 		
15 min	Airlock ingress		
30 min	Airlock repress	39	

Post-EVA Operations

- EMU Doffing
- EMU Maintenance and Recharge
 - O₂ tank recharge
 - Battery recharge
 - H₂O tank refill
 - METOX regeneration/ LiOH swap
 - Suit cleaning
 - Suit resize (if required)

Comparison of Russian & U.S. EVAs

- Russian Orlan-M Spacesuit
- U.S. Extravehicular Mobility Unit (EMU)

Orlan-M Spacesuit

Visors

Electrical Control Panel (ΠΟ-4ΜΤ)

Fluid Umbilical Connector (OPK-19)

> Orlan Safety Tether

Helmet Lights

Suit Pressure Gauge (УДСК)

> Backpack Closure Strap

Pneumo-Hydraulic Control Panel (ΠΓΠソ-1Μ)

Emergency O₂ Hose

Electrical Umbilical

Backpack

LCG

Back-Entry Orlan-M

Suit Enclosure

Arm Assembly

(Thermal Micrometeoroid Garment "TMG" Removed)

Leg Assembly

(TMG Removed)

Orlan-M Glove

Electrical Control Panel (ΠΟ-4MT)

Liquid Crystal Display

Primary Pump Switch

Primary Fan Switch

Reserve Fan Switch

• Reserve Pump Switch Volts/Tone Mute Button

Power Switch

Orlan-M Electrical Control Panel (ΠΟ-4MT)

Electrical Control Panel (ΠΟ-4MT)

Orlan-M Electrical Control Panel (ΠΟ-4MT) (side view)

Radio Telemetry Apparatus Unit (БРТА-1М)

- Contains the following electrical assemblies:
 - Korona-M Communications Radio
 - Tranzit-A Telemetry Radio (2 parts)
 - Data Gathering Unit (TA-237)
 - Transmitter (ША-347)
 - Battery (autonomous power supply)
 - Current and Power Measurement Unit (БКНТЗ)
 - High-Frequency Filter (ΦP (ΤΚ))
 - Annunciation Unit (БС-1М)
 - Relay Module (MP)
- FPTA-1M attaches to bottom of backpack enclosure (not pressurized)
- Easily attached to and removed from suit

Radio Telemetry Apparatus Unit (БРТА-1М)

Tranzit-A Transmitter (ША-347)

Electrical
Connectors to
Orlan (X107
(upper)),
(X109
(lower))

Support Strut w/
Coupling Nut (left and right)

Battery Connector (X21)

Battery (not installed)

Radio Telemetry Apparatus Unit (БРТА-1М) (Shown without Primary Oxygen Tank installed)

Tranzit-A Data Gathering Unit (TA-237)

Korona-M Communications Radio

High-Frequency Filter (ΦP (TK))

Current and Power Measuring Unit (БКНТЭ)

Safety Tethers

- Two Safety Tethers attached on the right HUT/Leg Assembly flange
 - Not designed for EVA removal
 - One Tether is fixed length
 - One Tether is variable length
 - Both tethers share an attaching strap
 - Tether hooks
 - One fault tolerant
 - Titanium construction
 - Certified for 600 kg (1320 lbs)

Variable Length Safety Tether

EVA Tools and Crew Aids

- Orlan Tether Adapter (OTA)
 - Provides interface points for U.S. tools
 - Provides various equipment tether loops
- OTA Interface Block
 - Permanently mounted to the waist flange of the Orlan suit
 - Provides load support to the OTA
 - Provides one crew safety tether loop
- Standard U.S. Tool Configuration
 - OTA
 - Right Swing Arm
 - Retractable Equipment Tethers (RET)
 - EVA Camera (Digital or F5)

Orlan Tether Adapter (OTA)

Comparison with Russian EVAs EMU vs. Orlan - Manufacturers

EMU

United Technologies, Hamilton-Sundstrand, Windsor Locks, CT

Orlan

Zvezda Research, Development, and Production Enterprise, Tomilino (Moscow Region), Russia

Comparison with Russian EVAs EMU vs. Orlan - Applications

- EMU Space Shuttle and International Space Station (ISS)
 - In operation since 1981 to present
 - Several upgrades have been made

- Orlan-M Mir Space Station and ISS
 - In operation since 1997 (replaced Orlan-DMA)
 - Upgraded Orlan-MK delivered to ISS in 2008

Comparison with Russian EVAs EMU vs. Orlan – General Characteristics

EMU

- Suit operating pressure: 4.3 psi
- Mission duration: 6.5 hours + 30-minute contingency
- Weight: ~280 lbs
- On-Orbit Service life: 25 uses/2 years (with maintenance)
 - Returned for refurbishment

- Suit operating pressure: 5.8 psi
- Mission duration: 6.5 hours + 30-minute contingency
- Weight: ~230 lbs
- On-orbit Service life: 12 uses/4 years (with maintenance)
 - Not returned for refurbishment

Comparison with Russian EVAs EMU vs. Orlan – Spacesuit Assembly

EMU Construction

- Semi-rigid construction; aluminum hard upper torso
- Urethane-coated nylon pressure bladder
- Orthofabric and aluminized mylar thermal/meteoroid garment
- Ball-bearing joints
- Liquid-cooling and ventilation undergarment
- Display & Controls Module (DCM)
- Polycarbonate helmet and polysulfone visors; helmet lights
- Location for attachment of mini-work station, etc.

Orlan-M Construction

- Semi-rigid construction; aluminum hard upper torso
- Urethane-coated nylon pressure bladder
- Orthofabric and aluminized mylar thermal/meteoroid garment
- Liquid-cooling undergarment
- Electrical Control Panel / Pneumo-Hydraulic Control Panel
- Polycarbonate helmet and visors; helmet lights
- Probe provided for attachment of mini-work station, etc.

Comparison with Russian EVAs EMU vs. Orlan – Spacesuit Assembly Differences

EMU

- Sizing: Medium, large, and extra large size modular components and the use of sizing inserts (legs and arms) allow a fairly large population range to be accommodated
 - Multiple glove sizes including some custom-sized gloves
- Gloves are heated to provide protection from cold environment; wrist disconnect is on suit side
- Suit Donning: Bottom entry
- Helmet is removable
- Waist tether(s) removable
- Includes provisions for TV camera

- Sizing: One size with adjustable sizing axial restraint cable in arms/legs
 - 2 glove sizes
- Glove wrist disconnect is on glove side
- Suit Donning: Back entry
- Helmet integrated into suit
- 2 Waist tethers (fixed and variable length); not removable
- Orlan-MK includes provisions for U.S. TV camera

Comparison with Russian EVAs EMU vs. Orlan – Portable Life Support Assembly

EMU

- Closed-loop, 100% oxygen
- Expendables replaced or recharged on-orbit
- Primary & secondary oxygen tanks
- Liquid cooling via garment and use of sublimator
- Carbon Dioxide and trace gas scrubber
- Average/Max metabolic rates: 1000 BTUs (290 W) / 2000 BTUs (580 W)
- Primary battery Li-ion
- Radio for voice, data, and medical information; use of headset

- Closed-loop, 100% oxygen
- Expendables replaced or recharged on-orbit
- Primary & secondary oxygen tanks
- Liquid cooling via garment and use of sublimator
- Carbon Dioxide and trace gas scrubber
- Average/Max metabolic rates: 1025 BTUs (300 W) / 2050 BTUs (600 W)
- Primary battery is zinc-silver-oxide (rechargeable)
- Radio for voice, data, and medical information; use of headset

Comparison with Russian EVAs EMU vs. Orlan – Portable Life Support Assembly Differences

EMU

- Primary O2 pressure: 2 tanks @ 900 psi (rechargeable); Secondary O2 pressure: 2 tanks @ 6000 psi (non-rechargeable)
- Most electronics located in life support backpack @ vacuum
- Crewmembers communicate between each other
- Single fan-pump-water separator
- Liquid cooling and ventilation garment; biocide: iodine
- CO2 scrubber: silver oxide or lithium hydroxide
- Additional rechargeable battery used for glove heating (nickel-metal-oxide)
- Prebreathe: 4-hour in-suit, 10.2 psi, and 14.7/10.2 psi & ergometer protocols available

- Primary and Secondary O2 pressure: 6000 psi; both removable and non-rechargeable
- Electronics (except for БРТА) located in life support backpack @ 100% О2
- Crewmembers communicate via the vehicle (signal is relayed)
- Redundant fans and pumps
- Liquid cooling garment; biocide: silver ions
- CO2 scrubber: lithium hydroxide
- Prebreathe: 1-hour @ 550 torr

Comparison with Russian EVAs EMU vs. Orlan – Work Aids

EMU

- Compatible with:
 - Mini-work station
 - Numerous EVA tools including foots restraints, etc.
 - Simplified Aid For EVA Rescue (SAFER)
 - Donning stations
- Orlan-M
 - Compatible with:
 - Mini-work station
 - EVA tools including foots restraints, etc.
 - REBA helmet lights
 - Donning stations (however, rarely used on orbit)

Comparison with Russian EVAs EMU vs. Orlan – Crew Preference Items

EMU

- Comfort gloves
- Eyeglass holder
- Fresnel lens (various strengths)
- In-suit drink bag
- Maximum absorbent garment (MAG)
- Socks
- Valsalva device
- Wristlets
- Miscellaneous: Lint free wipes, Anti-fog wipes, Comfort pads, Moleskin tape, Stericide sanitizer

- Comfort gloves
- Dosimeter (passive)
- Socks

Comparison with Russian EVAs EMU vs. Orlan – Operations Differences

- Russian EVA crewmembers talk directly to engineers on ground
- U.S. EVA crewmembers talk through Capcom
- Russian EVA training is more skills based
- U.S. EVA training is more task based
- Russian EVA crewmembers have little or no Intravehicular (IV) interaction
- U.S. EVA crewmembers work with an IV crewmembers before, during, and after an EVA
- Russian EVA crewmembers use a hand-over-hand tether protocol
- U.S. EVA crewmembers use a safety tether (ISS & shuttle) and a slidewire (Shuttle)

- Shuttle Full-size Mockup Trainers (historical)
 - Crew Cabin Trainer (CCT) and CCTII
 - Full Fuselage Trainer (FFT)

 Space Station Mockup Training Facility (SSMTF) Airlock Mockup

• EMU Caution and Warning System (ECWS) Trainer

- Vacuum chambers
 - 11-foot chamber
 - Environmental Test Article (ETA) chamber
 - Space Environment Simulation Lab (SESL) chamber
 - Space Station Airlock Test Article (SSATA)

Virtual Reality Lab

EVA Training Facilities Charlotte for Low Gravity Mass Ops Wass

Source: Osterlund, J. & Lawrence, B. 2012

Precision Air-Bearing Floor (PABF)

Neutral

 Buoyancy
 Laboratory
 (NBL)

• Micro-gravity via DC-9 (KC-135 below retired)

EVA Training FacilitiesThe Active Response Gravity Offload System (ARGOS)

•ARGOS uses an inline load cell to continuously offload of a portion of a human or robotic subject's weight during all dynamic motions

Backup Material

Pressures

Altitude (ft)	Atmospheric Pressure (psi)	Oxygen Concentration (%)	Comments
Sea Level	14.7	20	Nitrogen Concentration is 80%. 1 atmosphere (1 atm). 101.325 kPa.
10,000	10.11	70% of Sea Level	Early signs of hypoxia (shortage of oxygen in the body)
15,672	8.3	56% of Sea Level	Exploration Atmosphere recommended pressure
18,000	7.34 or (14.7 / 2)	51% of Sea Level	½ atm
23,500	5.8	40% of Sea Level	Russian Orlan operating pressure
30,250	4.3	30% of Sea Level	U.S. EMU operating pressure
34,000	3.62 or (7.34 / 2)	25% of Sea Level	1/4 atm
101,381 (19.2 miles)	0.147 or (14.7 / 100)	≈1% of Sea Level	1/100 atm
283,076	0.000147 or (14.7 / 100,000)	0% of Sea Level	ISS (220 miles or 1,161,600 ft)

Comparison with Russian EVAs EMU vs. Orlans

Suit Feature	Orlan - M	EMU
Entry Method	Rear Entry: Self-donning typical Easy suit ingress/egress	Waist Entry: Self-donning possible More difficult in/egress
Pressure	5.7 psid nominal	4.3 psid nominal
Pre-breathe	30-minute nominal	40 min. nominal from 10.2 psi cabin 4 hour nom from 14.7 psi
Sizing	One size Adjust lengths of arms and legs	Modular 137 measurements made
Useful Life	4 years or 12 EVAs Burns on re-entry in Progress vehicle	2 years or 25 EVAs Refurbished and recertified on ground
Displays	C&W lights on front of suit and in helmet; can send suit data to ground	CWS, DCM display: msg and status; can send suit data to ground

Comparison with Russian EVAs EMU vs. Orlans

- Resupplying/Recharging
 - Orlan H2O tank refilled and O2 tanks replaced after each EVA
 - EMU H2O and O2 tanks resupplied via umbilical
- Orlan and EMU coolant operation similar
 - Both Orlans and EMUs use sublimators
 - Liquid Cooling (and Ventilation) Garments [LC(V)Gs] are similar
- Umbilicals
 - Orlan umbilical provides power, comm, and pre-breathe O2
 - EMU umbilical provides power, comm, O2, recharge H2O and cooling H2O
- Gloves
 - Orlan gloves used for two EVAs
 - EMU gloves used multiple times, electrically powered glove heaters
- Emergency procedures
 - Orlan: Few simple messages, gloves have reference tables on them
 - EMUs have Caution and Warning System, combined with a cuff checklist
- Both Orlans and EMUs have duplex comm