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Rationale for Multiaxial and Thermomechanical Fatigue

• Structural materials used in engineering applications routinely 
subjected to repetitive mechanical loads in multiple directions 
under non-isothermal conditions

• Over past few decades, several multiaxial fatigue life estimation 
models (stress- and strain-based) developed for isothermal 
conditions

• Historically, numerous fatigue life prediction models also 
developed for thermomechanical fatigue (TMF) life prediction, 
predominantly for uniaxial mechanical loading conditions

• Realistic structural components encounter multiaxial loads and 
non-isothermal loading conditions, which increase potential for 
interaction of damage modes. A need exists for mechanical 
testing and development & verification of life prediction models 
under such conditions.
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Turbine

Typical Gas Turbine Engine Hot Section Components
Combustor Vane Turbine blade Turbine disk
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PM Processed Nickel-Based Superalloy Disk 

Realistic fatigue durability estimation of gas turbine engine 
components requires consideration of cyclic thermal and 

multiaxial mechanical loads

Turbine disk subjected to 
thermal cycles and 

multiaxial loads during 
start-ups and shutdowns 

Finite element 
analysis revealing 

stress 
concentrations at 
several locations 

including the 
holes 

Uncontained disk burst –
Crack initiated from corner 

of the hole
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Multiaxial and Thermomechanical Fatigue - Scope

• Materials (metallic alloys, polymers, ceramics, composites, 
and materials with coatings)
– Structural alloys for aerospace applications (uncoated)

• Fatigue crack initiation and fatigue crack growth
– Fatigue crack initiation

• Low-cycle versus high-cycle fatigue
– Low-cycle fatigue (primarily strain-based approaches)

• Deterministic versus probabilistic fatigue life estimation
– Deterministic fatigue life estimation

• Multiaxial, thermomechanical fatigue – numerous 
possibilities
– Some selected examples

• Future challenges in multiaxial thermomechanical fatigue
– Cumulative fatigue, subcomponents, coatings, composite & 

functionally graded materials, and residual stresses
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Thermal Fatigue – Experiments and Life Prediction

Wedge shaped test specimens typically used in fluidized 
combustion beds to evaluate thermal low-cycle fatigue
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Thermal stresses developed during cycling generate 
inelastic strains, which lead to fatigue cracks

• Salient features
– Thermal cycling 

with an inherent 
constraint on 
deformation

– Typically limited or 
no externally 
imposed loads

– Mainly deformation 
controlled

Thermal Fatigue – Inelastic Strains and Cracking
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Thermal Fatigue: Life Estimation Model

• Thermal fatigue
– Inelastic strain range developed during the thermal cycle dictates the 

fatigue life
– Manson (1953) and Coffin (1954) working independently developed a 

power law fatigue life relation

in = C(Nf)cManson-Coffin Equation:

References:

[1] Halford, G. R., “Low-Cycle Thermal Fatigue,” Thermal Stresses II, R. B. Hetnarsky (Ed.), Elsevier 
Science Publishers B.V., 1987, pp. 330-428.

[2] Sehitoglu, H., “Thermal and Thermomechanical  Fatigue of Structural Alloys,” Fatigue and Fracture, 
ASM Handbook, Volume 19, 1996, pp. 527-556. 

Where, in is inelastic strain range, Nf is fatigue life, C is the Coefficient, 
And c is the exponent
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Isothermal Uniaxial Fatigue – Schematic and Life Relations

Manson-Coffin-Basquin relation for deterministic, 
isothermal low-cycle fatigue life estimation

Cyclic Life, Nf
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Isothermal Uniaxial Creep-Fatigue:  
A Phenomenological Model for Cyclic Life Estimation

Strain Range Partitioning (SRP) Model:  Damage from different 
deformation modes combined with Interaction Damage Rule

Reference: Manson, Halford, and Hirschberg, 1971 Reference: Manson, Halford, and Nachtigall, 1975
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Bithermal Uniaxial Fatigue: Schematics and Salient Features

• Salient features
– Thermal cycling at two temperatures with externally imposed 

loads
– Free thermal expansion allowed during temperature changes
– Effectively two isothermal segments of loading in tension and 

compression
– Load controlled with limits on deformation
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Bithermal Uniaxial Creep-Fatigue: Schematic Hysteresis Loops

Originally conceived to impose creep in a short time and later 
viewed as a link between isothermal fatigue and TMF 

Tensile 
Creep 
In-Phase

High Rate In-
Phase

Compressive 
Creep Out-of-
Phase

High Rate 
Out-of-
Phase

References: Halford et al., ASTM STP 942, 1987 
and Halford et al., ASTM STP 1122, 1991
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• Salient Features
– Simultaneous thermal and mechanical cycling
– Externally imposed constraint on deformation
– Temperature and deformation controlled
– Additional complexity: thermal strain + mechanical strain

Thermomechanical Uniaxial Fatigue: 
Schematics and Salient Features
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Uniaxial Thermomechanical Fatigue (TMF)
• Phasing between mechanical strain and temperature

– Typically  = 0° (in-phase) or  = 180° (out-of-phase) [Carden and 
Slade, 1969]

– Clockwise and counter clockwise diamonds depending upon 
application

• Standards for uniaxial TMF testing
– ASTM E 2368 (2010)
– ISO FDIS-12111 (2012)

• TMF life estimation approaches
– Phenomenological models and physical mechanism(s) based models
– Creep, fatigue, creep-fatigue interaction and oxidation based models

• TMF deformation prediction methods
– Plasticity and creep deformation models (non-unified)
– Unified constitutive models

Reference:  Sehitoglu, H., “Thermal and Thermomechanical Fatigue of Structural Alloys,” 
Fatigue and Fracture, ASM Handbook, Volume 19, 1996, pp. 527-556. 
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Experimental technique for determining creep strains within an 
in-phase thermomechanical hysteresis loop

Reference: Halford and 
Manson, ASTM STP 612, 
1976

In-Phase
TMF Test
( = 0°)



22

Bithermal fatigue data and deformation behavior used as input to 
predict thermomechanical fatigue lives

Uniaxial Bithermal and TMF Life Relations for Haynes 188 
from Experiments (316 to 760 °C)

Reference: Halford et al., 
ASTM STP 1122, 1991

Tensile 
Creep 
In-Phase

Bithermal 
Fatigue Compressive 

Creep Out-of-
Phase

TMF In-Phase

Out-of-Phase
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TMF Life Estimations from Bithermal Fatigue Data 
Using Total Strainrange SRP 

TS-SRP Approach Estimations

Total strain range life curve is established for each specific type of 
TMF cycle using bithermal fatigue data and simplified flow equations 

Reference: Halford et al., 
ASTM STP 1122, 1991
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Isothermal Multiaxial Fatigue

References:

[1] Garud., “ Multiaxial Fatigue: A Survey of the State of the Art,” Journal of Testing and Evaluation, 
JTEVA, Vol. 9, No. 3, 1981, pp. 165-178.

[2] B.-R. You and S.-B. Lee, A Critical Review on Multiaxial Fatigue Assessment of Metals, 
International Journal of Fatigue, Vol. 18, Issue 4, May 1996, pp. 235-244.

[3] McDowell, D. L., “Multiaxial Fatigue Strength,” Fatigue and Fracture, ASM Handbook, Volume 19, 
1996, pp. 263-273. 

• Multiaxial Loading
– Proportional and non-proportional loading (in-phase and out-of-phase 

loading)
– Simultaneous versus sequential loading

• Muliaxial Fatigue Life Correlation Methods
– Triaxiality factor based approaches (Davis and Connelly, 1959)
– Critical plane based approaches (Brown and Miller, 1973)
– Cyclic hysteretic energy or equivalent parameters (Halford and 

Morrow, 1962)
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Isothermal Fatigue – Types of Multiaxial Loads
• Axial, torsional, and combined axial-torsional loads

– Relatively simple form of multiaxial loading
– Thin-walled tubular specimens (trade off between torsional buckling 

and thin-wall to generate nearly uniform shear stress)
– ASTM Standard E 2207 (2008)
– ISO/FDIS 1352 (2011)

• Combined torsional and bending loads
– Torque shafts in automotive applications
– Relatively lower temperatures and typically high-cycle fatigue

• Combined biaxial loads
– Thin-walled tubular specimens with internal and/or external pressure 

(pressure vessels)
– Cruciform specimens tested in-plane with four independent actuators 

typically with centroid control
• Combined triaxial loads

– 3-D version of a cruciform specimen (complicated design and most 
expensive to fabricate)

– Primary goal is to evaluate the influence of hydrostatic stress on 
fatigue life



27

Cruciform Specimen and 
In-plane Biaxial Test Rig 

Thin-walled Tubular Specimen 
and Axial-Torsional Test Rig 

Triaxial Cruciform 
Specimen for Creep 

Rupture in Triaxial Tension

Source: Hayhurst and 
Felce (1985), Techniques 
for Multiaxial Creep 
Testing, D. J. Gooch and I. 
M. How (Eds.), Elsevier, 
1986, p. 241

Examples of Multiaxial Test Specimens 

References: Bartolotta, Ellis, and 
Abdul-Aziz, ASTM STP 1280, 
1997 & Krause and Bartolotta, 
ASTM STP 1387, 2000

Reference: Kalluri and Bonacuse, ASTM STP 1092, 1990
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Isothermal, Axial-Torsional, In- and Out-of-Phase 
Fatigue (Simultaneous Loading), = a a

In-Phase Out-of-Phase

Phase angle, = 0° Phase angle, = 75°

For out-of-phase tests, mechanical phase angle, = 90° is typical
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Isothermal Multiaxial Fatigue:  Life Estimation 

• Multiaxial Fatigue Life Controlling Parameters
– Phasing of load components (in-phase vs. out-of-phase)
– Mode of failure (tensile vs. shear) exhibited by the material
– Temperature

• Four multiaxial fatigue life estimated methods illustrated
– Von Mises equivalent strain range model
– Modified multiaxiality factor approach
– Modified Smith-Watson-Topper Parameter
– Critical shear plane method of Fatemi, Socie, and Kurath

Applicability of any method is dependent on loading 
phase, mode of failure exhibited by the material, and 

temperature
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Von Mises equivalent strain range used in conjunction with 
effective Poisson’s ratio

Reference: ASME Boiler and 
Pressure Vessel Code Case, 
1592-7, 1979.
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Predictions of mechanically out-of-phase tests are higher 
(unconservative) due to additional hardening

Reference: Kalluri and Bonacuse, 
ASME PVP-Vol. 290, 1994, pp. 17-33 
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Uniaxial fatigue life relation and cyclic stress strain curve 
used with Von Mises equivalent strain range and MF

Reference: Bonacuse and 
Kalluri, Trans. of  ASME, J. of 
Eng. Mat. and Tech., vol. 117, 
1995, pp. 191-199.
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Reference: Kalluri and Bonacuse, 
ASME PVP-Vol. 290, 1994, pp. 17-33 

Predictions of mechanically out-of-phase tests are again 
higher (unconservative) due to additional hardening



35

Reference: Socie, Trans. of 
ASME, J. of Eng. Mat. and 
Tech., vol. 109, no. 4, 1987, 
pp. 293-298.

Modification of the original SWT parameter (1970) for 
multiaxial fatigue – materials with tensile mode of failure
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Reference: Kalluri and Bonacuse, 
ASME PVP-Vol. 290, 1994, pp. 17-33 

Predictions of some torsional and mechanically out-of-
phase tests are slightly higher (slightly unconservative)
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References: Socie, 1987 
and Fatemi & Socie, 1988

Max. shear strain on critical shear plane and max. normal 
stress on that plane – materials with shear mode of failure
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Reference: Kalluri and Bonacuse, 
ASME PVP-Vol. 290, 1994, pp. 17-33 

Predictions of mechanically out-of-phase tests are much 
higher (very unconservative)
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Cyclic Hardening in Isothermal, Axial-Torsional, 
In- and Out-of-Phase Fatigue 

Axial Shear

In out-of-phase tests, cyclic hardening increases with mechanical 
phase angle, between axial  and shear  strains

Reference: Bonacuse and 
Kalluri, ASTM STP 1184, 1994
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Isothermal Axial and Torsional Cumulative Fatigue 
(Sequential Loading)

References:

[1] Miller, K. J., “Metal Fatigue—Past, Current, and Future,” Proc. Inst. Mech. Eng., Vol. 205, 1991, pp.
1–14.
[2] Weiss, J. and Pineau, A., “Continuous and Sequential Multiaxial Low-Cycle Fatigue Damage in 316
Stainless Steel,” in Advances in Multiaxial Fatigue, ASTM STP 1191, D. L. McDowell and R. Ellis,
Eds.,American Society for Testing and Materials, West Conshohocken, PA, 1993, pp. 183–203.
[3] Harada, S. and Endo, T., “On the Validity of Miner’s Rule under Sequential Loading of Rotating
Bending and Cyclic Torsion,” in Fatigue Under Biaxial and Multiaxial Loading, ESIS10, K. Kussmaul,
D. McDiarmid, and D. Socie, Eds., Mechanical Engineering Publications, London, 1991, pp.
161–178.

• Historically, most investigations on cumulative fatigue limited to 
the same load-types (axial/axial, torsion/torsion, or rotating 
bending/rotating bending) 

• Typical studies involve load order effects within a load-type 
(high/low or low/high)

• Dissimilar load-types can increase potential for interaction of 
damage (or mode of cracking)

• Evaluation of both load order and load-type sequencing effects is 
necessary
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Schematics of LCF/HCF and HCF/LCF 
Cumulative Fatigue Tests on Haynes 188 at 538°C

LCF/HCF HCF/LCF

Applied Life Fraction: n1/N1; Remaining Life Fraction: n2/N2
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• Linear Damage Rule [Palmgren, Langer, and Miner] (LDR):

• Nonlinear Damage Curve Approach [Manson and Halford] (DCA):

n1 and n2 are Applied Number of Cycles at Load Levels 1 & 2 and
N1 and N2 are Fatigue Lives at Load Levels 1 & 2, respectively. 



















1

1

2

2

N
n1

N
n

4.0

2

1
N
N

1

1

2

2

N
n1

N
n 



























Cumulative Fatigue Life Prediction



44

Axial (High = 2.0%) / Axial (Low = 0.67%) Interaction
Haynes 188 at 538°C

For all LCF/HCF data and HCF/LCF data for which n1/N1 > 0.4, 
DCA is Better than LDR
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Axial (High = 2.0%) / Torsional (Low = 1.2%) Interaction
Haynes 188 at 538°C

For all LCF/HCF data DCA is Better than LDR;
However, for HCF/LCF data LDR is Better than DCA 
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Torsional (High = 3.5%) / Axial (Low = 0.67%) Interaction
Haynes 188 at 538°C

Both for LCF/HCF and HCF/LCF data, when n1/N1 > 0.4
DCA is Better than LDR
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Multiaxial, Thermomechanical Fatigue

• Torsional, TMF testing
– Jordan, 1987 (4th Annual SEM Hostile Environments and High 

Temperature Measurements Conference; Turbine blade superalloy
(PWA 1480) tested between 425 to 828 °C)

– Bakis, Castelli, and Ellis, 1993 (ASTM STP 1191; Hastelloy-X tested 
between 400 to 600 °C, 600 to 800 °C, 800 to 1000 °C)

• Axial-Torsional TMF testing
– Bonacuse and Kalluri, [1995 - AGARD Conference]; Kalluri and 

Bonacuse,  [1997, ASTM STP 1280] (Haynes 188 alloy tested between 
316 and 760 °C)

– Meersmann, Ziebs et al. [1995 - AGARD Conference and 1996 – Kluwer 
Academic Publishers] (Inconel 738 LC and Single Crystal alloy SC16)

– Zamrik et al. [1996 – Kluwer Academic Publishers and 2000 – ASTM 
STP 1387] (Austenitic stainless steel tested between 399 and 621 °C)

– Brookes et al., 2010 (Materials Science and Engineering A; Near -TiAl
alloy TNB-15 tested between 400 to 800 °C)
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Mechanically In-Phase & Thermally In-Phase (MIPTIP)  
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Mechanically In-Phase & Thermally Out-of-Phase (MIPTOP)  
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Mechanically Out-of-Phase & Thermally In-Phase (MOPTIP)  
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Mechanically Out-of-Phase & Thermally Out-of-Phase 
(MOPTOP)  

0 150 300 450 600 750 900 1050 1200
-0.01

-0.005

0

0.005

0.01
A

xi
al

 S
tr

ai
n

min

0 150 300 450 600 750 900 1050 1200
-0.01

-0.005

0

0.005

0.01

Sh
ea

r S
tr

ai
n

0 150 300 450 600 750 900 1050 1200
Time [sec]

300

400

500

600

700

800

Te
m

pe
ra

tu
re

 [°
C

]
max

max

min

Tmax

Tmin

Tmax = 760°C
Tmin = 316°C

A

B

C

D



53

Deformation Behavior in Mechanically In-Phase 
Axial-Torsional Fatigue Tests  

Axial Strain vs. Shear Strain Axial Stress vs. Shear Stress 

Reference: Bonacuse, P. J. and Kalluri, S., “Cyclic Deformation Behavior of Haynes 188 Superalloy
Under Axial-Torsional, Thermomechanical Loading,” Thermomechanical Fatigue Behavior of Materials: 
4th Volume, ASTM STP 1428, M. A. McGaw, S. Kalluri, J. Bressers, and S. D. Peteves, Eds., 2002.



54

Deformation Behavior in Mechanically Out-of-Phase 
Axial-Torsional Fatigue Tests  

Axial Strain vs. Shear Strain Axial Stress vs. Shear Stress 

Reference: Bonacuse, P. J. and Kalluri, S., “Cyclic Deformation Behavior of Haynes 188 Superalloy
Under Axial-Torsional, Thermomechanical Loading,” Thermomechanical Fatigue Behavior of Materials: 
4th Volume, ASTM STP 1428, M. A. McGaw, S. Kalluri, J. Bressers, and S. D. Peteves, Eds., 2002.
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Evolution of Maximum and Minimum Stresses in 
Mechanically Out-of-Phase Axial-Torsional Fatigue Tests  

Axial Stress Shear Stress 

Reference: Bonacuse, P. J. and Kalluri, S., “Cyclic Deformation Behavior of Haynes 188 Superalloy
Under Axial-Torsional, Thermomechanical Loading,” Thermomechanical Fatigue Behavior of Materials: 
4th Volume, ASTM STP 1428, M. A. McGaw, S. Kalluri, J. Bressers, and S. D. Peteves, Eds., 2002.
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Additional Hardening in Axial-Torsional Fatigue Tests

Axial-Torsional TMF loading causes more hardening than 
Axial-Torsional isothermal loading
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Additional Hardening in Axial-Torsional TMF Tests  

Dissimilar mechanical and thermal phasings could 
synergistically interact to cause additional hardening

Reference: 
Bonacuse 
and Kalluri, 
ASTM STP 
1428, 2002 
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Axial-Torsional TMF Tests: Haynes 188 (316 to 760 °C)  

Thermally in-phase tests yielded lower cyclic lives 
regardless of the mechanical phasing

Reference: 
Kalluri and 
Bonacuse, 
ASTM STP 
1280, 1997 
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Multiaxial, Thermomechanical Fatigue --
Some Future Challenges 

• Cumulative fatigue under multiaxial, thermomechanical
loads

• TMF under biaxial and equi-biaxial ( = 1) loading 
conditions

• Determination of material’s TMF behavior with specimens 
versus testing subcomponents of structures

• Influence of coatings on structural alloys
• Roles of residual stresses and environment
• Composites and functionally graded materials
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Cumulative Fatigue Example : 
Uniaxial TMF and Isothermal Fatigue 

Source: 
Halford et al., 
1983

Cumulative fatigue behavior with out-of-phase TMF LCF and 
Isothermal HCF under uniaxial loading conditions

Reference: McGaw, M. A., 
ASTM STP 1186, 1993, 
pp. 144-156.
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Multiaxial, Thermomechanical Fatigue -- Future 
Challenges 

• Thermomechanical fatigue under biaxial and equi-biaxial 
( = 1) loading conditions (thin-walled tubular specimens 
with internal/external pressure or cruiciform specimens)

– TMF system for testing cruciform specimens (Scholz, Samir, and 
Berger, Proc. of 7th Int. Conf. on Biaxial and Multiaxial Fatigue & 
Fracture, Elsevier, 2004)

• Determination of material’s TMF behavior with specimens 
versus testing subcomponents of structures (scale-up 
issues and reproducing service conditions)

– Test conditions are well defined and controlled for a chosen 
specimen design

– Tests involving subcomponents are more complex due to the 
difficulties involved in attaining required temperature profiles and 
imposing necessary multiaxial loads (design typically accomplished 
with analysis supplemented with limited testing for validation)
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Multiaxial, Thermomechanical Fatigue -- Future 
Challenges 

• Influence of coatings (for example, thermal and 
environmental barrier coatings) on the multiaxial, TMF life 
of components

– LCF and HCF behavior of thick thermal barrier coatings investigated 
with a high power CO2 laser (Zhu and Miller, NASA TM-1998-206633)

– Thermal barrier coating / superalloy system tested multiaxial TMF 
(Bartsch et al., Int. J. of Fatigue, 2008); Thermal gradient mechanical 
fatigue tests on coated tubular specimens of IN 100 DS superalloy

• Roles of residual stresses and environment on the fatigue 
crack initiation under multiaxial, thermomechanical loads

– Depending upon the maximum temperature in the TMF cycle, any 
existing residual stresses may relax completely.  However, at low 
maximum temperatures and small inelastic strains, residual stresses 
could influence fatigue life

– Oxidation plays a significant role and interacts with other damage 
mechanisms activated by multiaxial loads during TMF.  Inert and 
vacuum environments could exhibit different damage modes under 
mutliaxial TMF.
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Mutiaxial Thermomechanical Fatigue (MTMF)

Multiaxial Thermomechanical Fatigue (MTMF) can 
Induce Additional Cyclic Hardening and can Lower 

Fatigue Life Significantly Compared to Uniaxial 
Thermomechanical Fatigue and Isothermal 

Multiaxial Fatigue! 

MTMF should be Properly Evaluated in Designing 
and Lifing Engineering Components!!


