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TPS Challenges for Venus, Saturn, Neptune, Uranus, 
Jupiter and High Speed Sample Return Missions  
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•  Science and Mission Design goals 
– Maximize science payload, science return 
– Minimize mission risk, cost 

•  Mission concepts currently baseline 
“heritage like” Carbon Phenolic (CP) 
– CP is very capable, robust, flight proven 
– CP enabled Pioneer-Venus & Galileo 

•  Carbon Phenolic is mission enabling, 
but trajectory constraining  
Missions with CP + normal payloads result 
in:  
– Steeper trajectories, extreme g loads 
– Heat-flux, pressures exceed test capability For typical Entry Systems Missions!

at high heat fluxes (~ 7,000+ W/cm2), CP      
is an efficient TPS.  Below ~ 2,000 W/cm2, 

PICA and other ablators perform well.  !
There is no efficient TPS option in the gap!!

Historical TPS Mass Fraction  
by Heat Flux and Pressure 



Challenges with State of the Art TPS 

•  Challenges for using traditional CP 
–  Heritage CP used for entry no longer 

available (Avtex) 
–  New CP material would need to be 

certified 
–  Chop-molded CP has not be used for 

NASA application since 1980s 
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Sustainability and Life Cycle Costs 

AVCOAT 

PICA MSL 

Frustum 
TWCP 

Nose cap 
CMCP 

Tape-wrapped & chop-molded 
carbon phenolic 
 



Woven TPS Concept 

•  Resin infusion can also be tailored 
–  No resin (dry weave) 
–  Partial infusion &/or surface densification 
–  Full densification 

•  Manufacturing flexibility allows for the optimization of a material for a 
given mission 

•  WTPS leverages a sustainable weaving technology (not NASA-unique) 
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Recession resistant layer 
insulation layer 1 

insulation layer 2 

•  Automated 3D weaving technology is very 
flexible and customizable: there are MANY 
variables that can be changed within a single 
preform 

–  Fiber composition (e.g. carbon, polymer, glass) 
–  Fiber denier (fineness) 
–  Weave density (fiber volume fraction) 
–  Weave type (e.g. layer-to-layer, orthogonal) 



How Tailorable is the WTPS Architecture? 

The Woven Substrate 

Layer-to-Layer 

Through the Thickness 

3D orthogonal 

The Matrix 
Full/Partial Infiltration 
 
Phenolic 
Cyanate Ester 
Polyimide 
New resins 
 
 
No matrix 

WTPS can optimize all aspects of architecture 
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Focus on WTPS Project Achievements 

Vision:	
  	
  Close	
  TPS	
  Gap	
  &	
  enable	
  future	
  missions	
  with	
  TPS	
  that	
  is	
  not	
  mission	
  constraining	
  but	
  enabling	
  

Background:	
  	
  
  Apr.	
  2011:	
  Center	
  innova2on	
  start-­‐up	
  funding	
  for	
  WTPS	
  (IR&D)	
  
  Sep.	
  2011:	
  Woven	
  TPS	
  proposed	
  to	
  OCT	
  GCD	
  (BAA)	
  
  Nov.	
  2011:	
  Proposal	
  selected	
  for	
  funding	
  start	
  in	
  Jan.’12	
  
	
  

Project	
  Goal:	
  Explore	
  feasibility	
  and	
  establish	
  manufacturing	
  of	
  TPS	
  using	
  Tex2le	
  industry	
  and	
  Resin	
  
Infusion	
  techniques.	
  Demonstrate	
  performance	
  compared	
  to	
  heritage	
  CP	
  
	
  
Project	
  Tasks:	
  	
  
•  Manufacture	
  a	
  variety	
  of	
  WTPS	
  materials	
  	
  

–  Different	
  yarn	
  composi2ons,	
  weave	
  construc2ons,	
  levels	
  of	
  resin	
  infiltra2on,	
  etc.	
  	
  
•  Obtain	
  preliminary	
  property	
  database	
  
•  Perform	
  arc	
  jet	
  tests	
  on	
  selected	
  samples	
  
	
  	
  -­‐	
  Explore	
  and	
  establish	
  heat	
  flux	
  capability	
  range	
  
	
  	
  -­‐	
  Compare	
  thermal	
  performance	
  to	
  heritage	
  CP	
  

•  Assess	
  state-­‐of-­‐the	
  art	
  in	
  performance	
  predicGve	
  models	
  and	
  applicability	
  for	
  WTPS	
  
•  Prepare	
  a	
  TRL	
  3	
  –	
  5/6	
  maturaGon	
  plan	
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  Advance	
  3D	
  Woven	
  TPS	
  TRL	
  from	
  2	
  to	
  3	
  
Start	
  date:	
  1/1/2012	
  	
  	
  	
  	
  	
  End	
  date:	
  2/28/2013	
  

WTPS Project Overview:  Vision, Scope and Tasks 



Range of WTPS Materials Manufactured 
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Fully Dense      
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with different 
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Demonstrated feasibility of manufacturing low, mid, high-density WTPS  

•  Efficient ablator candidate for mid-density gap  
•  Potential replacement for highest density CP 
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Thermal Conductivity is Tailorable 

•  Thermal conductivity effectively controlled by weave architecture 
and yarn constituents 
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Traditional 
2D CP Material Description 

MX4926 Heritage 2-D carbon 
phenolic 

CP-B1 Blended yarn weave, 
light phenolic infusion 

CP-B2 Blended yarn weave, 
light phenolic infusion 

CP-B3 Blended yarn weave, 
light phenolic infusion 

CP-P2 Panex 30 weave, light 
phenolic infusion 
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TTT Mechanical Performance 

•  Advantages of a layer-to-layer 
architecture in improving TTT 
strength observed 
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•  2D CP (shingled or tape 
wrapped) exhibits ply separation 
in the AEDC wedge testing 

•  As a 3D material, Woven TPS is 
not prone this failure mode 

 

AEDC Wedge: 
2D CP!

mARC test: 0° shingle 
angle 2D CP!

!
Traditional 2D CP 



IHF Arc Jet testing Summary 

•  1670 W/cm2,  1.3 atm 

•  2” dia. flat face model 
•  Duration 

–  Fully dense: 20 s  (11 models) 
–  Low–Mid dense: 7 s  (6 models) 

•  Backface TC or lightpipe 
–  Model configuration not well-suited 

for temp. comparison (sidewall 
heating) 

 



IHF Arc Jet testing: Fully-Dense WTPS 

3-D Carbon Phenolic 
Variants 
Lower recession & mass 
loss compared to 2DCP 
(MX4926) 

• TWCP MX4926N (20° 
shingle) reference mtl 

• CMCP from industry, 
funded by NASA 

 

Significance: 3-D WTPS CP variants performed comparable (or better than) traditional 2-D CP 
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Fully Dense IHF Model 

•  Fine weave at top for surface-
roughness control 

•  Coarse weave below ablation 
zone for efficient weaving cost 
& time 

Pre-Test  
  

Post-Test 

•  Model edge condition 
was more severe 

•  Higher ablation 
exposed coarse weave 
at edges 

•  Layer to layer weave is 
robust - transition from 
coarse weave to fine 
weave did not result in 
unusual ablation 
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IHF Arc Jet testing: Surface Densified and 
Mid-Dense WTPS Variants 
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•  Lowest recession was for surface-
densified woven CP at 0.56 g/cm3 

Dry Woven Carbon Phenolic 
Pre-Test    Post-

Test 

Woven CP + Light Phenolic Infusion 
Pre-Test    Post-

Test 

Surface 
densified 

Dry  
woven Light 

infusion 



AEDC Arc Jet Post Test Images of Select Samples 

Traditional Carbon Phenolic  

Significance: Feasibility of a dual layer WTPS concept 

High density High density 

Chop Molded Carbon Phenolic 

Tape Wrapped Carbon Phenolic 

•  12 different Woven 
TPS types 

•  Chop molded and tape 
wrapped carbon 
phenolic tested 

•  Tested at DoD 
standard conditions 
used to evaluate 
traditional 2D CP 
materials at AEDC 
(turbulent with high 
shear) 

 

3-D Woven TPS 

Dual layer WTPS during test 

Woven TPS 



WTPS Summary 

•  Exciting new approach to TPS development 
•  Sustainable manufacturing approach 

–  Leverage domestic 3D weaving industry 
–  Key manufacturing processes are common (not NASA-unique) 
–  High production-volume constituent fibers evaluated 

•  Successful demonstration of large variety of 3D woven materials 
–  Flexible, dry woven TPS (carbon or carbon/phenolic yarns) 
–  Low-loading resin infiltrated and surface densification 
–  Full densification with various resin types 

•  High confidence that 3D Woven TPS will prove to be superior in 
performance and robustness,  and help fill the TPS Gap 

•  A CP alternate that is not just a replacement but an enabler is needed 
–  Current missions have no choice but to live with the constraints of “heritage like” 

CP (efficiency, sustainability)  
–  We believe WTPS can change the way we develop and design with TPS. 
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Evolution of WTPS – FY’13 & Beyond 
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