



43rd ICES, 14-18 July 2013, Vail, CO

### Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

Mary P. Hummerick, Richard F. Strayer, Lashelle E. McCoy and Jeffrey T. Richards

Engineering Services Contract, Team QNA, Kennedy Space Center

Anna Maria Ruby and Ray Wheeler

NASA, Kennedy Space Center, FL 32899

John Fisher

NASA, Ames Research Center, CA





#### Introduction

- One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste.
  - Reduces volume, removes water and renders a biologically stable and safe product.
  - The HMC compacts and reduces the trash volume as much as 90% greater then the current manual compaction used by the crew.<sup>1</sup>





#### Generated wastes

- Approximately 1633 gm per crew member per day, 30-45% of that total being water.
- Almost half the weight of the solid waste considered is brine from urine processing and cloth items like towels.
- The third largest component by weight is food packaging





#### Generated wastes

- Many of the solid waste components are readily biodegradable organic materials such as food and human solid waste supporting the growth of microorganisms including potential human pathogens.
- Microbial metabolic by-products can also be generated causing unpleasant odors and accumulation of volatile organic compounds (VOCs).





## **Objectives**

The project has three primary goals or tasks.

- 1. Microbiological analysis of HMC hardware surfaces before and after operation.
- 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures.
- 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"





#### Microbiological analysis of HMC hardware surfaces.

- The objective of this task was to determine the extent of microbial surface contamination of waste processing hardware.
- Hardware surface samples were analyzed for total bacterial and yeast counts and cultivable counts of aerobic and anaerobic bacteria, sporeforming bacteria, and fungi.
- Isolated microorganisms were identified.





## Hardware surface samples

- Sample Collection and shipment.
  - Sterile Sanicult swabs were sent to Ames Research Center (ARC) to perform surface samples of the heat melt compactor (HMC) hardware before and after use. The sights sampled were the pistons, sidewall, and groove
- Total Direct Count (AODC).

• Cultivation based enumeration of bacteria and fungi.





## Hardware surface samples. Results

- Varying degrees of microbial growth were found depending on the surface sampled. Generally, the piston surfaces exhibited much lower microbial counts then the groove surface.
- Most of the bacterial species isolated are spore forming Bacillus species resistant to heat.
- Two of the organisms recovered from the surfaces of the compactor, *Bacillus amyloliquefaciens* and *Rhodotorula mucilaginosa* are the organisms used to inoculate the trash for the long term storage studies.





| Tile # | Surface      | Bacteria                          | Fungi                        |
|--------|--------------|-----------------------------------|------------------------------|
| 10 DL  | Comp.Piston  | Bacillus amyloliquefaciensa       |                              |
|        | Rear Piston  | Bacillus subtilis subtilis        |                              |
|        | Groove       | ATCC=6051                         | R. mucilagenosa <sup>a</sup> |
|        |              | B. amyloliquefaciens              | Phyllosticta maydis          |
|        |              | B. subtilis subtilis ATCC=6051    |                              |
| 11 DL  | Rear Piston  | S. capitis capitis ATCC=27840     | Cladosporium cladosporoides  |
|        |              | S. epidermidis                    |                              |
|        |              | S. lugdunensis                    |                              |
| -      |              | B. subtilis subtilis ATCC=6051    |                              |
|        |              | Strep. Salivarius                 | ,                            |
|        | Groove       | B. subtilis subtilis ATCC=6051    |                              |
| 10.77  |              | Bacillus atropheus <sup>b</sup>   |                              |
| 12 DL  | Wall         | B. amyloliquefaciens <sup>a</sup> | None                         |
|        | Rear Piston  | B. amyloliquefaciens <sup>a</sup> |                              |
| 12.01  |              | B. subtilis subtilis ATCC=6051    | 27                           |
| 13 DL  | None         | None                              | None                         |
|        | *            |                                   |                              |
| 7M     | Comp. Piston | B. amyloliquefaciens <sup>a</sup> | None                         |
|        |              | Bacillus pumilus                  |                              |
|        | Wall         | B. amyloliquefaciens <sup>a</sup> |                              |
|        | f            | B. pumilus                        | ,                            |
|        | Rear Piston  | B. atropheus <sup>b</sup>         |                              |
|        |              | Curtobacterium flaccumfaciens     |                              |
|        | Groove       | B. subtilis subtilis ATCC=6051    |                              |
|        |              | Strep. cristatus                  |                              |
| 8M     | Comp. Piston | B. amyloliquefaciens <sup>a</sup> | None                         |
|        | Wall         | B. amyloliquefaciens <sup>a</sup> |                              |





#### Process time and temperature studies.

- Weight reduction after HMC could indicate a percentage of water removed in the process.
  - Loss ranged from 25% of pre-processing weight to 14%.





## HMC for the sterilization of solid wastes- minimum temperature requirements

 To perform studies on the survival of microorganisms in waste treated by HMC, waste was prepared, sterilized and reinoculated with a know density of microorganisms that could be enumerated.





#### Preparation of inoculated waste

- Ethylene oxide (ETO) sterilization tests.
  - Six approximately 525-gram samples of trash (including plastic packaging) were prepared for testing according to the waste formula.
  - Items included in the waste were weighed and added to the mix. Three spore strips containing Bacillus atropheus (NAMSA, Northwood, Ohio) were placed in each of the six bags inside food or drink containers. Three ~525 g samples of trash were placed in individual sterilization pouches which were then placed in an ethylene oxide sterilizer (3M Steri-Vac Gas Sterilizer 4XL). The ETO-sterilizer cycle was run at 37° C for 2 hours. Sterilization pouches were left in the sterilizer for 5 days to off-gas any residual ETO. Three 525 g trash samples not undergoing the ETO sterilization process were used as controls to determine baseline microbial counts of the unsterilized trash.





|                             | Food                    | Package                |
|-----------------------------|-------------------------|------------------------|
| Dried Apricots              | 6.20 ± .04              | 2.50 +00               |
| Sausage Pattie x 2          | 26.57 + .05             | 2.50 +00               |
| Scrambled Eggs              | 12.43 + .04             | 2.50 +00               |
| Orange-Pineapple Drink      | 26.9000                 | 5.7836                 |
| Frankfurter                 | 12.67 <sup>+</sup> .05  | 2.50+00                |
| Macaroni & Cheese           | 15.83 ± .04             | 2.50+00                |
| Tortilla                    | 7.70 + 00               | 2.50+00                |
| Peaches                     | 14.2609                 | 8.0718                 |
| Macadamia Nuts              | 8.9804                  | 2.50+00                |
| Apple Cider                 | 26.54 <sup>+</sup> .05  | 5.35 <sup>+</sup> .12  |
| Sweet 'n Sour Pork          | 25.25 <sup>+</sup> .16  | 2.50+00                |
| Rice w/ Butter              | 13.90 <sup>+</sup> .78  | 2.50+00                |
| Creamed Spinach             | 7.78 ± .06              | 2.50+00                |
| Tortilla                    | 7.72 <sup>+</sup> .01   | 2.50+00                |
| Vanilla Pudding             | 9.9813                  | 6.5022                 |
| Pineapple Drink             | 27.4000                 | 5.42 <sup>+</sup> .29  |
| Γotal                       | 250.12 <sup>+</sup> .86 | 58.62 <sup>+</sup> .71 |
| Dry wipes                   |                         | 9.00                   |
| 1 gallon ziplock            |                         | 10.60                  |
| Wet wipes                   |                         | 116.00                 |
| Additional plastic          |                         | 80.78                  |
| Calculated total            |                         | 525.12                 |
| Micro sample weight (-Bags) |                         | 484.52                 |





#### Inoculum development

- Three microorganisms were tested for use as an appropriate inoculm. *Bacillus amyloliquifaciens* a spore forming bacteria that has been recovered from shuttle trash, *Rhodotorula mucilagenosa*, a yeast also recovered from shuttle trash and *Micrococcus luteus*, a gram positive bacteria commonly found in the environment.
- Bags were inoculated in duplicate with 15 ml of each culture density (10<sup>9</sup>, 10<sup>8</sup>, 10<sup>7</sup>) in 1 ml amounts into 15 different food items in the simulated/ersatz trash





#### Inoculum recovery

Table 2. Colony counts (cfu/g of wet trash) from trash samples. Actual recovery is after 24 hr incubation at room temperature.

|          | Estimated rec        | overy with n | o growth.       | Ac                   | tual recovery |                 |
|----------|----------------------|--------------|-----------------|----------------------|---------------|-----------------|
| Inoculum | B. amyloliquefaciens | M.luteus     | R.mucilaginosa. | B. amyloliquefaciens | M.luteus      | R.mucilaginosa. |
| 1.00E+09 | 2.20E+06             | 4.00E+05     | 3.00E+05        | 5.30E+06             | 3.22E+05      | 9.65E+05        |
| 1.00E+08 | 3.60E+05             | 6.60E+05     | 1.20E+05        | 1.91E+06             | <1.61E+04     | 1.21E+05        |
| 1.00E+07 | 7.80E+04             | 3.00E+05     | 2.00E+05        | 3.00E+05             | <1.69E+04     | 5.57E+04        |





- Simulated, trash was used as the HMC feed to produce the tiles for this study.
- Process parameters (time and temperature) used in these experiments were 130°C for 2 hours, 140°C for 2 and 3 hours and 180°C for 2 hours as determined and processed by ARC investigators.







Formulation of simulated space trash used by Logistics Reduction and Repurposing grant for HMC and other tasks.

| HMC Batch constituents      | Grams in 500g<br>batch | Food Item              | Grams in 500g<br>batch |  |
|-----------------------------|------------------------|------------------------|------------------------|--|
| Cotton T-shirt              | 72.7                   | Sausage patty          | 6.55                   |  |
| Towels                      | 36.3                   | Dried apricots         | 3.05                   |  |
| Computer paper              | 4.0                    | Scrambled eggs         | 6.11                   |  |
| Dry lab chem wipe           | 13.0                   | Orange-pineapple drink | 13.25                  |  |
| Huggies wipes               | 37.0                   | Frankfurter            | 6.25                   |  |
| Nitrile gloves              | 14.0                   | Macaroni & cheese      | 7.78                   |  |
| Shampoo                     | 4.3                    | Tortilla               | 3.79                   |  |
| Toothepaste                 | 2.2                    | Peaches                | 6.99                   |  |
| Plastic-PET                 | 2.2                    | Macadamia nuts         | 4.43                   |  |
| Chewing gum                 | 4.3                    | Apple cider            | 13.14                  |  |
| Duct tape                   | 2.0                    | Sweet&Sour chicken     | 12.3                   |  |
| Vecro                       | 0.0                    | Rice                   | 6.99                   |  |
| Disinfectant wipes          | 3.0                    | Creamed spinach        | 3.79                   |  |
| All food (see food columns) | 117.0                  | Tortilla               | 3.79                   |  |
| Poluetylene                 | 32                     | Strawberries           | .44                    |  |
| PET                         | 129.0                  | Vanilla pudding        | 4.88                   |  |
| Aluminum foil               | 4.0                    | Pineapple drink        | 13.49                  |  |
| Polyethylene                | 8.0                    |                        |                        |  |
| Salt-NaCl                   | 11.0                   |                        |                        |  |
| TOTAL                       | 500.00                 |                        | 117.0                  |  |





#### Tile processing and sampling.

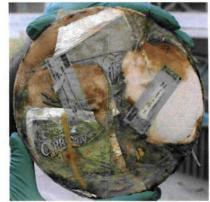



Figure 1. HMC tile showing excised spore strips (arrows).

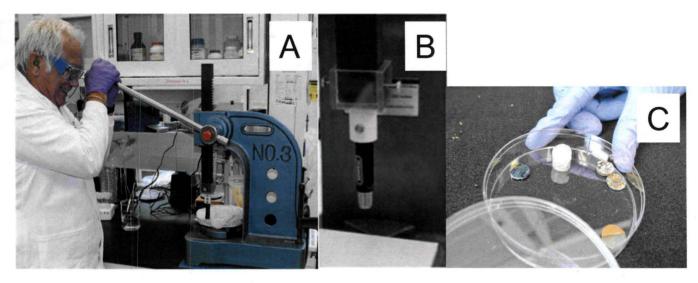



Figure 2. Picture A shows sample procedure using hand press with ½ inch hole punch (B) resulting in a core sample (C).





#### Process time and temperature studies. Results

Table 4. Results of microbial analyses and some physical parameters for core samples cut from HMC product tiles treated at different time and temperature regimes (130° C or 140° C)

| thes treated at different time and temperature regimes (150° C of 140° C) |       |       |       |       |       |       |  |  |
|---------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|
| HMC tile number                                                           | 10    | 11    | 12    | 13    | 7m    | 8m    |  |  |
| HMC process temperature                                                   | 130°C | 140°C | 140°C | 130°C | 140°C | 140°C |  |  |
| HMC process duration                                                      | 2 hrs | 2hrs  | 3hrs  | 2hrs  | 2hrs  | 2hrs  |  |  |
|                                                                           |       |       |       |       |       |       |  |  |
| Weight loss (%)                                                           | 24    | 25    | 19    | 16    | 14    | 19    |  |  |
| Core sample growth                                                        | 4/10  | 1/10  | 6/10  | 3/10  | 3/10  | 5/10  |  |  |
| G. stearothermophilus +                                                   | 3/3   | 0/2   | 0     | 0     | NA    | NA    |  |  |
| B. atrophaeus +                                                           | 4/4   | 3/4   | 0     | 0     | NA    | NA    |  |  |
| Sterilization time (hrs)                                                  | .49   | .54   | 1.5   | .54   | .52   | .52   |  |  |





# Process time and temperature studies. Results-Microbiology

Table 5. Bacteria and fungi isolated and identified from tile core samples cut from HMC product tiles treated at different time

and temperature regimes (130° C or 140° C)

| and temperature regimes  | (130 C 01 14 | 0 C)                 |                           |                     |              |
|--------------------------|--------------|----------------------|---------------------------|---------------------|--------------|
| Tile 10                  | Tile 11      | Tile 12              | Tile 13                   | Tile 7m             | Tile 8m      |
| 130°C                    | 140°C        | 140°C                | 130°C                     | 140°C               | 140°C        |
| 2 hrs                    | 2hrs         | 3hrs                 | 2hrs                      | 2hrs                | 2hrs         |
|                          |              |                      |                           |                     |              |
| Brevibacillus agri,      | Penicillium  | Neisseria flavescens | Brachybacterium rhamnosum | Bacillus oleronius  | Penicillium  |
| B. subtilis subtilis     | rubrum       | Penicillium          | Streptococcus oralis      | Moraxella osloensis | chrysogenum  |
| Staphylococcus pasteuri  |              | chrysogenum,         | Streptococcus mitis       |                     | Sphingomonas |
| Kocuria kristinae        |              | Epicoccum nigrum     | Streptococcus salivarius  |                     | sanguinis    |
| S. epidermidis           |              |                      |                           |                     |              |
| Streptococcus salivarius |              |                      | *                         |                     |              |
| Bipolaris micropus       |              |                      |                           |                     |              |
| Chaetomium               |              |                      |                           |                     |              |
| atrobrunneum             |              |                      |                           |                     |              |





## Long term storage studies.

- HMC processing time and temperature used for the tiles prepared for this study was 180°C for 2 hours and 40 minutes.
- Four time points or storage durations, 0, 45, 90 and 180 days at ISS like storage conditions (25°C, 50% RH and 3500 ppm CO<sub>2</sub>,) were tested for the recovery of the bacterial/yeast inoculant, CO<sub>2</sub>, and O<sub>2</sub>.





#### Gas sampling and analysis of HMC tiles

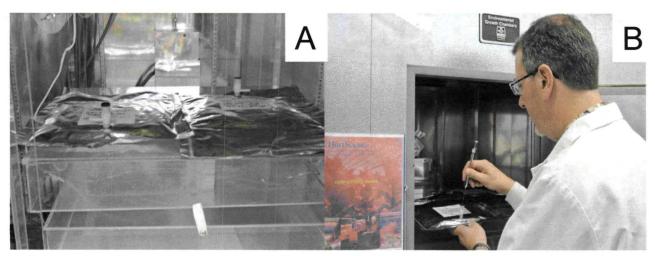



Figure 3. Storage bags used to store HMC prepared tiles. Picture A shows the bags inside the chamber. B shows samples being taken for gas analysis.





- Results showed O2 concentrations comparable to ambient atmosphere i.e. approximately 21% oxygen.
- CO<sub>2</sub> concentrations varied and reflected chamber concentration or lower, probably due to inadequate diffusion of chamber CO<sub>2</sub> into the bag.
- No biological activity as indicated by an increase in CO<sub>2</sub> could be detected by these results.





#### Long term storage results Microbiology

Table 6. Bacteria and fungi isolated and identified from tile core samples cut from HMC product tiles stored for different periods. (180 C, 2hrs, 40 mins).

| Uninoc. Control, T=0 | Inoc. T=0 (3m)    | Inoc.T=45 (4m)          | Inoc. T=63 (5 m)                 | Inoc. T=65 (6m)     |
|----------------------|-------------------|-------------------------|----------------------------------|---------------------|
| (1m)                 | 2                 |                         |                                  |                     |
| No IDs               | Bacillus soli     | B.thuringiensis         | B. amyloliqufaciens <sup>a</sup> | Strep. Salivarius   |
|                      | B.thuringiensis   | Strep. mitis            | Strep. mitis                     | Bacillus mojavensis |
|                      | B. alkalitelluris | Cladosporium            | Strep. salivarius                |                     |
|                      | P. agaridevorans  | cladosporoides          | Veillonella dispar               |                     |
|                      | B. megaterium     | Penicillium chrysogenum | Strep. Parasanguinis             |                     |
|                      | B. niacini        |                         | Neisseria flavescens             |                     |
|                      |                   |                         | R. mucilagenosa <sup>a</sup>     |                     |
|                      |                   | , ,                     | P. chrysogenum                   |                     |

<sup>&</sup>lt;sup>a</sup>Organisms used for inoculation.





#### Long term storage

Table 7. Results of microbial analyses and some physical parameters for core samples cut from HMC product tiles (180 C, 2hrs, 40 mins).

| Storage duration (days) and tile number | Uninoc. Control, T=0 (1m) | Inoc. T=0<br>(3 m) | Inoc.T=45<br>(4 m) | Inoc. T=63<br>(5 m) | Inoc. T=65<br>(6 m) |
|-----------------------------------------|---------------------------|--------------------|--------------------|---------------------|---------------------|
| Weight loss (%)                         | 23                        | 25                 | 30                 | 28                  | 29                  |
| Core samples showing growth             | 7/10                      | 10/10              | 3/10               | 4/10                | 5/10                |
| R. mucilaginosa recovery                | Not inoculated            | NEG                | NEG                | POS                 | NEG                 |
| B. amyloliquifaciens recovery           | Not inoculated            | NEG                | NEG                | POS                 | NEG                 |



## Questions?

