Dynamic Visual Acuity: Measuring a Different Source of Visual Impairment

Brian Peters
Jacob Bloomberg
Ajit Mulavara

Primary Messages

- Seeing clearly requires more than just being able to focus on an object
- Acuity is affected during dynamic activities early postflight
- Dynamic visual acuity is affected by multiple variables

Acuity Formula

Acuity = Accommodation (ability to focus)

Acuity Formula

Acuity = Accommodation + Gaze Stabilization (ability to focus) (maintain gaze)

The Vestibulo-Ocular Reflex

The Concern

Exposure to space flight

Central reinterpretation vestibular information

Alteration in gaze stabilization

Reduction in visual acuity during head motion

Early Evidence

Drawings of LED target from treadmill-walking subjects

Dynamic Visual Acuity Test

- Computer-based test using Landolt C optotypes
- Subjects walk on a treadmill at 1.8 m/s and identify the gap location in the "Cs" presented for 500 ms on a laptop at 4 m

- A threshold-detecting algorithm controls the size of the sequentially-presented optotypes
- Static acuity (seated) is subtracted from the walking acuity

DVA Test Output

DVA after Long-Duration Space Flight (ISS)

- Only 1 of 3 were able to complete the test on R+0
- Performance levels for patients with vestibular dysfunction are indicated in red

Astronauts show reduction in visual acuity during postflight walking due to changes in gaze control

Results Presented in: Peters BT, Miller CA, Richards JT, Brady RA, Mulavara AP, Bloomberg JJ. Dynamic visual acuity during walking after long-duration spaceflight. Aviation, Space and Environmental Medicine. 82(4): 463-6. 2011

Target Distance Affects Gaze Task

4.0 m

3.0 m

2.0 m

1.5 m

1.0 m

0.5 m

Created ability to measure NEAR Acuity

FAR vs. NEAR DVA Results

Walking at 1.8 m/s

Display Duration: 500 ms

Comparison:

Target Distance 4 m vs. 0.5 m

Walking acuity is worse for NEAR targets

Target distance also affects Head & Body movements

	FAR	NEAR	p
Vertical Trunk Translation	5.43 cm ± 0.64	4.85 cm ± 0.44	0.006
Head Pitch	3.58° ± 0.89	3.96° ± 0.70	0.167 8/11 ↑
Lateral Trunk Translation	3.56 cm ± 0.68	3.16 cm ± 0.46	<0.0001
Head Yaw	2.85° ± 0.68	3.29° ± 0.46	0.112 9/11 ↑

Improving the DVA Test Sensitivity

Heel Strike vs. Mid-step DVA Results

Walking at 1.8 m/s

Target Distance = 4 m

Display Duration: 75 ms

Comparison:

Gait Cycle Phase

"BETWEEN" vs. "AT" heelstrike

Walking acuity is worse "AT" heelstrike

Passive DVA Test

Because

- 2 of 3 ISS crewmembers couldn't walk on the treadmill at 1.8 m/s
- "Active" nature of the test could mask deficits (Herdman et al. 2001)

We created a passive DVA test

- vertical oscillations
- frequency & magnitude mimic walking

Passive DVA Test Results #1

Vertical Oscillation (2Hz, 5cm)

Target Distance = 2 m

Display Duration: 75 ms centered around peak velocity

Comparison: Control vs. Patients w/ vestibular dysfunction

No Difference in DVA Between the Groups

Passive DVA Test Results #2

Vertical Oscillation (2Hz, 5cm)

Target Distance = 4 m

Display Duration: 75 ms & 500 ms

Comparison: Control vs. Patients w/ vestibular dysfunction

Difference in DVA only during 500 ms condition

Conclusion: Control subjects make better use of low velocity portion of perturbation

Conclusions

- Acuity is affected in returning crewmembers because of an inability to stabilize gaze
- Advantages of computer-based acuity test include:
 - > randomized optotype orientations
 - > NEAR and FAR viewing distances
 - > triggered display
- DVA is affected by
 - > target distance
 - display timing & duration
 - > active vs. passive perturbation