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Abstract 

A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system 
was performed under realistic daytime conditions to understand how range and lidar performance can be 
improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel 
transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric 
ozone measurements.  The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol 
channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN 
database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) 
meteorological data.  The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as 
data collected during the CALIPSO mission.  The lidar performance is estimated for both diffuse-
irradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered 
radiation component based on previously reported experimental data.   This analysis presets calculations 
of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter 
bandwidth and laser transmitted UV and 527-nm energy. 
 
 
1. Introduction 

Ozone lidar systems consist basically of two components: a laser transmitter and an optical receiver.  For 
the detection of ozone in the atmosphere from ground based lidars, laser wavelengths from 280-310 nm 
are used as these wavelengths correspond to a high absorption cross-section of the ozone molecule.  A 
laser transmitter must transmit two or more UV wavelengths at high energy and short pulse length to 
achieve maximum ozone measurement range in the atmosphere.  Also, for maximum ozone measurement 
range, the receiver telescope must be as large as possible and the detection system must operate at high 
optical efficiency. 
 
Laser transmitters consistently have been the most difficult and unreliable components of the lidar 
system.  The laser is susceptible to optical damage and degradation over time due to the high UV pulse 
energy and which limits the laser pulse energy transmitted into the atmosphere.  Laser transmitters tend to be 
very costly thus simply increasing laser pulse energy has cost limitations. 
 
Conversely, the lidar receiver is much less costly and does not suffer from optical damage.  Thus, in order 
to optimize ozone lidar performance it is most cost effective to improve the performance of the receiver, 
as opposed to increasing the transmitted laser energy, by collecting every backscattered lidar photon with 
high efficiency.  High efficiency can be achieved by using a large area telescope and a high optical 
efficiency detection subsystem. 
 
The objective of this paper is to perform an analysis of a typical UV-DIAL lidar receiver system under 
realistic day and night time conditions to understand how range and lidar performance can be improved 
for a given UV pulse laser energy for the ozone and 527 nm  aerosol retrieval [1]. Here we 
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describe simulation studies for lidar receiver optimization for the purpose of tropospheric ozone and 
aerosol measurements.  The transmitted lidar measurements will be from 285 to 295 nm and the aerosol 
channel will be 527 nm. 
 
2.  Lidar receiver calculation overview 

There are multiple components in a typical lidar setup affecting the accuracy and range of the lidar 
measurements.  Lidar receiver calculations were carried out using a set of different modeling codes and 
datasets as shown in Fig. 1.   As can be seen in Fig 1 the lidar equation, which gives the power, P as a 
function of range r received for a given transmitted power,  is used with the aerosol and molecular 
attenuation (α) and backscatter (β) and calculated using several alternative methods [2].  In particular, the 
molecular attenuation (α) is calculated using the cross-sectional data from the HITRAN database by using 
a set of data from the Modern Era Retrospective Analysis for Research and Applications (MERRA) 
dataset [3] [4].  The advantage of using the MERRA dataset is the ability to obtain meteorological 
parameters for specific locations, times of day and seasons, thus providing more exact transmission 
spectra for lidar locations of interest.  In particular, annual averaged ozone concentration profiles were 
obtained using the MERRA “MERRA300.prod.assim.inst6_3d_ana_Nv” dataset for the Hampton, VA 
and Houston, TX locations where the UV-DIAL system under study is expected to be primarily deployed.  
The aerosol attenuation was estimated using an approach based on the use of the BACKSCAT 4.0 model 
[6] providing aerosols attenuation values as a function of altitude and wavelength for a set of seasonal 
variations and commonly encountered atmospheric aerosol types including the Rayleigh scattering 
component.  A comparison of the BACLSCAT 4.0 aerosol profile with the 
“CAL_LID_L3_APro_AllSky-Beta-V1” data from the CALIPSO mission [5] is also presented for 
validation purposes. 
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Fig 1.  Overview of the lidar sensitivity analysis calculations. Where β(λ, r) is the aerosol backscatter 
coefficient as a function of wavelength and range, αmol is the molecular attenuation , and αaer is the 
total aerosol attenuation component. 
 
3.  Calculation of daytime diffuse sky irradiance background component 

3.1 – Determining the diffuse sky irradiance at 290nm 

To determine the optical performance of the lidar return, several noise sources must be considered.  Of 
them the most important is the sky irradiance (W / m2) within the optical bandwidth of the receiver.  First, 
a diffuse spectrum of UV sky irradiance spectrum was found in the literature for the UV-B spectral region 
of interest near 290 nm [7].  As can be seen in the Fig 2 curve b spectrum, the diffuse irradiance without 
the ozone attenuation at the earth surface provides a value of about 0.15 W/ (m2·nm) at 290 nm.  The 
spectrum shown was obtained using a simulation model assuming a solar elevation angle of 35° (55° from 
zenith) [7] 
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Fig 2   Modeled spectral irradiance for clear sky, no surface reflection and 35° solar elevation, a outside 
the atmosphere, b at the Earth’s surface with no ozone in the atmosphere, c at the Earth’s surface with 250 
DU ozone abundance. 
 
As can be seen from Figure 2 above, an irradiance difference between curve b and c at 310nm is equal to 
~0.15W/(nm · m2).  In order to determine the value of the irradiance with the ozone attenuation taken into 
account the HITRAN cross-sectional data was used to determine the difference in absorption at 290 and 
310 nm.  It was found that the absorption by ozone at 290nm is up to 11 times (depending on the 
temperature range) stronger than at 310nm as can be seen from the ozone absorption spectra calculated 
for a horizontal path of 10km using HITRAN cross-sectional data at 300, 280, 260, 240, 220, and 200K 
shown in Figure 3 (the highest absorption is observed for the lowest temperature).   
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Fig 3. Molecular absorption curves of O3 calculated using the HITRAN cross-sectional data for different 
temperatures and 10km path length. 
 
Table 1 summarizes the recalculated diffuse sky irradiance values obtained at ground level with the ozone 
attenuation taken into account.  The second column in the Table 1 shows relative increase of ozone 
absorption at wavelengths shown in column 1 compared to the ozone absorption at 310 nm.  These 
relative difference values were used to establish the diffuse sky irradiances shown in column 3 for the 
285, 290, and 290 nm wavelengths from the irradiance value at 310 nm     
 
Table 1 Adjustment of diffuse sky irradiances at different wavelengths using wavelength dependent ozone 
absorption values 
 

Wavelength, 

nm 

Absorption relative difference (times), 

compared to that at 310 nm 

Resultant diffuse irradiance at 

ground level, W / (m
2
* nm) 

285 13 0.0029 
290 11 0.0034 
295 7 0.0054 

 
As a first estimate it is reasonable to approximate the ozone absorption curve in the 10 nm band pass filter 
region centered at 290 nm as a straight line as seen from the ozone simulation spectra of Fig. 3.  Taking 
this into account, the averaged diffuse 290 nm sky irradiance value in the 10 nm spectral region of interest 
will approximately average to  0.0034 W / (m

2
·nm) at 290 nm.  This value is comparable to the 
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measured values in the range of 9.822·10
-5

 – 2.022·10
-3

 W / (m
2
·nm) at 295 nm reported for a location in 

Orlando, FL [8].  In our calculations we will not be using the values from [8] because they do not provide 
the information about the sun elevation angle at the time the measurements took place. 
 
3.2 – Adjusting the irradiances for Sun angle 

The value obtained in the previous section 3.1 is for the sun zenith angle of 55°.  To adjust this value for 
other elevations we use the data from [8].   Figure 4 from [9] provides an example of integrated diffuse 
sky irradiance for a selected day as a function of sun zenith angle. 

 
Fig 4.  Variable sky-view diffuse irradiance superimposed on global irradiance for a cloudy sky day (6 
Dec. 2000, 5-octa cumulus). From Ref. [9] 
 
As can be seen, the diffuse irradiance values are about 3 times higher at their maximum compared to 
values at +/-55° zenith angles.  To take this into account we increase the estimated 290 nm irradiance 
accordingly to obtain 0.01 W/ (m

2
 * nm).  It should be pointed out that the data provided here is for a 

cloudy day; however, since we are interested in a relative increase of diffuse sky irradiance due to sun 
angle change, it is assumed that a clear sunny day would result in comparable results. 
 
3.3 – Background light registered by the receiver for filter attenuation and bandwidth 

The receiver is assumed to have a filter transmission curve with a HWHM of 10 nm centered at 290 nm 
and a transmission of 50% at the UV wavelengths.  Thus the 290 nm irradiance value calculated 
previously is multiplied by 10 to adjust for the filter spectral bandwidth of 10 nm.  Using this approach 
the irradiance value is 0.1 W / m

2 with the filter spectral transmission width taken into account.  
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Additionally, the value should be adjusted for the assumed transmission of the filter of 50% to get a value 
of 0.05 W / m

2. 
 
3.4 – Determining the field of view of the lidar telescope  

Since we are dealing with diffuse light, the diffuse sky irradiance value has to be reduced by the ratio of 
the lidar steradian corresponding to the field of view (FOV) referenced to the entire half sphere 
representing the entire sky.  In doing so it is assumed that diffuse irradiance components directed from 
different directions in the sky contribute equivalent amounts of irradiance.  Equation 1 defines the sky 
diffuse power 

      
wltele

sky diffuse surf

half sphere

sr
P I A

sr
                                            (1) 

where sky diffuseP  is the power registered by the receiver due to the diffuse sky irradiance, telesr  is the 

steradian angle of the sky covered by the telescope, half spheresr  is the half sphere steradian angle, and 

wl

surfI is the sky diffuse irradiance corrected for the presence of the optical filter, and A is the area of the 

telescope.  The conversion between the FOV angle and steradian for small angles is as follows: 
 

  22 (1 cos 0.5 ) ( 0.5)tele FOV FOVsr                                  (2) 

 
Taking into account the equation for the calculation of the field of view [10]: 
 

                                      0.5 arctan
2FOV

f




 
   

 
                                              (3) 

 
where δ is the diameter of the field stop, and f is the focal length of the primary telescope mirror. The 

FOV total angle of 0.001 for a field stop of 1mm and a telescope focal length of 1m corresponding to the 
parameters of the lidar telescope used in the UV-DIAL ozone lidar system. By using the calculated FOV 
angle, the value of telesr  is thus equal to 7.85x10-7. 
 
3.5 - Calculating the detected diffuse sky irradiance at 290 nm 

Taking the averaged diffuse sky irradiance value of 0.05 W / m
2 and adjusting it for the telescope field of 

view and the telescope surface area A we get: 
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7

107.85 10 (0.05) (0.126) 7.6 10
2

wltele
sky diffuse surf

half sphere

sr
P I A Watt

sr 




                   (4) 

 
3.6 – Sky diffuse radiance estimates for the 527 nm lidar aerosol channel 

The calculations for the 527 nm aerosol channel are similar to those shown above for the 290 nm channel.  
However, it is not necessary to establish the radiance level at 527 nm through scaling because the diffuse 
scattering data is widely available in the literature for this visible wavelength.   In a similar fashion, 
literature reported spectra shown in Figure 5 were used to estimate the radiance levels in the 527 nm 
band.  The spectra shown in Figure 5 were adopted from Ref. 11. 
 

  

 
 
 

Fig. 5.  Measured and modeled diffuse irradiance spectra for a humid hazy October day (top), and for 
a dry clear October day (bottom). Here rss stands for Rotating Shadowband Spectroradiometer. smarts2, 
sbdart and modtran are modeling codes [11].   
 
The spectra above are for a hazy (top) and clear (bottom) day respectively showing diffuse irradiance 
values in the range of 0.1 – 0.35 W / (m

2
 * nm).   After the adjustment for the filter HWHM bandwidth of 
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0.3nm we get irradiance values of 0.033 – 0.117 W / m
2.  Additional adjustment for the filter transmission 

of 40% gives values of 0.0132 – 0.0468 W / m
2.   Taking the maximum value of 0.0468 W / m

2 
and adjusting it for the telescope field of view and the telescope surface area we get the 
collected diffuse sky irradiance power from Eq. 5: 

      
7

107.85 10 0.0468 0.126 7.4 10
2

wltele
sky diffuse surf

half sphere

sr
P I A Watt

sr 




                  (5) 

 
 
4.  Calculation of the PMT Noise Equivalent Power (NEP) 

A photo detector multiplier tube (PMT) commonly used in UV-DIAL lidar receivers is the Hamamatsu 
R7400-U03.  These PMT characteristics were used to estimate the PMT detector noise level to establish 
the best achievable sensitivity and the maximum lidar detection range in the absence of any ambient light 
background signal contamination. The parameters for the PMT being used in the lidar system are 
summarized in Table 2. 
 
Table 2   Parameters for the R7400-U03 photomultiplier tube. 
 
Parameter  Value 

Peak absorption 420 nm 
Cathode sensitivity at peak 420 nm 62 mA/W 
Cathode sensitivity at 290nm ~40 mA/W 
Anode dark current 0.2 to 2 nA 
Maximum gain 7 x 105 

 
The noise equivalent power (NEP) is the lowest power detectable by PMT and it limits the lidar 
measurement range.  Using the parameters in the table, the NEP for a given PMT is shown in Eq. 6: 
 

         11

5

0.2 0.71 10
40 7 10

n n

a peak

i i nA
NEP f f W

mAR S G

W

        


 
           (6) 

where in is the anode dark current, Ra is the anode sensitivity, Δf is the detector bandwidth assumed to 

be equal to 1MHz, Speak is the peak cathode sensitivity, and G is the maximum gain of the PMT.  
Equation 7 takes into account the averaging of the signal over 20 seconds, so the NEP is reduced by a 

factor of N , where N is the number of laser pulses in the averaging interval (assuming 1kHz repetition 
rate): 
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                                                      20 1000 141N                                                   (7) 
 
Equation 8 shows the adjusted NEP for the accumulation of spectra over 20 seconds as: 
 

                               
11

13
20 sec

0.71 10 0.5 10
141

W
NEP W




                              (8) 

 
This NEP value is compared to the power vs. range spectrum obtained with the lidar simulation in section 
5.  It should be noted that the lowest anode dark current value was used in the calculations and there are 
obviously some additional noise factors in the data acquisition system.  
 
5.  Ozone atmospheric profiles for atmospheric transmission calculations 

Atmospheric transmission calculations are now discussed using the ozone profile data extracted from the 
MERRA dataset [4] for the locations of Hampton, VA and Houston, TX with subsequent averaging to 
obtain annual mean O3 profiles suitable for the current lidar estimate calculations.  The ozone atmospheric 
profiles extracted from the MERRA dataset are shown in Fig. 6.  As can be seen, the ozone profiles 
extracted from MERRA account for ozone fluxes near the ground which makes them more suitable for 
the tropospheric ozone lidar estimate calculations than the US standard profile [12] of ozone shown in the 
left figure. 

    
Fig. 6.   O3 atmospheric profiles from the US Standard model (left), and annual mean for year 2009 of the 
MERRA O3 profile data near Hampton VA and Houston TX locations. 
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Additionally, the overall shape of the ozone profiles retrieved from the MERRA dataset is different from 
that in the US Standard model with the maximum ozone mixing ratio peak shifted toward the ground 
which is of importance for tropospheric lidar sensitivity estimates.  Our further lidar calculations are thus 
based only on the MERRA atmospheric profiles. 
 
 
6.  Aerosol 290 nm attenuation and backscatter calculations using the 

BACKSCAT 4.0 lidar program 

The aerosol calculations were carried out using the BACKSCAT 4.0 program [6] using the parameters 
shown in Fig. 7. 
 

 
Fig. 7.  Aerosol profile characteristics used in the BACKSCAT 4.0 program for the aerosol calculations. 
 
As can be seen from Fig. 7, “Rural” aerosol type is used in the calculations because it provides higher 
values of the aerosol attenuation and backscatter values compared to the “Urban” type also available in 
the BACKSCAT 4.0 model.  The results of aerosol calculations including the attenuation and backscatter 
data at 290nm as a function of altitude are presented in Fig. 8 showing individual aerosol attenuation (left) 
and backscatter components (right) as well as their totals.   
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Fig. 8.  Aerosol absorption (left) and backscatter (right) calculations at 290 nm using the BACKSCAT 4.0 
program. 

 
Fig. 9.   Comparison of the CALIPSO monthly averaged aerosol day and night extinction profiles for year 
2009 at Hampton, VA (colored lines) with the aerosol profile generated using the BACKSCAT 4.0 
program (dashed file) at 532 nm. 
 
To further verify the applicability of the aerosol attenuation data available using the BACLSCAT 4.0 
model we have carried out a comparison of the total aerosol attenuation (extinction) profiles at 532 nm 
generated using the BACKSCAT 4.0 program with the profiles obtained during the CALIPSO mission.  
Such a comparison is presented in Fig. 9 where daytime and nighttime monthly January through June of 
2009 aerosol extinction averages are compared to those obtained using the BACKSCAT 4.0 program with 
parameters shown in Fig. 7   As can be seen, the BACKSCAT 4.0 attenuation data represents a realistic 
estimated aerosol extinction value even though the atmospheric aerosol concentration is highly variable.  
The results of the BACKSCAT 4.0 program calculations are used in our simulations for the wavelengths 
of 290 and 527 nm. 
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7.  Ozone lidar calculation results 

The estimates of the daytime diffuse sky irradiance shown in Section 3 and the detector noise level 
estimates described in Section 4 limit the maximum detectable range of the lidar system for the realistic 
daytime and nighttime lidar operation cases respectively. 
 
Table 3 Lidar system parameters used to calculate the ozone sensitivity, aerosol retrieval and maximum 
range 
 

Parameter 285-295nm lidar (ozone) 527nm lidar (aerosol) 

Pulse energy 0.1 – 1 mJ 3mJ 
Pulse duration 100ns 
 Laser wavelength  290nm 527nm 
Bandwidth  5MHz 
Telescope diameter 40 cm 
Lidar system efficiency 40% 

 
In this section we perform lidar return calculations by using the lidar system parameters presented in 
Table 3 and the molecular and aerosols absorption and backscatter values calculated as described in the 
previous sections.  Previous calculations of detector and diffuse sky irradiance estimates are combined to 
establish the maximum estimated range achievable with the given lidar system parameters. 
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Fig 10.  Logarithmic plot of lidar return analysis at 290nm using MERRA ozone concentration profiles at 
2 different output laser energy levels of 0.1mJ and 1 mJ.  The PMT noise level is a 20s (20000 laser 
pulses) averaged value and represents the estimated nighttime range. 
 
Figure 10 presents the results of the lidar analysis for the measurement of ozone concentration in the 
troposphere using different atmospheric ozone profiles described in Section 5.  During daytime operation 
a maximum detectable range of 1 to 2.5 km is expected as the laser output pulse energy is increased from 
0.1 mJ (0.1W) to 1 mJ (1 W) and during the nighttime operation the maximum range is increased to 5.5 to 
6.5 km respectively.  As can be seen the filter with 1nm FWHM (T = 50%) would results in an increase of 
the daytime maximum detectable range of 2.5 – 3.6 km respectively (dashed line).  
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8.  Aerosol lidar calculation results  

Lidar analysis was performed for the measurement of aerosols using the 527 nm laser wavelength to be 
transmitted simultaneously with the ozone measurements.  The lidar system parameters used for the 
estimates are summarized in Table 3.  The results of the lidar aerosol analysis are presented in Fig. 11.  
As can be seen, a range of over 3.5 km is achievable during the daytime and a maximum range of 35 km 
at nighttime in the absence of any ambient light interferences. 

 
 
Fig. 11.  Lidar sensitivity calculations for the measurements of aerosols at 527 nm with a laser energy of 
3mJ per pulse. The PMT noise level is a 20s (20000 laser pulses) averaged value. The upper plot 
represents daytime operation and the lower plot represents nighttime operation. 
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9. Conclusions  

Calculations were performed for a UV-DIAL ozone lidar system operating between 285-295 nm with 
laser energy between 0.1 and 1.0 mJ per pulse (1 kHz) and having a 527 nm aerosol channel transmitting 
at 3 W.  The receiver has a 40 cm diameter telescope and a 10-nm FWHM (T = 50%) filter to cover the 
285-295 nm laser transmission range.  Under these conditions the daytime ozone measurement range was 
1 - 2.5 km for the laser energy specified.  For the aerosol channel the daytime range was 3.5km (3mJ / 
pulse).  For nighttime operation the ozone measurement range is increased to 5 – 6 km for the given laser 
energies. A daytime limiting factor is the 10-nm FWHM optical filter.  If a 1-nm tunable UV filter (T = 
50%) could be designed and implemented, the daytime ozone measurement range could be increased to 
2.5 – 3.5 km.  
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