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 Historically, spacecraft reaction control systems have primarily utilized cold gas thrusters because of 
their inherent simplicity and reliability. However, cold gas thrusters typically have a low specific impulse. It 
has been determined that a higher specific impulse can be achieved by passing a monopropellant fluid 
mixture through a catalyst bed prior to expulsion through the thruster nozzle. This research analyzes the 
potential efficiency improvements from using tri-gas, a mixture of hydrogen, oxygen, and an inert gas, which 
in this case is helium. Passing tri-gas through a catalyst causes the hydrogen and oxygen to react and form 
water vapor, ultimately heating the exiting fluid and generating a higher specific impulse. The goal of this 
project was to optimize the thruster performance by characterizing the effects of varying several system 
components including catalyst types, catalyst lengths, and initial catalyst temperatures.  

Nomenclature 
ao =  sonic velocity 
Ae =  exit area 
At =  throat area 
c* =  characteristic velocity 
d =  chamber diameter 
D =  particle diameter 
go =  acceleration due to gravity 
γ =  ratio of specific heats 
Isp =  specific impulse 
k =  conversion factor 
km =  MACOR thermal conductivity 
ks =  stainless steel thermal conductivity 
l =  catalyst bed length 
ሶ݉ ௙  =  fluid mass flow rate 

Me =  exit Mach number 
µf =  fluid viscosity 
Pc =  chamber pressure 
Pe =  exit pressure 
Q =  heat energy 
Re =  Reynolds number 
ρf =  fluid density  
To =  stagnation temperature 
T∞ =  ambient temperature 
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I. Introduction 
EACTION control systems used for spacecraft maneuvering purposes are typically designed to be simple, safe, 
and reliable. These systems often utilize cold gas thrusters because they contain very few mechanisms and are 

historically consistent performers. Although they are logistically simple, cold gas thrusters usually have a relatively 
low specific impulse compared to other types of propulsion systems. The tri-gas thruster is configured similarly to a 
cold gas thruster, except that it passes the inert gas through a catalyst bed before expelling the gas through the 
nozzle. By inducing this catalytic reaction, the gas is heated prior to exiting the nozzle, which ultimately increases 
specific impulse. The design of the tri-gas thruster is only slightly more complicated, yet it maintains the consistency 
associated with cold gas thrusters. Furthermore, this propellant has been categorized as a “green” propellant due to 
its inherent non-toxicity.  

II. Background 

A. Tri-Gas  
 Tri-gas is a gaseous mixture of hydrogen and oxygen that is diluted with a large quantity of an inert gas. When 
the gas passes through a catalyst, the hydrogen and oxygen become reactive and the overall gas temperature is 
increased because the formation of water vapor is an exothermic reaction. The inert gas is considered a carrier gas 
because it is chemically unaffected through the catalytic reaction. It is the primary constituent of the gas mixture and 
is used to limit the relative amounts of hydrogen and oxygen such that the combination is not detonable. Helium was 
selected as the carrier gas for this testing in an attempt to reduce the molecular weight and obtain higher specific 
impulse. The tri-gas mixture was designed to contain a stoichiometric combination of hydrogen and oxygen with a 
final mixture of 92% helium, 5% hydrogen, and 3% oxygen. The gas was procured from an external supplier. 
 

B. Catalyst Reactions  
 Traditionally, catalysts are used to lower the activation energy for chemical reactions. When the oxygen and 
hydrogen in tri-gas pass through a catalyst, the two elements react and produce heat. Because there is a positive 
correlation between temperature and specific impulse, it is desirable to maximize the energy generated from this 
reaction. Several catalyst configurations were investigated in an attempt to optimize the thruster performance.    
 One configuration variable that was investigated was the initial temperature of the catalyst prior to gas flow. 
Because the specific impulse of the thruster is directly related to the chamber temperature, reaching a steady state 
chamber temperature is highly desirable to 
have continuous performance from the 
thruster. Given a reactive catalyst and 
enough time, the tri-gas will eventually 
reach this steady state temperature at the 
chamber exit. However, if the thruster 
system is pre-heated, the energy generated 
from the reaction can be directly applied to 
the tri-gas itself because all other 
components are already at the steady state 
temperature. This lowers the thermal rise 
time for the system, which means that the 
optimal performance is achieved more 
quickly. The helium based mixture’s 
adiabatic flame temperature, or steady state 
temperature, was predicted to be 1200°F. 
This temperature is approximately 33% hotter than a nitrogen mixture, which also increases the specific impulse of 
the thruster. Operating at the steady state temperature is desirable for in-space applications because it provides the 
most efficient thruster performance and therefore requires the least amount of fuel. Shorter transients also provide 
more economical operation of the thruster, thus allowing for more accurate prediction of the propellant needed to 
maintain a spacecraft’s attitude. 
 The effects of varying the catalyst length were also examined. Determining the correlation between catalyst 
length and performance can provide insight into both the minimum amount of catalyst required to fully react the tri-
gas at a given flow rate and the activity of the catalyst itself. During testing, the catalyst length was increased until 
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Figure 1. Pelletized (left) and Substrate (right) catalysts. 
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realistic option for this application. A commercially available, thermally and electrically insulated, flexible heater 
tape was purchased for the testing. The main difficulty with using an external heater, however, is overcoming the 
thermal resistance separating the surface from the catalyst. The heater is required to not only heat the catalyst, but 
also the MACOR insulation and the thruster wall itself, while simultaneously convectively cooling in the air 
surrounding the heater. In order to determine the feasibility of using a radially conducting process and its impact on 
the testing schedule, a calculation of the total time to elevate the catalyst temperature to the adiabatic flame 
temperature was performed. The total thermal resistance in the path of heat conduction was obtained by the equation 
below. 
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  (1) 

      
The total energy required to heat each material present in the thruster chamber was calculated by the equation below. 

ݍ       ൌ  (2)      ܶ∆݌ܥ݉∑

The rate of heat transfer between the external surface of the thruster chamber and the catalyst is defined below. 

ሶݍ    ൌ
்೎ೌ೟ೌ೗೤ೞ೟ି்ೞೠೝ೑ೌ೎೐

ோ೟೓
     (3) 

 Using this model, it was necessary to complete a series of iterations using small time increments to determine 
the point at which the thermal equilibrium was reached in the system. For the purposes of this calculation, it was 
assumed that the heating process was to begin at an ambient temperature of 300 K. The external heater was assumed 
to be capable of holding a temperature of 1400 °F (1030 K) as per the specification of the chosen heater. This 
analysis suggested that the catalyst bed could be electrically preheated to the adiabatic flame temperature in a matter 
of minutes and that the impact on the turnaround time for testing would be minimal.  

B. Pressure Drop through the Catalyst Bed 
 The following analysis was performed with the assistance of several technical resources. In addition to the use 
of multiple textbooks, software called REFPROP was used to determine the state of the gas at various points in the 
system. REFPROP was developed for use as part of the National Institute of Standards and Technology’s (NIST) 
standard reference database. REFPROP provides thermodynamic and transport properties of any gas when given 
two input parameters; in this case, temperature and pressure are input into the software, and additional properties of 
interest are calculated for analytical use. 
 In order to predict the pressure in the thruster chamber,	 ௖ܲ, the pressure across the catalyst bed must be predicted 
in a reliable way. One way this has been done in the past is to employ Ergun's equation for pressure drop through 
porous media. Ergun's equation was developed for use with packed particle beds of a specific geometry, and works 
well when applied to spherical particles. Ergun's equation is defined as: 
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 The Ultramet catalyst used a platinum infused alumina substrate, which has the consistency of a very porous 
charcoal, and is cylindrical in shape. Each substrate catalyst was friction fit to a custom MACOR sleeve. The 
geometry of these substrate catalysts allows for a great amount of reactive surface area in smaller volumes. While 
this design is ideal for space and weight savings, it leaves the catalyst fragile and brittle, with very low compressive 
strength (approximately 10 psi). An additional goal of this research was to address the utility of such substrate 
catalysts in tri-gas thruster applications, as well as verify the accuracy and versatility of the Ergun equation in 
predicting the pressure drop through such a medium.  

C. Orifice Sizing 
 Orifices are very useful in limiting mass flow rates and provide a measure of safety in case of system failure. 
When flow through an orifice is choked, or sonic, the system mass flow rate is limited by upstream pressure only. 
Therefore, orifice sizes can be chosen to satisfy requirements of different parts of the system. The tri-gas system 
uses three separate orifices, all of which are implemented to satisfy different requirements. Figure 4 shows the 
system flow schematic including the various orifices and their locations. Orifice 5 (OR 5) was sized and located to 
limit the system supply flow rate in case of a failure in the regulator. Because the relief valve can only accommodate 
a certain amount of flow, a limiting orifice must be implemented to ensure that the relief valve flow rate limit is 
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never breached. In a failure scenario, the high upstream pressure forces sonic flow through the orifice. The equation 
for mass flow through an orifice under these conditions is:  

      ሶ݉ ൌ ଵඨ݌ଶܣௗܥ
௚೎
ோ భ்

ߛ ቀ
ଶ

ఊାଵ
ቁ
ംశభ
ംషభ    (5) 

 Using this equation, OR 5 can be appropriately sized to limit the supply flow. The diameter of OR 13 was 
selected in a similar manner; however, it was sized to limit the flow rate through the flow meter in the event of 
increased upstream pressure in order to prevent damage to the instrument.  Depending on the mass flow rate for each 
test, the orifice was chosen and integrated into the system accordingly.  
 The diameter of OR 16 was determined in the same manner as OR 5, but was sized to limit the flow of the 
nitrogen purge line. The purge line is regulated per the standards set in place by the Component Development Area 
(CDA) at MSFC and therefore its operational limits were predefined. 

D. Sizing the Relief Valve 
 The system relief valve (RV 9) is utilized as a safety measure to prevent overpressure in the lines in the event of 
a system failure. In the tri-gas system, it was determined that the worst-case failure scenario was that in which the 
regulator failed, causing a direct flow from the K-bottles through OR 6 and out of the relief valve. The K-bottles had 
a max pressure of 2200 psig, and thus failure was analyzed at this pressure. Most relief valve manufacturers provide 
an empirical formula for the amount of flow that can be accommodated by their relief valves. An Anderson 
Greenwood model 81-6 (AG 81-6) was utilized in this system. Volumetric flow rate through the relief valve can be 
determined by the following equation: 

      ܸ ൌ
଺.ଷଶ஺మ஼௄௉భ

√ெ்௓
      (6) 

where ܸ is the volumetric flow rate through the relief valve in standard cubic feet per minute (SCFM), ܣଶ is the area 
of the orifice in in2, ܥ is the gas constant, ܭ is the valve discharge coefficient, ଵܲ is the upstream pressure in psi, ܯ 
is the molecular weight of the fluid in lbm/lbmol, ܶ is the temperature of the fluid in R, and ܼ is the compressibility 
factor of the fluid. REFPROP was used to find the compressibility factor of the fluid. With these parameters, the AG 
81-6 relief valve is rated to accommodate 2357 SCFM tri-gas, which is equivalent to 0.47 lbm/s mass flow rate. 
Compared to the 0.40 lbm/s available flow from the K-bottles, it is evident that the relief valve is sized correctly to 
provide hazard mitigation in the event of a failure.  

E. Determining Regulator Pressures 
 After an estimate for the chamber pressure has been determined, it is necessary to calculate the pressure setting 
of the regulator for each test. The regulator pressure is essentially the only controllable variable in the tri-gas system, 
and will determine the mass flow rate of the system. The regulator pressure must be chosen such that the volumetric 
flow rate through the flow meter does not exceed the operating ranges of the meter, as outlined in section C. In 
addition to providing a limited flow through the flow meter, the regulator pressure also determines the mass flow 
rate through the thrust chamber. Due to the coupling between mass flow rate through the thruster and volumetric 
flow through the turbine flow meter, the regulator pressure must be solved iteratively to ensure satisfactory 
operation throughout the entire system. Each unique configuration for length and type of catalyst shares a common 
regulator setting regardless of heater status; this is to ensure that mass flow rate is constant between separate tests. 
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C. Test Matrix 
The following table lists 13 tests that were performed using the tri-gas thruster. 

Table 1. Test Matrix.  

Test Configuration 
Regulator 

Pressure (psi) 
Initial 

Temperature (°F) 
1 C – Pelletized long 410 Ambient 

2 C – Pelletized long 410 1100 

3 E – Substrate long  213 Ambient 

4 E – Substrate long, second test 213 Ambient 

5 
E – Substrate long, third test (two 
pulses)  

213 Ambient 

6 B – Pelletized intermediate 410 Ambient 

7 B – Pelletized intermediate 410 1100 

8 D – Substrate short  160 Ambient 

9-12 D – Substrate short, pulses 160 Ambient 

13 D – Substrate short, long duration  160 Ambient 

 

D. Test Procedure 
Test procedures were developed in an effort to both ensure that all of the necessary data was captured and that 

all personnel and hardware remain safe during operations. A hazards analysis was performed prior to testing that 
outlined the potential safety issues for this testing and the mitigations in place to handle those issues. Procedurally, 
the testing operations were essentially identical for each catalyst configuration, so one governing test procedure was 
created in conjunction with multiple data recording sheets for each test case. In addition, both the pelletized and 
substrate catalysts were baked in a nitrogen purged furnace at 450°C for 1 hour to remove any oxidation from the 
surface of the catalyst. After baking was completed, great care was taken to ensure that the catalyst had limited 
access to the atmosphere as it traveled from the oven to the test stand. Once the test preparations were complete, a 
leak check of the system plumbing was performed and the regulator pressure was set for the specific test. All 
personnel then returned to the control room, and testing was clear to commence. Once the personnel in the control 
room were satisfied that the system had reached steady state, the flow of tri-gas was stopped and a nitrogen purge 
was introduced. This was used both to cool the thruster after firing and to limit the oxygen exposure for the catalyst. 
Once the thruster had cooled enough to handle, it was inspected, disassembled, reassembled for the following 
configuration, and then re-installed on the test stand for another cycle of testing.  

VI. Results 

A. Catalyst Results  
As mentioned earlier, the pressure drop across the catalyst bed was predicted for given regulator pressures by 

using the Ergun equation. The Ergun equation is typically used to estimate pressure drops through packed beds of 
spherical catalysts. It was determined that the Ergun equation approximated the pressure drop through the pelletized 
catalyst to within 1-2 psi, but may not have been appropriate for use with the substrate catalyst. For both substrate 
configurations shown in Table 4, the actual pressure drop seen during testing far exceeded the predicted value. Upon 
disassembly of the thruster after testing the substrate catalyst, it was found that the catalyst had structurally failed 
and compressed about 25% in length, which is believed to be the primary cause of the large pressure drop 
encountered. Because the substrate did not prove to be strong enough to survive already minimized flow rates, the 
majority of the testing was performed using the spherical pelletized catalyst. 
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Additional configurations were tested and a summary of tri-gas test performance data can be seen in Table 5 

below. The highest performing test (Configuration C, pelletized, preheated), is highlighted. This configuration 
resulted in a maximum catalyst temperature of 1202 deg F, and an Isp of 221 s, which met the thrust output desired 
for the 5lbf class thruster and provided a 35-40% increase in Isp in comparison to a traditional helium cold gas 
thruster. This Isp is also comparable to a hydrazine monopropellant system (typically near 230 s), proving that similar 
performance can be attained while using a non-toxic propellant. 

Table 3. Thruster Performance Summary. 

Test Configuration 
Maximum 

Temperature (°F) 
Isp 

1 C – Pelletized long 1101 195 

2 C – Pelletized long 1202 221 

3 E – Substrate long  1230 134 

4 E – Substrate long, second test 1215 81.4 

5 
A – Substrate long, third test (two 
pulses)  880 - 

6 B – Pelletized intermediate 1073 180 

7 B – Pelletized intermediate  202 

8 D – Substrate short  1081 83.3 

9-12 D – Substrate short, pulses 1082 - 

13 D – Substrate short, long duration  999 81.3 

 
Figure 10 shows that the specific impulse for each of the tests followed a similar profile to that of the 

temperature, which was the expected behavior. The baseline test using configuration C had a rise time of 
approximately 10.5 seconds and asymptotically approached a maximum specific impulse of 195 seconds. The 
unheated catalyst using configuration B specific impulse profile was seen to be steadily increasing and peaked at 
approximately 180 seconds when the flow of tri-gas was cut off. The configuration E substrate test showed a slightly 
longer rise time for the specific impulse than the temperature profile and only approached a specific impulse of 
approximately 134 seconds. The preheated pelletized catalyst configuration C was seen to deliver a nearly constant 
specific impulse over the entire duration of the burn. It provided approximately 221 seconds of specific impulse, 
which was the highest of all configurations. This attribute lends itself to more easily predicted burn times and 
propellant masses required for short duration in-space maneuvers, which can help to trim mass contingencies in 
design and ultimately aid in spacecraft development. Based on these findings, it was clear that the pre-heated, 
pelletized catalyst configuration C was the optimal alternative for this type of application.   
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Figure 10. Specific Impulse during firing for all configurations. 

VII. Conclusion 
 Analysis of test results for both catalyst types suggests that the pelletized catalyst provides better performance 
when optimizing thrust and Isp. Although the substrate catalyst demonstrated a shorter rise time, its low compressive 
strength required more than a 78% decrease in mass flow to avoid structural failure, and was not tested empirically 
to the point at which it did not fail. It was determined that longer pelletized catalyst beds had a shorter rise time, 
which could be further minimized by pre-heating the catalyst bed. The optimal configuration was finalized to be the 
pre-heated, pelletized catalyst configuration C. This does come with the tradeoff of requiring electrical power to 
drive the heater device. Additional trade studies would be necessary to determine the mass savings or penalties of 
the additional heater system versus the additional propellant required.  
 Ongoing experiments seek to continue exploring reaction transients and study the substrate's structural integrity. 
Future experiments that might further this project's goals include testing of the following conditions: 

• Optimized catalyst bed length – gradual length increase 
• Hydrogen (fuel) rich tri-gas mixture 
• Performance in simulated high altitudes 
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