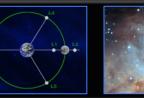
National Aeronautics and Space Administration



nch Syste

NASA's Liquid Oxygen/ Hydrocarbon (LOX/HC) Engines

Garry M. Lyles Space Launch System (SLS) Chief Engineer NASA Marshall Space Flight Center July 16, 2013

www.nasa.gov/sls

Powering the Future of Exploration

NASA Experience with LOX / RP-1 Propulsion

NASA systems

- RP-1 experience spans a significant period of Agency history
- Strong heritage of hardware design, development, analysis and test exists within the agency
- Marshall Space Flight Center (MSFC) has significant capabilities in supporting disciplines such as materials, manufacturing, and test
- Industrial base strengthened through NASA programs and technology transfer
 - History of partnering with industry in various capacities has further advanced the U.S. knowledge base
 - Transfer of key design codes, test and materials data, analytical results
 - Recent F-1 disassembly work, both at MSFC and at Aerojet Rocketdyne, ensures the next generation has an understanding of RP-1 propulsion

History of LOX/RP-1 Engine Development MSFC Partnered with Industry

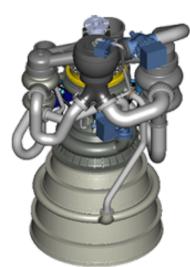
1955–1973

F-1 Gas Generator Cycle Prime: Rocketdyne Flew on Saturn V

F-1A In development at the end of the program Upgraded Turbomachinery

1996–2001

Fastrac (MC-1) Gas Generator Cycle Government Design Hardware Prime: Summa Vehicle Prime: Orbital Engine was Fully Developed Engine assembled into the X-34 vehicle but did not fly



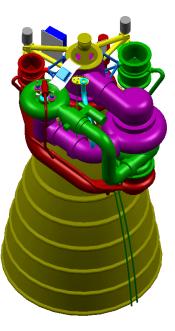
2001–2004 *TR107* Ox- Rich Stage Combustion Prime: TRW Engine to CoDR fidelity

Subscale (5k) Pintle Test at Purdue 250 k Preburner Built, not Tested

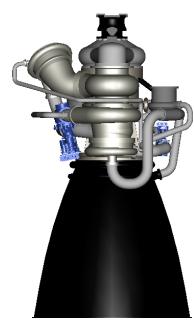
2001-2004

RS-84 Ox-rich Stage Combustion Prime: Rocketdyne

> Engine to IDR (nearly CDR fidelity)


Significant subscale testing completed

History of LOX/RP-1 Engine Development Engine Size Comparison


Fastrac

Tsl = 60 Klbf Tvac = 63.9 Klbf Isp (sl) = 300 sec Isp (vac) = 314 sec Pc = 652 psia Wt = Ibm T/W (sl/vac) = / L =" MR = 2.17

TR107

Tsl = 1,000 Klbf Tvac = 1,074 Klbf Isp (sl) = 300 sec Isp (vac) = 327 sec Pc = 2500 psia Wt = 11,300 lbm T/W (sl/vac) = 88 / 95 L = 180" MR = 2.7

ORSC-RS84

Tsl = 1,050 Klbf Tvac = 1,155 Klbf Isp (sl) = 305 sec Isp (vac) = 335 sec Pc = 2700 psia Wt = 15,925 lbm T/W (sl/vac) = 65 / 73 L = 168" MR = 2.7

F-1

Tsl = 1,522 Klbf Tvac = 1,748 Klbf Isp (sl) = 265.4 sec Isp (vac) = 304.1 sec Pc = 982 psia Wt = 18,616 lbm T/W (sl/vac) = 82 / 94 L = 220" MR = 2.27

History of LOX/RP-1 Propulsion Fastrac Engine and Stage Testing and Integration

	HTF	ΡΤΑ	Alfa 1	ALL
Total Tests	35	5	17	57
Total Hot Fires	27	3	12	42
Total Main Stage Tests > 5 sec	15	2	8	25
Total Seconds	428	138	322	888
Main Stage Sec	330	126	276	732
Early Cuts for Engine Causes	9	0	2	11

History of LOX/RP-1 Propulsion Unique Test Facilities Aid Industry

East Test Area

- Subscale and component level high-pressure testing of injectors, nozzles, pumps, thrust chambers
- TS115, TS116

Materials Lab

- Failure investigation
- Comprehensive materials testing
- State of the art welding, brazing techniques
- Structured light
- Advanced manufacturing

North Test Area

- Unique, low-cost, quickturnaround fluid flow tests
- Turbine, inducer, pump, and nozzle test facilities

Stennis Space Center

- LOX/RP-1 engine systems testing
- LOX/RP-1 large component testing
- Stage testing

Component Development Area

- Unique propulsion system component technology assessment
- · Focused on valve, regulator, solenoid, and seal development

History of LOX/RP-1 Propulsion Recent F-1 Disassembly

Prepares Government and Industry Workforce for SLS Advanced Booster NRA

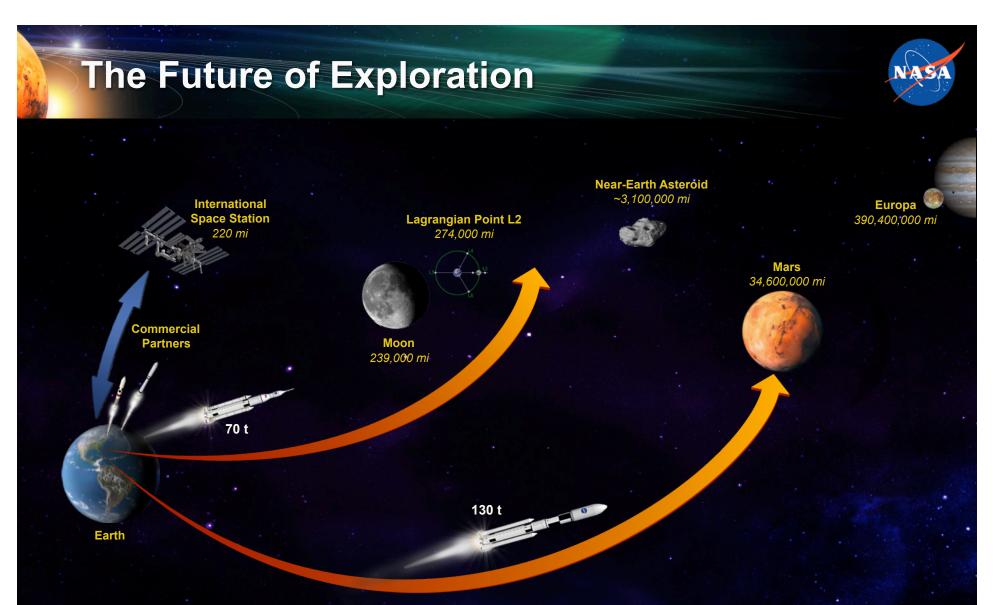
Studies & Activities Leading to the SLS Decision

			200							20											2011				
ΑCTIVITY	J	A	sc	A C	I D	J	F	M.	AN	J	J	A	S (N C	I D	J	F	Μ	A	۸I.	J J	Α	S	D N	D
Review of Human Space Flight (HSF) Plans Committee (Augustine Panel)																									
Heavy Lift Launch Vehicle (HLLV) Study																									
Heavy Lift Propulsion Technologies Study (HLPT)																									
Human Exploration Framework Team (HEFT) and HEFT II																									
Broad Agency Announcements (BAA)																ŀ									
NASA/U.S. Air Force (USAF) Common Engine Study																									
Heavy-Lift Vehicle (HLV) Analysis of Figures of Merit (FOM)																									
Requirements Analysis Cycle (RAC) 1																									
SLS Mission Concept Review (MCR)																									
Exploration Systems Development (ESD) SLS Analysis of Alternatives (AoA)																									
Agency Integrated Architecture Decision																									
SLS Program Planning and Budget Execution for FY13 to Agency																									
SLS Acquisition Strategy Meeting																									
Independent Cost Assessment Report (Booz Allen Hamilton)																									
SLS Rolled out by NASA Administrator																									

Engineering and Business Analyses Validated SLS Architecture Selected by the Agency

NASA Authorization Act of 2010

- The Congress passed and the President signed the National Aeronautics and Space Administration Authorization Act of 2010.
 - Bipartisan support for human exploration beyond low-Earth orbit (LEO)


• The Law authorizes:

- Extension of the International Space Station (ISS) until at least 2020
- Strong support for a commercial space transportation industry
- Development of Orion Multi-Purpose Crew
 Vehicle (MPCV) and heavy lift launch capabilities
- A "flexible path" approach to space exploration, opening up vast opportunities including near-Earth asteroids and Mars
- New space technology investments to increase the capabilities **beyond Earth orbit (BEO)**

This rocket is key to implementing the plan laid out by President Obama and Congress in the bipartisan 2010 NASA Authorization Act. — NASA Administrator Charles Bolden September 14, 2011

The Space Launch System [will] be the **backbone** of its manned spaceflight program for decades. It [will] be the most **powerful** rocket in NASA's history...and puts NASA on a more **sustainable** path to continue our tradition of **innovative** space exploration.

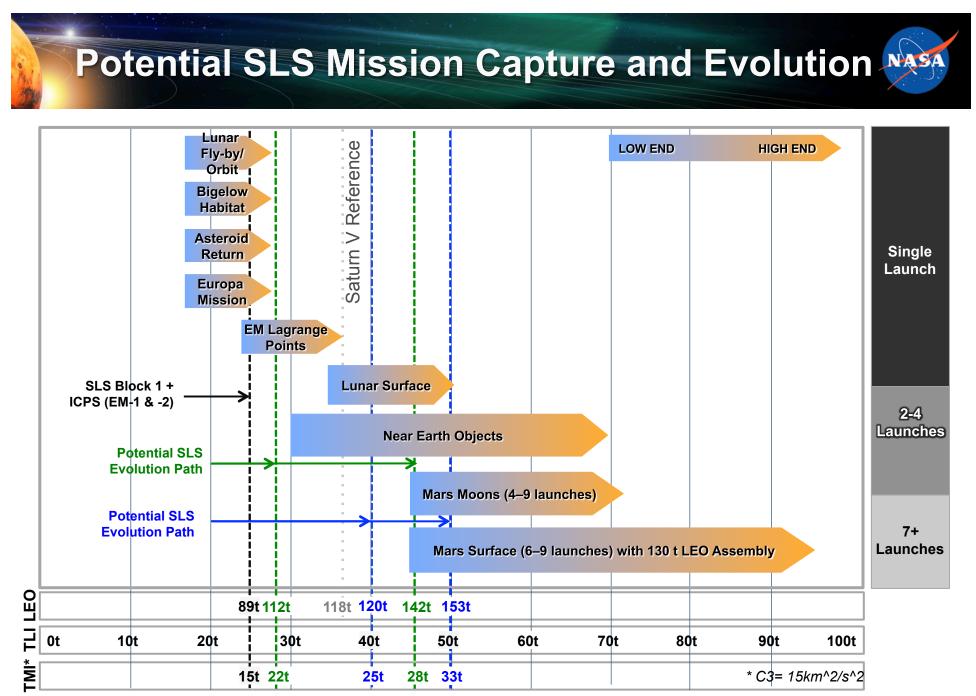
President Obama's Accomplishments for NASA May 22, 2012

SLS Driving Objectives

Safe

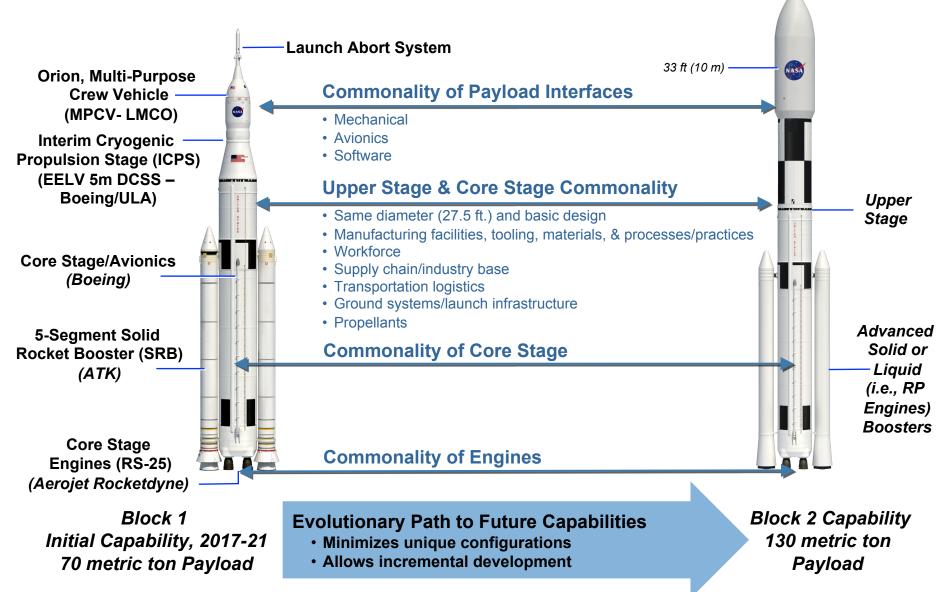
- · Human-rated to provide safe and reliable systems
- Protecting the public, NASA workforce, high-value equipment and property, and the environment from potential harm

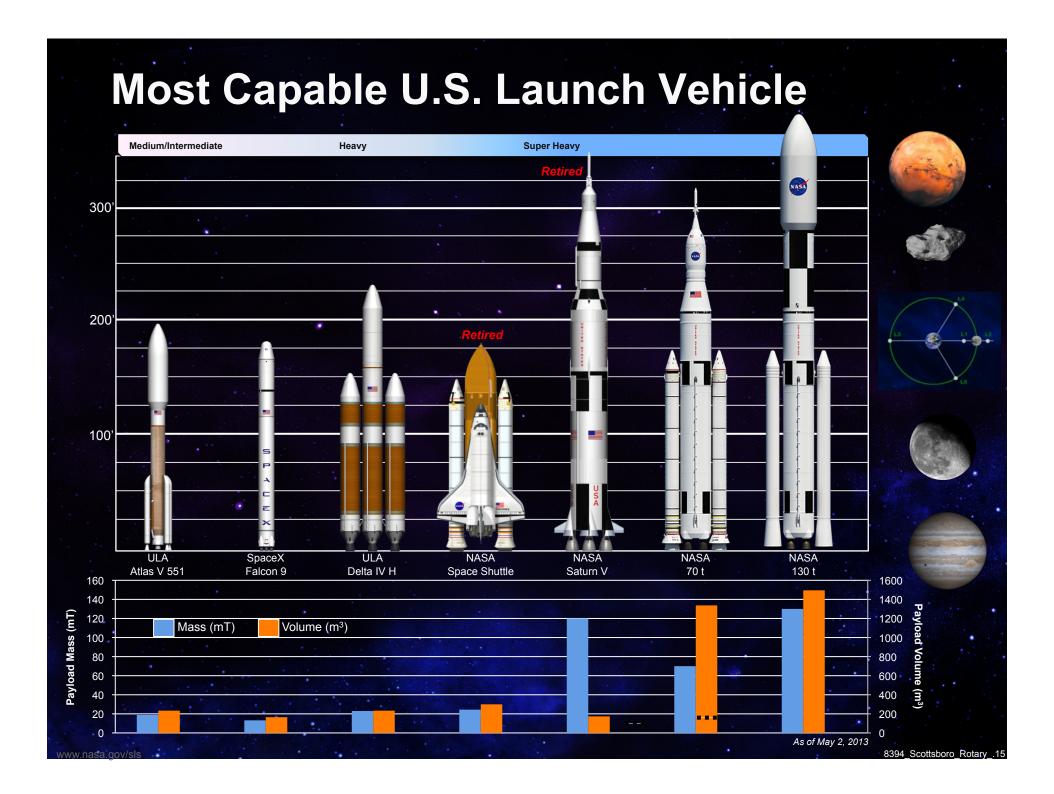
Affordable


- Maximum use of common elements and existing assets, infrastructure, and workforce
- Constrained budget environment
- Competitive opportunities for affordability on-ramps

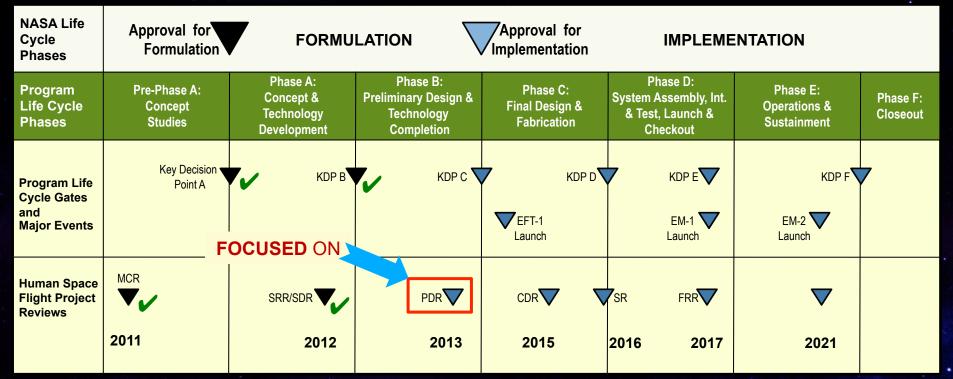
Sustainable

- Initial capability: 70 metric tons (t), 2017–2021
 - Serves as primary transportation for Orion and human exploration missions
- Evolved capability: 105 t and 130 t, post-2021
 - Offers large volume for science missions and payloads
 - Reduces trip times to get science results faster
 - Minimizes risk of radiation exposure and orbital debris impacts





Single Launch Equivalent Gross Capability


SLS Block Commonality

The Road to First Flight in 2017

[A] monumental effort ... has gone into this Program.... I don't think anyone would have thought in September [2011] that this Program might be this far so fast.

> LeRoy Cain, Chair Standing Review Board June 29, 2012

	CDR: Critical Design Review	MCR: Mission Concept Review
•	EM: Exploration Mission	PDR: Preliminary Design Review
	EFT: Exploration Flight Test	SIR: System Integration Review
	FRR: Flight Readiness Review	SDR: System Definition Review
	KDP: Key Decision Point	SRR: System Requirements Review

A National Infrastructure Asset

For Beyond-Earth Orbit Exploration

2017

www.nasa.gov/sls