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Abstract 
 

The reduction of jet noise using a closed-loop active noise control system with high-

bandwidth active chevrons was investigated.  The high frequency energy introduced by 

piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet 

noise, presumably due to the suppression of large-scale turbulence.  For a nozzle with one active 

chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared 

to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB 

OASPL were observed compared to a baseline nozzle with no chevrons.  The closed-loop 

actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, 

integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely 

due to the preliminary controller design, which was focused on narrowband performance.     

I. Introduction 

 

This report describes results from Phase I of an Aeronautics Research Mission Directorate 

(ARMD) Seedling Fund project recently investigated at NASA Langley Research Center.  The 

overall goal of this work is to reduce jet noise using a closed-loop active noise control system 

with high-bandwidth active chevrons.  

Aircraft noise is considered to be the most significant barrier to increasing the capacity of the 

national airspace system. The scope of the problem is underscored by the fact that the FAA has 

spent $5B on airport noise abatement programs since 1980
1
. Jet noise is considered to be a 

dominant source of aircraft noise, particularly at takeoff.  Therefore, jet noise can adversely 

affect communities near airports, airline passengers, and military personnel supporting aircraft 

operations.  For instance, Veterans Affairs now spends over $100 million a year in hearing loss 

benefits to veterans often exposed to high jet noise levels
2
. 

While techniques to reduce jet noise have been studied for several decades, one recent 

advancement is the evolution of chevrons (serrations) at the nozzle trailing edge.   Chevrons 

introduce streamwise vorticity into the jet shear layer, increasing mixing and decreasing the jet 

potential core length.  In turn, the low frequency jet noise associated with large-scale turbulence 

is typically reduced, while high frequency jet noise due to smaller-scale turbulence near the 

nozzle exit is often increased.  Balancing the low frequency noise benefit with the high 

frequency noise penalty to get a net beneficial noise reduction is essential to a good chevron 

design.  Furthermore, while chevrons can impact jet thrust, slight modifications to the nozzle exit 

area can minimize thrust penalties. 

This work examines the use of vibrating chevrons to enhance the noise reduction potential of 

passive chevrons with a high-frequency, active excitation.  Previous researchers have shown that 

small-scale, high-frequency perturbations near the nozzle exit can be used to modify the initial 

growth rate of the mixing layer
3
 and thereby reduce jet noise

4
. Introducing additional high-

frequency energy at the nozzle exit is believed to increase the production of small-scale 

disturbances at the expense of large-scale turbulence. These large-scale turbulent structures are 

responsible for the dominant portion of the jet mixing noise occurring in subsonic transports and 

military jets at takeoff. Additionally, these turbulent structures play an important role in 

broadband shock-associated noise generation in off-design supersonic jet flows typical of 

subsonic transports operating at cruise altitude or military jets at takeoff.  Therefore, by exciting 

the typically static chevron geometry at high frequency, an additional acoustic benefit is 
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anticipated.  This approach requires minimal power and differs from existing active jet noise 

control techniques such as plasma actuation and fluidic injection, which require substantial 

power and mass flow requirements, respectively.   

Furthermore, recent numerical simulations suggest that relatively small perturbations at the 

nozzle lip may be sufficient to reduce jet noise by 6-9 dB
5,6

.  However, this level of reduction 

requires optimal time-accurate perturbations, which cannot be achieved using open-loop 

configurations.  Consequently, the current effort employs an adaptive closed-loop control 

configuration in which the adaptive algorithm adjusts the drive signals to the chevrons to 

minimize the far-field radiated sound in real time.  A feedforward control strategy was 

implemented as shown in Fig. 1 using the filtered-reference least mean squares (FXLMS) 

algorithm.  A near-field microphone was used as a reference sensor for the adaptive feedforward 

controller.  The output of the controller was used to drive the high-bandwidth active chevron 

with oscillating signals.  Although the feedforward approach is most effective when the reference 

sensor is able to provide information prior to the control, such an arrangement is not possible in 

this application.  Therefore, for proof-of-concept investigations, a bandpass filter was applied to 

the broadband signal, typically at the resonant frequency of the nozzle system. 

 

 
Figure 1.  Schematic of feedforward active noise control system. 

 

The objective of this work is to demonstrate the potential of closed-loop active noise control 

with high-bandwidth active chevrons to reduce jet noise.  The next section of the report describes 

the facility, nozzles, and excitation hardware as well as the instrumentation, and data 

acquisition/processing in greater detail.  Section III examines the experimental results including 

chevron tip penetration studies and the open-loop and closed-loop excitation acoustic results.  

Finally, Section IV ends the report with concluding remarks and a discussion of future work.    
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II. Experimental Procedures 

A. Facility  

All jet noise experiments took place in the Small Anechoic Jet Facility (SAJF) at NASA 

Langley Research Center.  The facility shown in Fig. 2 consists of a single stream jet flow 

capable of delivering up to 2 lbm/s of air.  A Chromalox heater of 275 W is used to raise the 

stagnation temperature of the jet stream, in this case up to 100° F for consistency throughout the 

experiments.  A 2 ft diameter duct concentric to the nozzle provides a minimal co-flow velocity 

around the jet flow when operating a single speed fan in the exhaust duct; however, it was not 

used in the current work.  The jet exhausts into an anechoic chamber.  The chamber contains 

fiberglass wedges and tip-to-tip dimensions of 12.7 ft long x 8.4 ft wide x 10.7 ft high providing 

an anechoic environment down to 250 Hz. 

    
       a)        b) 

Figure 2.  Small Anechoic Jet Facility (SAJF) a) with installed chevron nozzle and b) 

facility schematic. 

B. Nozzles 

To simplify the chevron actuation process, flat-sided rectangular nozzles were fabricated for 

this study.  A converging-diverging contoured nozzle was designed using the Method of 

Characteristics for a design Mach number of M=1.5 as shown in Fig. 3a.  In the diverging section 

of the nozzle one pair of opposite walls remained parallel while the other pair diverged.  The 

nozzle throat is 1 inch square while the nozzle exit is slightly larger, as shown in Fig. 3b, 

resulting in an equivalent diameter at the nozzle exit of Deq=1.224”.   

                          
    a)                         b) 

Figure 3.  Nozzle geometry including a) contour and b) exit plane. 
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Chevron designs were scaled from previous work with Boeing
7
 with the chevron width 

extending to the full sidewall dimension and chevron length equal to 0.390”.  The initial chevron 

nozzle design in which the chevrons followed the diverging nozzle contour (Fig. 4a) was not 

effective.  Therefore, converging chevrons with various levels of penetration into the jet plume 

were considered (Fig. 4b).  Penetration depths, defined as the distance from the projected 

diverging nozzle contour to the chevron tip, of 0.050”, 0.100”, and 0.150” were considered.  

Section IIIB describes the results of these chevron penetration investigations.  The nozzles were 

all fabricated from ABS plastic using a 3-D printer.  This manufacturing proved cost effective 

and efficient; however, some cracking near the chevron root was observed when running at 

supersonic Mach numbers.  This problem was mitigated by reinforcing the chevron roots of the 

non-excited chevrons with metal plates as shown in Fig. 5.     

     
                                      a)                                   b) 

Figure 4.  Chevron nozzle with chevrons a) following diverging contour and b) converging.  
 

 

 

 

 

 

Figure 5.  Chevron nozzle reinforced with metal plates and tape.  

C. Excitation Hardware  

Several chevron excitation schemes were considered, and two were downselected for initial 

testing as shown in Fig. 6.  Figure 6a shows a Macro Fiber Composite (MFC) piezoelectric patch 

actuator that was bonded to the outside of the chevron with strain gauge adhesive.  A mechanical 

shaker with a sting attached to a clevis and nylon hinge arrangement is shown in Fig. 6b.  

Although the mechanical shaker provided more significant displacement authority than the MFC, 

the shaker arrangement would not effectively operate at frequencies above 100 Hz.  Therefore, 

the superior frequency response and robustness of the MFC led to its downselection as the 

primary excitation method.  For simplicity, this initial work focused on the excitation of a single 

chevron, unless otherwise noted.  Interestingly, the stiffness of the MFC actuator was sufficient 

to avoid the chevron cracking issue previously discussed so no further reinforcement was 

necessary for the excited chevron.   
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                                      a)                                   b) 

Figure 6.  a) MFC piezoelectric patch actuator and b) mechanical shaker and sting with 

clevis/hinge attachment. 

D. Instrumentation 

1. Tip Displacement Measurements 
The determination of the chevron tip displacement during actuation was accomplished in one 

of several ways.  An accelerometer was often placed directly on the chevron for initial 

characterization.  However, to avoid the effects of the added mass of the accelerometer on the 

system during testing, a laser vibrometer was used for tip displacement measurements.  When 

inconsistencies with the vibrometer were discovered at very low excitation frequencies, the 

vibrometer was replaced with a Keyence laser displacement sensor shown in Fig. 7 as the 

primary instrument for determining tip displacement.    

 

 

 

 

 

 

 

 

 

 

Figure 7.  Laser displacement sensor mounted on opposite side of nozzle from far-field 

microphones.  
 
2. Acoustic Measurements 

Far-field acoustic measurements were made with a linear array of seven Brüel and Kjær 

(B&K) Model 4939 free-field microphones of 0.25 inch diameter in conjunction with Model 

2670 pre-amplifiers and a B&K Multiplexer (Model 2811).  The polar range of the microphones 

was from 75 to 150 from the upstream jet axis, and the microphones were located on an 

azimuthal plane nominally 30 above the jet centerline pointed toward the jet exit.  The nozzles 

were also mounted with a 30 clocking so that the microphone plane intersected the chevron tips 

on each side of the nozzle.  Electrostatic and pistonphone calibrations were routinely performed 

on all microphones, and the grid caps were removed for testing.  Two additional 0.25 inch 

microphones were also employed as reference and error sensors, respectively, for the closed-loop 

control implementation that will be further discussed in Section IIID.  
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E. Data Acquisition and Processing  

The SAJF data acquisition system consists of a series of LabVIEW virtual instruments 

running on an acquisition PC.  The eight channels of dynamic signals (seven microphone and 

one tip displacement) are routed through high pass (100 Hz) and low pass (102,300 Hz) 

Precision filters with autogaining applied to the signals.  A National Instruments PCI-6143 8 

channel simultaneous sampling multi-function data acquisition board receives the signals.  The 

dynamic signal data are acquired at 210 kHz with 180 data averages, resulting in a 4096-point 

spectrum with a frequency resolution of 25.63 Hz.  Microphone frequency response and free-

field response corrections were applied, and atmospheric attenuation corrections to a lossless 

condition were applied according to the ANSI standard
8
.  The corrected far-field spectral levels 

were then propagated to a common distance of 100 jet diameters from the nozzle exit.  These 

corrections have been applied to all far-field microphone data unless otherwise noted. 

An example of the repeatability of the far-field microphone array is shown in Fig. 8 for M=0.9 

at the sideline angle (90°) and near maximum noise emission angle (150°) from the jet inlet axis.  

Comparisons in this report have typically been made only for data taken during the same day to 

minimize day-to-day uncertainty.  Nonetheless, Fig. 8 shows consistency between data taken on 

different days within 0.12 OASPL.  Similar levels of repeatability were also common at 

supersonic conditions.   

 

  
  a)             b) 

Figure 8.  Far-field acoustic results at M=0.9 showing repeatability at a) 90° and b) 150° 

from the jet inlet axis.   

 

III. Experimental Results 

A. Flow Conditions 

The flow conditions examined in this work are shown in Table 1 including Mach number, M, 

and characteristic frequency, fc.  The results focus on conditions representative of subsonic 

commercial takeoff (M=0.9) and supersonic, over-expanded conditions typical of military takeoff 

(M=1.4) as highlighted in Table 1.  
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Table 1.  Typical experimental conditions assuming standard day conditions. 

                            

B. Tip Penetration Studies 

Before proceeding with actuation of the chevrons, an investigation of static chevron tip 

penetration was undertaken.  A baseline nozzle (no chevrons) was compared to three increasing 

chevron penetrations (0.050”, 0.100”, and eventually 0.150”).  Figure 9 shows the M=0.9 far-

field acoustic spectral results at the sideline angle (90°) and near maximum noise emission angle 

(150°) from the jet inlet axis.  The low frequency benefit and high frequency penalty commonly 

seen with increasing chevron penetration is generally observed.  Integrated OASPL tend to 

increase with increasing chevron penetration at 90° and decrease with increasing chevron 

penetration at 150°, indicative of the relative importance of high and low frequency noise at each 

angle.  Although the 0.100” penetration case was further investigated in the current effort due to 

timing and availability of additional nozzle hardware, the 0.150” penetration case also shows 

promise acoustically and will be further investigated.  The high frequency noise of the 0.150” 

penetration case is lower than, or on par with, the 0.100” nozzle results while showing noticeably 

more low frequency benefit.  The decrease in high frequency penalty going from the 0.100” to 

the 0.150” penetration case may be due to the difference in corner flow associated with different 

chevron penetrations for these rectangular nozzles.  These results also highlight the importance 

of displacement for the control effect of the vibrating active chevron.   
 

  
  a)             b) 

Figure 9.  Far-field acoustic results at M=0.9 for several chevron penetrations at a) 90° and 

b) 150° from the jet inlet axis.   



8 

 

C. Open-Loop Excitation Results 
Prior to acoustic testing, an MFC piezoelectric patch actuator was placed on a single chevron, 

covered with reflective tape, and measured using a laser vibrometer as shown in Fig. 10.  The 
nozzle resonant frequency was typically found to be near 1000 Hz, with the value changing 
slightly once installed in SAJF.  The chevron was then excited at the nozzle resonant frequency 
to maximize displacement.  As seen in Fig. 10, the maximum tip displacement due to excitation 
is approximately 0.1 mm (0.004”).  
 

 
Figure 10.  Benchtop tip displacement measurements of excited chevron. 

 

The characterized system was then assembled in the SAJF, and the chevron with the MFC 

was located in the azimuthal location closest to the far-field microphone array.  Figure 11 shows 

the open-loop excitation results for the 0.100” penetration chevron nozzle at the resonant 

frequency of the nozzle.  The excitation results are compared to both the static chevron (no 

excitation) case and the baseline no chevron case at M=0.9 and M=1.4.   

For the M=0.9 case of Fig. 11a at 90°, the excited chevron shows a slight spectral reduction 

across a broad frequency range compared to the static chevron.  At the excitation frequency of 

1020 Hz, the exited chevron spectrum shows a narrowband peak several dB above the static 

chevron spectrum.  From an integrated OASPL perspective, the excited chevron reduces the 

penalty (noise increase associated with static chevrons at this angle) of the static chevron by 0.4 

dB OASPL.  For the 150° case of Fig. 11b the excited chevron shows a similar benefit across the 

spectrum.  Furthermore, the excited chevron increases the static chevron benefit by 0.8 dB 

OASPL.  Considering only one of the four chevrons is excited in these cases, and at 

displacements of a few thousandths of an inch, the potential for more significant noise reduction 

with additional excited chevrons and greater excitation displacements is anticipated.  

The slightly overexpanded supersonic condition of M=1.4 is shown in Figs. 11c and 11d.  The 

excitation frequency has increased slightly to 1050 Hz to match the changing resonant frequency 

of the system at this flow speed.  In Fig. 11c at 90°, the dominance of broadband shock-

associated noise above 10 kHz is noted.  Furthermore, the increase in broadband-associated 

shock noise with the addition of chevrons, also observed in other work
9
, is evident here.  The 

chevron excitation does not noticeably alter the broadband shock-associated noise, perhaps 
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because more significant chevron tip displacements are required.  At a further downstream angle 

where shock noise is no longer dominant, as shown in Fig. 11d, the excited chevron shows 

additional benefit beyond the static chevron of 0.3 dB OASPL.  Thus, the excited chevron case 

again shows benefits beyond the static chevron case for reducing jet mixing noise.  

 

 

  
a)             b) 

 
 

  
c)             d) 

Figure 11.  Open-loop far-field acoustic results with open-loop excitation at the nozzle 

resonant frequency for M=0.9 at a) 90° and b) 150° and for an overexpanded supersonic 

case at M=1.4 at c) 90° and d) 150°.  
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D. Closed-Loop Excitation Results 

Implementation of the closed-loop control strategy involved the use of a digital feedforward 

control approach utilizing the filtered-reference least mean squares (FXLMS) algorithm with 

feedback cancellation in the time domain. A block diagram of the FXLMS approach is shown in 

Fig. 12a. The feedforward approach requires a reference signal that is highly correlated with the 

noise to be cancelled.  That signal is then fed forward through an adaptive Finite Impulse 

Response (FIR) filter, and the filter output is used to drive a control source. The adaptive filter is 

adjusted in real time by monitoring the radiated field with an error sensor and utilizing the LMS 

algorithm to adapt the FIR filter coefficients.  

The active controller was first tested in a benchtop experiment using broadband sound waves 

generated in a long tube utilizing a speaker at one end driven by white noise.  The drive signal to 

the noise source was also used as the reference signal to the controller.  An active sound speaker 

was located near the duct outlet and driven by the output of the controller.  A microphone was 

located in the radiated sound field and was used as an error sensor for the controller.  In practice, 

the use of a far-field microphone may not be feasible on aerospace vehicles.  Thus, the 

development of a virtual sensor, as previously demonstrated by Papenfuss et al.
10

, may 

ultimately be required. 

  The noise source was turned on, and the spectrum of the uncontrolled sound level was 

measured from the error sensor output.  The controller was then turned on and allowed to 

converge, and then the spectrum at the error sensor was re-measured.  The results are shown in 

Fig. 12b, demonstrating the controller provides significant reduction of the sound across a broad 

frequency range. 

 
 

                                            
a) 

 

                                       
            b) 

Figure 12.  a) Block diagram of feedforward arrangement and b) example benchtop 

performance of active noise control system. 
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Following the benchtop demonstration of the closed-loop feedforward control strategy, the 

system was implemented in the SAJF. The reference sensor was a near/mid field microphone, 

and an additional far-field microphone at approximately 155° was utilized as the error sensor.  

The output of the adaptive filter was used to drive the piezoelectric actuator on the chevron.  This 

control strategy is most effective when the reference sensor provides time-advanced information 

correlated with the disturbance, which was not possible in this configuration. Therefore, a band-

pass filter was used to filter the broadband signal from the near/mid field microphone to generate 

a narrowband reference signal. This reduced the need for a time-advanced reference; however, it 

also limited the bandwidth of the controller.  Figure 13 shows the noise reduction for the closed-

loop control strategy at the far-field error sensor microphone at the targeted frequency, which 

was typically the excitation frequency of the system.  In this case two chevrons were excited out 

of phase, but the results were similar for various excitation arrangements in that the closed-loop 

control system routinely decreased noise at a single frequency by 1-3 dB. 

 

 

 
Figure 13.  Reduction of uncorrected jet noise spectrum near 900 Hz due to control system. 

 

Nonetheless, because the reference signal was bandpass filtered, the benefit of the closed-loop 

control on the overall sound pressure level of broadband jet noise was not as significant as the 

single frequency benefit.  Figure 14 shows that with two chevrons excited in phase at 1800 Hz, 

there is a high frequency increase of 0.7 OASPL at 90° (Fig. 14a) compared to the unexcited 

chevron case.  On the other hand, active control reduces the noise at 150° (Fig. 14b) by 0.6 dB 

OASPL compared to the unexcited chevron case.  This level of benefit is similar to the open-

loop result of Fig. 11b.  There are several portions of the low-to-mid frequency spectra in Fig. 14 

that are reduced by 2-3 dB with closed-loop actuation.  The attenuation is likely to be improved 

with an increased number of active chevrons and an adjustment of the control paradigm, both 

planned in future project work.  
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a)             b) 

Figure 14.  Closed-loop far-field acoustic results at M=0.9 at a) 90° and b) 150°. 
 

IV. Concluding Remarks 

 

A closed-loop active noise control system using high-bandwidth active chevrons was 

demonstrated in a proof-of-concept work.  The active chevron system has shown promise in 

reducing far-field noise levels beyond what static chevrons can achieve.  

To accomplish this work, a piezoelectric patch actuator was downselected as the primary 

actuation scheme and integrated with an ABS plastic supersonic rectangular jet nozzle.  

Benchtop experiments characterized the actuation frequency and tip displacement of the chevron.  

Concurrently, an acoustic investigation of various static chevron tip penetration depths was 

conducted, leading to the downselection of a 0.100” static chevron tip displacement nozzle.  The 

active chevron nozzle system was installed in the SAJF, and the open-loop performance was 

assessed at various jet Mach numbers while exciting a single chevron. Benefits of up to 0.8 dB 

OASPL were observed compared to a static chevron nozzle near the maximum noise emission 

angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no 

chevrons.  The excited chevron did not reduce the broadband shock-associated noise – more 

significant chevron tip displacements would likely be required for that.  In parallel efforts, a 

digital feedforward control algorithm was shown to reduce noise in a benchtop test using a 

speaker tube.  The closed-loop actuation system was installed in the SAJF and results showed 

that the adaptive system was able to effectively reduce noise at select frequencies by 1-3 dB.  

However, integrated OASPL did not show any significant further reduction beyond the open- 

loop benefits, most likely due to the controller being designed for narrowband performance.     

Future work will focus on increasing both the number of active chevrons around the periphery 

of the nozzle as well as the chevron tip displacement.  Pre-stressed piezo-ceramic actuators show 

an order of magnitude increase in displacement authority over conventional MFC actuators.  

Stainless steel substrates are being custom-designed to incorporate excitation of the entire 

chevron geometry.  In addition, the expansion of the control strategy beyond select frequencies is 

planned using various feedback control approaches.  Finally, increasing the understanding of the 

effects of the actuation on the flowfield by incorporating Particle Image Velocimetry (PIV) 
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measurements and moving to faceted axisymmetric nozzles of larger scale are additional planned 

investigations.     
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